
Vinod Kumar Saroha et al., International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4152 - 4159

4152

A Novel Approach to Comparative Analysis and Performance
Evaluation of Energy Aware Multi-Layered Job Scheduling in

Heterogeneous Cloud
Vinod Kumar Saroha1, Dr. Sanjeev Rana2

1PhD Research Scholar, CSE, MMDU, Mullana; India; Email: vnd.saroha@gmail.com
2Professor, CSE Department, MMDU, Mullana; India; Email: Dr.sanjeevrana@yahoo.com

ABSTRACT

One of the latest apt platform in today’s trending
technological scenario for imparting application based
utilities and services rendered by various distributed
resources situated remotely is the Cloud Computing
paradigm. The routine task operations and services involve
efficient energy utilization with minimum dissipation via
load balancing and process allocation. A heuristics defined
approach has been implemented in this research work for
execution of task scheduling activities with optimal resource
sharing. Here a robust scheduling technique is used by the
scheduler in the heterogeneous cloud network for mapping
the available resources to execute scalable tasks optimally.
The research area takes into consideration various
performance based parameters like Make-Span, Throughput,
Average Response Time (ART) etc. for analysis and
comparison with the standard scheduling procedures. There
was a large energy loss using the previous scheduling and
load balancing standard algorithms in reference to the above
mentioned parameters. Hence a algorithm named Energy
Efficient Multi layered Scheduling (EEMLS) is proposed
that outperforms the earlier algorithms in common practice;
viz. Max-Min, Round Robin, Opportunistic Load Balancing
(OLB), Artificial Bee Colony (ABC) and Minimum
Completion Time (MCT) by containing the energy loss
considerably during the process work flow of task execution.
The entire scenario is best implemented in cloud
environment using the Cloudsim simulator for obtaining the
results to show better performance with energy saving.

Key words: Average Response Time, Load Balancing,
Make-Span, Multilayer Scheduling, Resource Allocation,
Throughput

1. INTRODUCTION AND RELATED WORK

The latest emerging paradigm in the technological world has
been the cloud computing; that incorporates different virtual
machines, data center units, task schedulers etc. for the
efficient process execution on different machines scattered at

remote locations [4]. The large number of virtual machines
(VMs) [5] are the vital units of processing and are placed
statically in the data centers. The cloud computing leaves a
substantial carbon foot prints during the routine operations
execution and there is further a considerable energy loss in
the workflow. The load balancing in sync with the effective
task scheduling and resources allocation check the energy
wastage to a great extent. The job scheduling approach in
cloud computing network helps in the allocation of the
desired resources to the available tasks for the optimal
performance and better resources utilization. At any
particular instant of time; a desired resource is assigned for
specific jobs. The CPU utilization, the bandwidth, the
execution time, the memory storage space etc are certain
types of resources which are time and again accessed by the
scheduler.

1.1 The important categories of task scheduling are best
explained below:

Dynamic Scheduling: This type of scheduling is more
flexible than the static one; as here the execution time of any
process is known in advance to the scheduler. The jobs here
are allocated to the resources by the scheduler for a
particular duration of time. A accurate and stable algorithm
supported with the load balancing features helps in the
execution of different tasks [18].

Static Scheduling: Here the information regarding the jobs
execution and the availability of resources is known in the
beginning when the jobs are scheduled. The scheduler
schedules the task to the appropriate resource; depending on
the capability of the resource [11].

Centralized Scheduling: As mentioned in the dynamic job
scheduling, it is the responsibility of distributed or the
centralized scheduler to take a call globally. The major
benefits and advantages of the centralized scheduling are its
ease in implementing, utilization of the available resource
optimally, overall control on all the shared resources with
convenience of implementation, output performance and
efficiency.

Distributed or Decentralized Scheduling: In this type of
scheduling, there is no centralized controlled domain entity

 ISSN 2347 - 3983
Volume 8. No. 8, August 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter20882020.pdf

https://doi.org/10.30534/ijeter/2020/20882020

Vinod Kumar Saroha et al., International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4152 - 4159

4153

and hence the scheduling is less strong and less effective
when compared with the centralized scheduling. The
schedulers that control and manage the task requests in a
queue are the localized ones which adapt to the number and
type of the resources available.

