
A.G. Gulkanov et al.,  International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  6151 – 6156 
 

6151 
 

 

 
ABSTRACT 
Nowadays, there is no general method that takes into account 
the heat storage capacity of heating devices for calculating the 
cooling of buildings in the event of an emergency shutdown of 
heat supply. This work is devoted to finding the temperature 
at any time and the amount of heat released with time-variable 
parameters of the air temperature surrounding the heating 
device, the temperature of the heating device, the heat transfer 
coefficient and the temperature of the internal surfaces of 
fences. 
 
Key words: athematical model, heating device cooling, 
emergency heat supply. 
 

1. INTRODUCTION 
 

In the modern analytical theory of heat stability, many 
scientific papers have been published, in which the problems 
of cooling (heating) objects with different properties, 
geometric shape and other parameters have been considered 
[8-13, 16-18]. In this paper, we consider the problem of 
cooling the heating device, which is of an applied nature. At 
the moment, there is no method for calculating the cooling of 
heating devices, taking into account changes in time of the 
temperature of the environment surrounding the heater

( )env envT T  , heat transfer coefficient ( )   , as well as 
the radiation temperature of the internal surfaces of fences

 rad radT T  . 
One of the main areas of applicability of this method is the 

calculation of cooling of the building taking into account the 
heat storage capacity of heating devices in the event of an 
emergency shutdown of heat supply. The calculation methods 
currently used, described in [14, 15], do not take into account 
the heat storage of heating devices. 

According to the computer simulation, when taking into 
account the heat storage capacity of heating devices 
(radiators), the cooling time of the room (building) changes 
depending on the outdoor temperature. A particularly 
significant effect is observed when the outdoor temperature is 
close to the average temperature of the heating period (which 
is mainly kept during the heating season), respectively, not 
taking into account the accumulated heat by the heating 
device would not be quite correct or at all inappropriate, if 

outer outer designt t  

Thecomplexityoftheproblemliesinthesimultaneouschangei
ntimeofseveralparametersatonce.At the moment, there is no 
strict analytical solution to this problem. This paper provides 
an approximate analytical solution to the problem, as well as 
writing a methodology suitable for engineering calculations. 
The task is to find the surface temperature of the heater at any 
time and find the amount of heat that will give the heater over 
time . 

2. MATERIALS AND METHODS 
 

Due to the fact that many heating devices are of the 
convective-radiation type, we will solve the problem with the 
condition that it transmits part of the heat by convection, and 
part by radiation. 

To begin with, we will get a solution for an infinite plate. in 
such conditions, the mathematical formulation of the problem 
will take the form: 

2

2

T T
Fo X
 


 

                                   (1) 

Where xX


 - dimensionless coordinate, at the accepted 

plate thickness 2 , 2Fo 


 - Fourier number 

(dimensionless time), a
c



 - thermal diffusivity,  - 

conductivity coefficient, c - specific heat,  - density. 
In general, we assume that the temperature change occurs 

only along one axis. 
As an initial condition, we accept: 
   ,0T X f X   (2) 

Where ( )f X - even and continuous by X function. 
In general, the effect of radiation will be as follows: 
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  (3) 

In this case, the temperature of the heating device will enter 
the boundary condition in the fourth degree, which will 
introduce non-linearity and, as a result, the absence of an 
analytical solution. In this case, we use linearization of 
boundary conditions. 
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Taking into account linearization, the boundary conditions 
will have the form:

 

 

(1, ) ( ) (1, ) ( )

4 ( ) (1, ) 0

env

rad

T Fo Bi Fo T Fo T Fo
X

Sk Fo T Fo T Fo


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
    

  (4) 

 
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( 1, ) ( ) ( 1, ) ( )
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Sk Fo T Fo T Fo
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   (5) 

Where envT - temperature of the environment around the heater,
( )( ) FoBi Fo  


 - Bionumber, ( )Fo - heat transfer 

coefficient,    3
radT Fo

Sk Fo
 


 - Stark number,  - 

Stefan-Boltzmann constant. 
 