Pre-Emptive Scheduling: Here, interruption of every job
takes place; during the migration and execution of jobs from
one resource to another resource. For the allocation of new
job requests to the original resource; it is left idle. Pre
emptive scheduling is best suited for the jobs where the
priority limits are attached to requests.

Co-operative scheduling: Here in this type of scheduling
process, there are many schedulers attached with the system
[14]. Depending upon the fixed set of algorithms, rules of
framework and is the system users; every scheduler is
granted with the onus to perform a particular activity that
leads to the overall efficiency and enhance output
performance.

Non Pre-Emptive Scheduling: In this type of scheduling,
initially the execution of the scheduled job requests is
allowed to finish of its cycle; before that there is no
provision of the re-allocation of the shared resources [13].

Batch / Offline Mode: Here in this type of scheduling
process; the job requests are executed at specific intervals of
time; which are consecutive in nature. These requests are
saved as a common group of problems and executed at right
instance.

Hybrid scheduling Model: In this type of scheduling both
the Static scheduling mode as well as the Dynamic
scheduling mode are combined with each other. This model
caters primarily to the virtual machines of the system.

An efficient job scheduling approach aims in completion of
the task in stipulated duration of time thereby taking less
response time. Hence there is always requirement of timely
access and reallocation of the shared resources among the
varied jobs. In such approach more tasks are submitted to the
cloud center for execution with fewer rejections [14]. The
overall exercise helps in the smooth energy workflow for the
execution of job requests at the cloud center and hence the
better performance.

1.2 Some of the standard task scheduling algorithms
employed in cloud computing environment are as below:

Round Robin (RR) algorithm: This type of algorithm is
static in nature and is a popular for its load balancing
feature. The round robin technique is followed here for the
allocation of jobs to the resources. initially a primary node is
chosen at a random; after then the jobs are assigned to the
available resources in the round robin fashion. The tasks are
assigned to the processors in a sequential circular manner; if

there is no priority attached. The unit quantum is used for
fixed time interval for different executable processes.

Min-Min Algorithm: This algorithm aims at addressing the
sorting of the unmapped tasks in the order of the ascending
order of their completion intervals of time. The longer
duration tasks are delayed while the smaller tasks are
executed in the beginning. The process is repeated over time
such that all the tasks of the unmapped set are mapped for
the corresponding available resources for sharing [1] [2].

Minimum Completion Time (MCT): Here, in this type of
scheduling procedure, that specific task is assigned to the
desired resource in random fashion; which has the value of
completion time as minimal. However, the striking
difference between the Min-Min and MCT is that during the
time of mapping decision; Min-Min considers all the
unmapped tasks where as the MCT recognizes a single task
a specific time interval [9].

Max-Min Algorithm: Here in this type of algorithm, the
smaller tasks of less time duration are delayed for longer;
while the larger task is scheduled for its execution initially.
In this procedure; the tasks are sorted in their descending
order of the completion time and is exactly opposite to the
Min-Min procedure in this respect [2].

Multi-level Queue Scheduling Algorithm: In this type of
procedure; the initialized queue is demarcated into n number
of queues; with different tasks in multi level scheduling [15].
The whole exercise involves the use of a simulator for
assembling scheduling tasks and strategies. It takes into
consideration both the non-preemptive and preemptive
methods.

Shortest Job First Algorithm: In this algorithm; waiting
time of task scheduling is optimized; while taking into
consideration a non-preemptive scheduling approach. This
procedure is best employed in the batch type processing
systems; where the CPU timings are known from the start. It
is rather difficult to be implemented in the interactive
systems as CPU time is not known; but conveniently used in
batch processing systems [12].

Opportunistic load balancing algorithm: In this type of
procedure; the present workload of the virtual machines is
not taken into consideration; hence it is a static feature
dependant load balancing algorithm [17]. This algorithm is
based on the approach of keeping the nodes busy; while the
jobs are allocated to particular nodes following the random
fashion. Here the leftover unexecuted tasks are transferred to
the available node randomly.

Vinod Kumar Saroha et al., International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4152 - 4159

4154

Artificial Bee Colony (ABC) Algorithm: Here In this ABC
procedure, a generic approach is being investigated in
reference to the bees in search for their food source (nectar).
The position of the nectar food source provides an optimal
solution for which the quality of solution is most precise. At
the onset; scattered food positions are created where the food
source is randomly distributed [16]. The search operations
are carried by the scout bees, the employed ones and the
onlookers as well; for locating the nectar. The employed bee
traces the new nectar position; while it forgets the old food
source position. These new location of nectar or food source
are evenly explored for the customized results.

There is considerable a large energy consumption from the
process workflows and routine operations in a cloud
computing network. The earlier research done in this area
failed to bring the satisfactory results in terms of the
standard parameters of Response Time, Makespan and
Throughput. Also they resulted in large energy loss. Our
improvised EEMLS algorithm addressed to this area of
concern and provided optimal solution with results that
rendered less energy dissipation as well as augmented the
performance in the cloud data centers.

Remaining part of the paper is divided into further sections
or sub parts for ease of reading. Section-1 explains the task
scheduling, its introduction, types of scheduling and urgency
of the EEMLS algorithm. Section 2 describes the literature
work regarding the problem. The EEMLS approach has been
elucidated in section 3 while section 4 gives the
implementation details and section 5 studies the evaluation
and performance analysis of the existing algorithms with the
proposed EEMLS algorithm. Section 6 and 7 explains
Conclusion and References part respectively.

2. LITERATURE SURVEY

Lot of research work has already been accomplished in the
area of task scheduling; our work prolongs the existing work
further.

Akilandeswari. P and H. Srimathi (2016): The authors in
their research work presented the utility advantages of the
subscription services; based on pay for use idea. The
services existed in all forms of cloud computing; in the
distributed, parallel or cluster based cloud computing
models. Scalability, elasticity and better performance are
some of the important features offered by the cloud
computing services. The user subscribes to the services of a
cloud service provider and can customize, deploy his
software to pay for the subscription charges. The scalability
helps in increasing the complexity of the task scheduling in

the cloud computing whereas, the elasticity caters to
different resources viz. storage, memory, CPU etc. the
throughput has been observed to be effected by many
scheduling algorithms; scalability helps the scheduling to
complete the complex task executions at different times.

Sushil Kumar Saroj, Aravendra Kumar Sharma (2016):
The authors here in this study; gave the presentation how the
shared resources are efficiently used in the data centers with
optimal CPU scheduling for the processes that help to
augment the system performance and the output. The CPU is
transferred among varied processes for the desired resources.
But there are some drawbacks visible in parameters viz.
starvation, turnaround time, higher average waiting time etc.
have found difference in their values when implemented in
the real time conditions. Here both the variable and average
time constraints are taken into consideration; while feeding
some processes with the average time quantum while some
with the variable time quantum and then comparing the
results.

Rajveer Kaur et al.,(2014): With context to this paper, the
authors have presented the problems involved with heavy
load and traffic congestion. In such problems; the effective
job scheduling plays a very important role for the solutions
related to traffic or load congestion. The exercise of task
mapping is performed depending upon the type and nature of
resource. The earlier methods of cloud networking, task
scheduling and resource allocation are discussed along with
their comparative analysis.

Shridhar Domanal, Ram Mohana Reddy Guddeti, and
Rajkumar Buyya (2016): The authors here presented a
novel approach towards managing the shared resources
effectively and a robust job scheduling in the cloud
computing environment. For this, they proposed a new bio-
inspired algorithm. In the traditional type of job scheduling
algorithms example first come first serve, round robin, max-
min, min-min, ant colony optimization etc. multiple job
requests per instances were submitted to the cloud centers to
allocate the desired resources intelligently. But in this study;
MPSO algorithm (Modified Particle Swarm Optimization) is
employed for the allocation of resources to the virtual
machines in efficient manner and the hybrid bio inspired
algorithm helps in allocating CPU, memory as desired by the
processes. Hybrid bio inspired algorithm may be considered
as the combination of modified versions of CSO and PSO.
Regarding the parameters of average response time,
processor utilization and reliability; the hybrid Bio Inspired
algorithm outperforms the other conventional forms of
algorithms viz. CSO, ACO and round robin.