We will use the solution method according to [8], i.e. we 
will look for the solution of the problem in the form of the sum 
of the Poisson integral and two thermal potentials:
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(6) 

Where ( ) ( )g X f X  in the range 1 1X   and equal to 
(1) ( 1)f f  outside the specified interval, 1 2( ), ( )Fo Fo  - 

the density of heatpotentials.Due to the property of the 
Poisson integral and thermal potentials, equation (6) is a 
solution of equation (1), taking into account the initial 
condition (2). 

The property of thermal potentials is known from the 
equations of mathematical physics [1]:
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Substituting (6) in the boundary conditions (4) and (5), 
taking into account the property of the thermal potential (7), 
we get that the condition will be fulfilled if the densities of the 
thermal potentials 1 2( ), ( )Fo Fo   satisfy a system of two 
Volterra equations: 
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Where 
 2'

41 1( , ) ( ') ( ')
2

X X
FoI X Fo e g X d X

Fo






                   (10) 

- the Poisson integral. 
Because ( )g X  is an even function of ( , )X I X Fo - 

even ( , )I X Fo
X





- odd function of X . Subtracting (9) from 

(8), we get that the difference of functions 1 2  satisfies the 
Volterra integral equation 1 2 0     

For simplicity we denote 1 2    . Then we get that  
satisfies the Volterra integral equation, i.e.: 

0
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 , 'K Fo Fo -the kernel of an integral operator defined by the 
expression: 
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By regrouping the members, we get: 
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3. CALCULATING THE INTEGRAL EQUATION 
To simplify it, enter a new variable: 

'Fo Fo                                        (15) 
Substituting (14) in (11), we rewrite the integral as the sum 

of several integrals and perform several algebraic 
transformations on each of them: 
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Combining equations (16), (17) and (18), we obtain a 
general equation for the integral in equation (11): 
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This representation was chosen in order to find an 
approximate analytical solution. It is obvious that the first and 
third integrals after the equal sign are elementary, and the rest 
can be found using approximate integration methods. 

In the second and fourth integrals, the function is 
continuous, since: 
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And also, by assumption, the function  Fo is a 
differentiable function. 

In the fifth integral:
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Thus, to find integrals in (19), we can apply approximate 
integration methods. 

As part of the engineering problem, it is proposed to 
numerically find the values of functions that cannot be solved 
by analytical methods. 

First let's look at the function  Fo . Within the 
framework of the problem under consideration, it appears that 
the temperature field of the heating device is distributed 
evenly at the zero moment of time. 

Then from (10) we will have:
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Where initialT - the initial temperature of the heater. 
Hence: 

(1, ) 0I Fo
X





                              (23) 

Then taking into account (22), (12) will take the form: 
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Now let's go to the ( )Fo value. To solve this problem, we 
will use classical methods of approximate integration. We will 
look for a solution (11) in the interval  0,Fo N . Divide the 
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Here k
iM - are coefficients determined depending on the 

integration method (trapezoid method, Simpson method, etc.) 
 
 

4. DETERMINING THE TEMPERATURE OF 
THE HEATING DEVICE 

Rewrite (6) in a different form, with the condition of 
replacement 'Fo Fo   , and also 1 2    : 
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Since  ,I X Fo - even function of X , then  ,T X Fo  it 
will also be an even functionof X , it follows that it is 
sufficient to consider (26) when  0,1X  . The function 

 Fo was defined by us in the third point with its discrete 

values  iFo .However, the application of approximate 
integration methods directly to integrals in (26) is 
unacceptable, since 1X   the first integral is improper. Then 
consider 1X  , then for simplicity we denote 1 X   . 

We transform the first integral in (26) to the form:
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Consider the first integral in (27). The continuity of the first 
multiplier was proved earlier. It is obvious that the function 
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0  , hence it follows that approximate integration methods 
are applicable to the first integral. 