Vinod Kumar Saroha et al., International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4152 - 4159

4155

3. ENERGY AWARE FRAMEWORK IN
HETEROGENEOUS ENVIRONMENT

The principle on which the Energy Efficient Multi layered
Scheduling (EEMLS) works in smooth workflow execution
of processes is that the job request from the client with less
time duration is assigned the highest priority [19] will be
sent to the most efficient resource (Highest configured
server). This paper represents the effective job scheduling
paradigm in multi-layer format as the servers are prioritized
on basis of their configuration whilst the client requests are
prioritized in different layers categorized on the basis of
their job processing time.

3.1 EEMLS Algorithm 1 (Multi layered client-server
establishment with Scheduling)

1. Establishment of server-client database with different
configuration on the cloud in the beginning.

2. The parameters viz. processor types, processing speed,
RAMs and hard disk storage classify the servers.

3. The processing need (time) prioritises the client jobs.
Here, maximum five jobs are send by the client of different
or same processing time.

4. Hence on basis of processing need (time); the client
requests are classified as highest, middle and of lowest
priority.

5. The highest configuration server attends the client job
request of lesser processing time.

6. The servers are assigned priorities on basis of their
configurational parameters; i.e. the highest priority is
assigned to the server with higher configurations.

7. Initialise Server_1 on the datacenter of cloud.

8. Accept the Client_IDs, jobs number, and processing
(speed) time for every job.

9. Scheduler initializes scheduling with categorization of
jobs in three layers depending their processing time.

10. Particular server is allocated a job; depending upon their
priorities.

3.2 EEMLS Algorithm 2 (Load Balancing with Energy
efficiency)

1. Load balancing is executed after the scheduling of client
job requests on cloud datacenter.

2. The load of the high configuration servers (If over loaded)
is migrated to the nearby server having configuration
(priority) just less.

3. The job requests assigned to the under loaded servers are
transferred to the nearby server that has enough capacity to
handle that request.

4. The critical job requests are entertained first with energy
saving in the overall processes workflow is achieved by the
migration of job requests among overloaded and under
loaded servers invariably.

5. Exit.

The requirement and availability aspects determine the
allocation of resources. Here, in our research work
undertaken, the capping of server is done in a way that a
server can process five job request with optimal resource
utilisation. The job requests get migrated to next immediate
available server for more tasks and processes in the pipeline.
There is uniform distribution of the tasks assigned keeping
in view their priorities, resource availability and
requirements checks overloading and results in energy
saving. The server is multilayered because of different
configuration parameters of processing speed and memory;
while the client is multilayered due to its classification of job
requests.

4. IMPLEMENTATION WORK USING PROPOSED
EEMLS ALGORITHM

The proposed framework uses the client-server model
approach in layered structure wherein the Java and Cloud-
Sim acts as the frontend and backend respectively.

At the very onset; there is establishment of Server-Client
database in the cloud environment. There is categorization of
servers on the basis of internal memory, processing speed
and time. Whereas the processing need (time) of the client
job requests classifies the clients on the basis of their job
requests in three different priorities; viz. moderate priority,
of high (Critical) priority, and with lowest priority. The
servers are however categorized as lower, intermediate and
of higher priority on the basis of their configuration
parameters.

In our work, the server capacity to execute client job
requests is five for the successive clients; while we have
considered five servers for initial demonstration. Hence, for
better interpretation of scalability results; the server numbers
are increased to 10 for 50 task execution; 40 for 200 tasks
execution, 100 for 500 tasks execution, 200 servers for 1000
execution and so on. In this manner, the tasks scheduling
with execution is performed for 15, 50, 100, 250, 500, 1000
and 2000 tasks respectively. For even large number of tasks
execution; the same may hold true; following the heuristic

Vinod Kumar Saroha et al., International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4152 - 4159

4156

approach for scalable tasks. For client side in our work; a
client is capable of sending 5 job requests of different
processing speed (time units taken). If here are more than
five job requests; than the same are transferred to the nearby
servers which balances the load distribution and saves
energy.

The servers of different configuration that are uniformly
distributed, are considered in our implementation work. The
processing speed of servers is 4.0 GHz, 3.2 GHz, 2.5 GHz
for the same type of servers placed in same type group with
similar processors i.e. i7 or i5 or i3 configuration servers.
For similar type servers placed in same type; RAMs of 8TB,
4TB or 2TB is taken into consideration.

Our proposed EEMLS algorithm involves 5 client requests
execution for a specific server. That is for example, in a 500
task execution; 100 servers will be utilised where every
client ID will send 5 job requests. The ratio of tasks
execution to the server deployed is 5:1.

The initialisation of the client-server database is shown in
the Fig.1 screenshot. This initialisation entails the server_1
to accept the first request from Client_1 ID for 100 task
execution.

SNAPSHOTS OF WORKING:

Figure 1: Initializing the 100 tasks execution in heterogeneous
cloud

Figure 2: Client login screen with Type client id and no. of jobs to
be processed.

Figure 3: Processing time for different jobs of client id_18

Figure 4: Implementation table for first 10 clients in 100 tasks
execution (Above)

Figure 5: Shows the part of transactions performed in 100 task
execution (Server ID 310-349)

5. PERFORMANCE EVALUATION OF EEMLS
ALGORITHM

The efficacy of our EEMLS has been analyzed by
comparison with the standard laid algorithms viz. Round
Robin procedure, Min-Min, Max-Min, Artificial Bee Colony
etc. algorithms; and by involving different parametric values

Vinod Kumar Saroha et al., International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4152 - 4159

4157

of Make Span, Throughput and Average Response Time in
the heterogeneous cloud conditions is discussed in the
subsequent sections ahead.

5.1 MAKESPAN PERFORMANCE METRICS

Make-span parameter may be defined as the maximum time
of jobs completion out of the total number of the job
requests received per unit time for tasks execution in the
cloud environment. The ultimate aim of any evaluation
system is to keep CPU in busy mode. This parameter is
responsible for ascertaining the time used in job execution
[16] and also determines the quality feature of the jobs
allocated to available resources. Mathematically it is
represented by the following expression:

Makespan = max (rtj); where the ready time of every
scheduling resource is denoted by the term “rtj”. For optimal
efficiency of any scheduling algorithm; the value of Make-
span needs to be minimum. Further mathematically, it may
be stated as;

 Makespan = Max. { KTj | ¥ j are the elements of J}

 where; KTj = The finishing time calculated for job
j; that further is element of Job list “J”

 j = represents a specific job from the entire jobs list
of pool, while J = Entire list of jobs for execution

Table 1: Make Span time metrics comparative analysis using table

Algorithm Make Span Time
Round Robin 24.5 ms
MAX-MIN 18.0 ms
ABC 17.8 ms
EEMLS (Proposed) 15.5 ms

Figure 6: Make Span time metrics comparative analysis for
different scheduling techniques using graph

It is very conclusive after noticing the above figure 6 and
table7 that for the parameter of Make-span; our EEMLS
procedure clearly outperforms the Artificial Bee Colony
Optimization, Round Robin and Max-Min algorithms.

5.2 AVERAGE RESPONSE TIME (ART)
PARAMETER

The Average Response Time or ART parameter is the total
time duration between the time of making a job request to
the time of delivery of response for that request. It helps in
the measurement of the processing time of the submitted
jobs. For optimal resource utilization; it is always desired
that both CPU utilization and server throughput ought to be
highest, where as the response time factor may be lowest.

The basic optimization criteria commonly deployed is as
follows:

• Maximum CPU utilization

• Minimum Response time

• Maximum Throughput

Table 2: The average response time metrics comparative table
analysis

Algorithm Average Response Time
Round Robin 364.85 ms
ABC 362.67 ms
MAX-MIN 360.11 ms
EEMLS (Proposed) 357.5 ms

Figure 7: Average Response Time metrics for different algorithms
using graph

24.5 18 17.8 15.5

010203040

Round
Robin

Max-Min ABC EEMLS

M
ak

e
Sp

an
 T

im
e

 in
 m

s

Algorithms

Comparative chart of EEMLS
(Proposed) and Existing
Scheduling Algorithms

365.52 362.67 360.11 357.5

0
100
200
300
400

Round
Robin

ABC MAX-MIN EEMLS

Av
er

ag
e

Re
sp

on
se

 T
im

e
 in

 m
s

Algorithms

Comparative chart of EEMLS
(Proposed) and Existing
Scheduling Algorithms

Vinod Kumar Saroha et al., International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4152 - 4159

4158

It is clear from the above; that for parameter Average
Response Time; our EEMLS procedure clearly outperforms
the Artificial Bee Colony Optimization, Round Robin and
Max-Min algorithms effectively.