The second integral in (27) is calculated analytically: 

 

 

2 2

2

1 4 42
1

0

1
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1 2
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2

11 1
2
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X
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FoI e d e

Foerf e
Fo

XX erf
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 
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 






 




  

  
     

  
  

    
  



                         (28) 

The error function is unrepresentable via elementary 
functions, but it is possible to decompose the integrable 
expression into a Taylor series, and by integrating it termwise, 

we can get its representation as a series:

 

 

2 1

0

11
1 2 2

! 2 12

n
n

n

X
X Foerf

n nFo 







 
        

    (29) 

Thus, the temperature can be calculated using the formula:
       
   

1

2 3

, , ,

, ,

T X Fo I X Fo Fo I X Fo

I X Fo I X Fo

  

 
   (30) 

Where 

     21
1 42

2
0

1
XFo Fo Fo

I e d  
 




 

                   (31) 
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3 1
20

1
XFo Fo

I e d 


 




                                        (32) 

The values (31) and (32) can be found using approximate 
integration methods: 

       21
1 42
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
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
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
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But, as it was written earlier, the resulting solution (30) 
describes only a one-dimensional non-stationary temperature 
field in an infinite plate. To find the non-stationary 
temperature field of objects of finite dimensions, we need to 
use the multiplication theorem of solutions. The theorem 
states that the dimensionless temperature field of a complex 
object is equal to the product of the dimensionless 
temperature fields of the corresponding primitives. In the 
framework of this problem, the intersection of three plates of 
different thickness will give the desired solution, i.e.:
     

 

0. 0. 0.

0 0. 0 0. 0 0.

0.

0 0.

, , , , ,
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

  
  

  






(35) 

It is known that this solution is only applicable at a constant 
ambient temperature, but since the temperature of the air 
surrounding the heater varies in a small range, this solution 
can be applied. 

In this case, the thickness of the plate is each of the 
geometric dimensions of the heater. 

De-dimensioning equation (30), taking into account (22), 
and similarly writing the values Y  and Z , we get: 
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(36) 
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     
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 (38)
1

yY




-the dimensionless coordinate, where 12  - height of the 

heater,
2

zZ


 - the dimensionless coordinate, where 22  - 

width of the heater. 
 

Then the dimensionless temperature of the heater can be 
found as: 

X Y Z                                        (39) 
 

Now calculate the temperature of the wall of the heater. 
Differentiating by X  (26), we will have: 
     
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
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(40) 

Then, taking into account the boundary condition (4), the 
solution takes the form: 
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              (41) 

By expressing  1,T Fo  explicitly, given (23), we get an 
expression for the temperature of an infinite plate, i.e.: 
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De-dimensionalization of the equation (42), we get:
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Where  
0.

1, initial
X

initial env

T Fo T
T T







.  

Also, to find the temperature of the wall of the heater, you 
need to know the temperature functions for two other 
coordinates, and in general these coordinates are not equal to 
one. Y and Z  were defined by us above.Then the 
dimensionless temperature of the heater wall can be found by 
the formula (39). 

 

5. THE AMOUNT OF HEAT RELEASED FROM 
THE HEATING DEVICE 

The amount of heat released from the heater during   can 
be found: 

   0. 1initial envQ cm T T           (44) 
Where c - specific heat capacity of the material; m - the 
weight of the heater; 
 - the average dimensionless temperature of the heating 
device over time  . The average value can be found using the 
formula: 

1 1 1

0 0 0
X Y ZdX dY dZ        (45) 

6. BRINGING THE PROBLEM TO A MORE 
PRECISE GEOMETRY 

The geometry described above describes a heating device 
as a parallelepiped. in some problems, this representation is 
not applicable, because such a description will not show the 
exact values of the desired parameters, so it is proposed to 
consider a real heating device as a set of corresponding 
primitives, for which an analytical solution is obtained. For 
example, consider a model of a cast-iron radiator. 

 
Figure 1: Model of a real heating device. 

 
This geometry can be reduced to a simpler one consisting 

of parallelepipeds. This geometry will look like: 

 
Figure 2: Model of the heating device accepted for calculations. 
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This geometry will describe the task much more accurately. 
Thus, a similar technique can be applied to other types of 
heating devices, including bimetallic radiators. 

 
7. CONCLUSION AND DISCUSSIONS 

In this paper, the process of cooling a heating device at a 
variable internal temperature, heat transfer coefficient, and 
variable radiation temperature of the internal surfaces of 
fences was considered using mathematical methods specified 
in [1-7]. In addition to the solution found by analytical 
methods, a method suitable for engineering calculations was 
obtained. 

As a continuation of the study, it is proposed to take into 
account, in addition to all the factors taken into account, the 
mobility of indoor air due to convective flows. 
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