5.3 THROUGHPUT PARAMETER FOR
COMPARATIVE ANALYSIS

One more parameter for comparative analysis and
performance evaluation is Throughput. It is the measure to
find the numbers of (jobs) processes are going to complete
in given unit of time. For smaller time duration processes;
the throughput is calculated per second basis; while for the
lengthier processes/jobs; the throughput is measured on
hourly basis. The throughput includes all such jobs those
have reached their deadline time of execution or those that
have been availing the services of resource and have reached
the finishing time. This parameter reflects the efficiency of
the overall processes that have been counted in light of their
execution or finishing time attained. Mathematically;

Vj = {1, if j job has finished of its execution}

 = {0, if j job has not finished its execution}

Throughput J = ∑ Vj; ¥ j €J ;

In which; j = a particular job from the pool of jobs; and, J =
List (Pool) of jobs (Denotes the number of jobs)

Table 3: Throughput metrics to show values of EEMLS algorithm
with existing algorithms.

Figure 8: Throughput percentage graph to show comparison
between EEMLS with illustrated scheduling algorithms.

As depicted from the above figures, the throughput
parameter is inversely proportional to the number of jobs
and it decreases as the number of jobs or we can say the
scalability factor is increased. It is clearly visible from the
graph that our work outperforms the other standard
algorithms when this throughput parameter is taken into
consideration.

Hence from the above study, it is very much conclusive that
other standard illustrated algorithms are outperformed by our
EEMLS algorithm. The imperative reason is that our work
uses the effective load balancing technique with minimum
completion time scheduling approach to allocate the jobs to
the servers optimally; that further enhances the energy
saving in the workflow of the operations and task
scheduling.

6. CONCLUSION AND FUTURE SCOPE

Cloud computing platform is abundantly used nowadays for
various online based application processing and services.
However the biggest consideration during the routine tasks
execution of the process workflow in cloud environment is
the dissipation of energy. Our this research focuses on the
mechanism to reduce and check the energy loss for enhanced
performance and better output. Hence a energy aware multi
layered job scheduling approach is employed here for
optimal resource utilization on the cloud. The scheduler and
the load balancer with help of its EEMLS algorithm works
efficiently to manage the multiple job queues in sync with
the cloud server for task provisioning. Our work has been
evaluated using different performance indicators viz energy,
network (processor) utilization and response time etc. It is
very much conclusive that other standard illustrated

0102030405060708090100110

10
0

30
0

50
0

70
0

90
0Th

ro
ug

pu
t P

er
ce

nt
ag

e

No. of jobs requested

Comparative chart of scheduling
algorithms with EEMLS in cloud

Computing

EEMLS

Min Comp
Time

Opp Load
Bal

Vinod Kumar Saroha et al., International Journal of Emerging Trends in Engineering Research, 8(8), August 2020, 4152 - 4159

4159

algorithms are outperformed by our EEMLS algorithm. The
imperative reason is that our work uses the effective load
balancing technique with minimum completion time
scheduling approach to allocate the jobs to the servers
optimally; that further enhances the energy saving in the
workflow of the operations and task scheduling. Our future
work intends to check the energy loss in task scheduling
procedures to restrict the carbon foot print for protecting our
environment.

REFERENCES

1. Neha, Dr. Sanjay and Swati. A Comparative Analysis of
Min-Min and Max-Min Algorithms based on the
Makespan parameter in International Journal of Advanced
Research in Computer Science, Vol.8, No.3, March 2017,
ISSN No. 0976-5697
2. Omar, Mohamed Abu and Reshad Improved Max-Min
Algorithm in Cloud Computing in International Journal of
Computer Applications, july 2012, DOI: 10.5120/7823-1009
3. Cao, Fei, Michelle M. Zhu, and Chase Q. Wu. Energy-
efficient resource management for scientific workflows in
clouds In 2014 IEEE World Congress on Services, pp. 402-
409.
4. Shridhar Domanal, Ram Mohana Reddy Guddeti and
Rajkumar Buyya A Hybrid Bio-Inspired Algorithm for
Scheduling and Resource Management in Cloud
Environment, IEEE Transactions On Services Computing,
Vol. X, No. X, July 2016.
5. Neha Thakkar, Dr. Rajender Nath Performance Analysis
of Min-Min, Max-Min and Artificial Bee Colony Load
Balancing Algorithms in Cloud Computing in IJIACS,
ISSN 2347 – 8616, Volume 7, Issue 4, April 2018
6. Vinod Kumar Saroha and Dr. Sanjeev Rana,
Implementing a multi layer job scheduling approach
with effective load balancing and energy saving over a
cloud ICIME 2018, September 22–24, 2018, Salford, United
Kingdom, ACM ISBN 978-1-4503-6489-8/18/09…$15.00
7. C.T. Ying and Y. Jiong, Energy-aware Genetic
Algorithms for Task Scheduling in Cloud Computing,
2012 Seventh China Grid Annual Conference, (2012)
September 20-23, Beijing, pp. 43-48, IEEE.
8. Isam Azawi Mohialdeen Comparative Study of
Scheduling Algorithms in Cloud Computing
Environment, Journal of Computer Science, 9 (2): 252-263,
2013, ISSN 1549-3636

9. Aparnaa, S. K., and K. Kousalya. An Enhanced
Adaptive Scoring Job Scheduling algorithm for
minimizing job failure in heterogeneous grid network in
IEEE, ICRTIT, 2014, pp.1-6, 2014
10. Daljinder Singh, Madeep Devgan Multilayer Hybrid
Energy Efficient Approach in Green Cloud Computing
in International Journal of Computer Applications
ISSN:0975 – 8887, Vol.6, August 2016.
11. Dwivedi, Sanjay K., and Ritesh Gupta. A simulator
based performance analysis of multilevel feedback queue
scheduling In IEEE Computer and Communication
Technology (ICCCT), 2014 Intl. Conference pp. 341-346
12. Kaur, Harmeet, and Rama Krishna Challa. A new
hybrid virtual machine scheduling scheme for public
cloud in IEEE Advanced Computing & Communication
Technologies, pp. 495-500, 2015.
13. Gupta, P.K. and N. Rakesh, 2010. Different job
scheduling methodologies for web application and web
server in a cloud computing environment, IEEE Xplore
Press, Goa, pp: 569-572. DOI: 10.1109/ICETET.2010
14. Yang, B., X. Xu, F. Tan and D.H. Park. An utility based
job scheduling algorithm for cloud computing
considering reliability factor ICCSC,IEEE Xplore Press,
Hong Kong, pp:95-102. DOI: 10.1109/ CSC.2011.6138559
15. Babbar, Davender, and Phillip Krueger. A performance
comparison of processor allocation and job scheduling
algorithms for mesh-connected multiprocessors." In Sixth
IEEE Symposium on, pp. 46-53, 1994
16. Antipas, Lawrence, etal. Comparative Study of K-
Power Means, Ant Colony Optimization, Kernel Power
Density-based Estimation, and Gaussian Mixture Model
for Wireless Propagation Multipath Clustering in
IJETER Vol. 8. No. 7, July 2020, ISSN 2347 - 3983
https://doi.org/10.30534/ijeter/2020/164872020
17. Bansal, Sunita, and Chittaranjan Hota. Priority-based
Job Scheduling in Distributed Systems in International
Conference on Information Systems, Technology and
Management, pp.110-118. Springer Berlin Heidelberg, 2009
18. Aparnaa, S. K., and K. Kousalya. An Enhanced
Adaptive Scoring Job Scheduling algorithm for
minimizing job failure in heterogeneous grid network. In
IEEE, Recent Trends in Information Technology (ICRTIT),
2014
https://doi.org/10.1109/ICRTIT.2014.6996161
19. D. Srinivasa Rao, Ch.Rajasekhar, GBSR Naidu An
Energy-Efficient priority Scheduling Technique for
Disaster Response Cellular Networks in IJETER, Volume
8, No. 7, July 2020, ISSN 2347 – 3983
https://doi.org/10.30534/ijeter/2020/136872020

