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ABSTRACT 
 
This paper proposes integer order power system stabilizer for 
the enhancement of inter-area stability. The parameters of 
this controller are optimizing using grey wolf optimization 
algorithm. The proposed controller is tested on modified three 
machine nine bus system and is implemented in 
MATLAB/Simulink environment. The performance of this 
controller is compared with ANFIS based power system 
stabilizer and the results demonstrated that proposed 
controller improving the inter-area stability effectively. 
 
Key words: Integer order power system stabilizer (IOPSS), 
Artificial Neuro fuzzy Inference system (ANFIS), Grey wolf 
optimizer (GWO). 
 
1. INTRODUCTION 
 
PSS is an economical way of removing LFO [1]. A variety of 
intelligent optimization algorithms have been implemented 
for the tuning of parameters of PSS in order to enhance the 
PSS 's efficiency and adaptability, such as genetically 
modifying algorithms[2], grey wolf optimizations[3].  
However, in some conditions, PSS may have limits on the 
suppression of LFO [5, 6]. PSSs may not provide adequate 
damping in inter-area modes, particularly in large-scale 
transmission systems even if they are properly tuned 
according to China's "Stabilizing System Test Guide" [4]. A 
bigger benefit for the PSSs is important for PSS to provide 
adequate damping for the oscillations concerned. 
Unfortunately, the additional increase in the PSS gain can 
reduce the damping of additional modes and lead to divergent 
oscillations [7]. 
This paper is organized into five sections: first section deals 
with Introduction, second section focusing on ANFIS based 
PSS, third section deals with GWO-IOPSS, fourth section is 
simulation & discussion on results and fifth section is 
conclusion[11],[12]. 
 
 

2. ANFIS BASED PSS 
 
This Artificial Neuro fuzzy Inference system is basically 
Mamdani fuzzy inference system and this is mapping input 
and output characteristics [7]. First input characteristics will 
be mapped into input Member functions, then input Member 
functions mapped into rules and rules will be mapped into 
output characteristics and then output characteristics mapped  
 
Into output membership functions, and finally output 
membership functions will be mapped to a single valuable 
output [8].The structure of ANFIS model for PSS of Machine 
1 & 2 and flow chart of ANFIS controller and model 
structures are shown in figures 2, 3, & 4 respectively. 
 
3. INTEGER ORDER CONTROLLER 
 
In this paper, GWO based Integer order power system 
stabilizer (IOPSS) was proposed for enhancing the stability of 
power system [4]. IOPSS is a combination of gain block, lead 
lag blocks and washout block. The number lead lag blocks 
decided based on the leading angle required [5]. The structure 
of IOPSS is shown in fig.1. 

 
Figure 1: Structure of Integer Order Power System Stabilizer 

A typical PSS is given for each generator. Three power 
stabilizers must be installed for three area power system.   For 
integer controllers, a total of 12 parameters are available out 
of three generators two are identical so total 10 parameters 
need to be tuned here.  
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The Gain parameters (KPSS) and time constants for the 
integer order PSS controller are adjustable and these 
parameters affect the system response. Consequently we need 
an efficient optimization algorithm that ensures the optimal 
global values for these parameters. This paper uses the GWO 
algorithm to optimize parameters of IOPSS by minimizing 
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Integral of Time multiply Absolute Error (ITAE) is shown in 
fig.5.  
Integral of Time multiply Absolute Error of change in speed 
of all areas was defended as objective function is shown in 
Fig.5. 

      dttJ 321
0

  
                                             (2) 

The objective function J can be minimized by considering by 
the following system constraints for integer controller. 
For machine 1 and machine 2   
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           Figure 2: Flow chart of ANFIS controller 
 
 
 
 
 
 
 
 
 
 
 
 

            Figure 3: ANFIS Model structure of PSS of M-1 

 
 
 
 
 
 
 
 
 
 
 
 

             Figure 4: ANFIS Model structure of PSS of M-2 

 
 

Figure 5: Objective function Simulink diagram 
3.1 Grey Wolf Algorithm (GWO) 

Grey wolf algorithm has been developed by Mirjalili, a 
population dependent metaheuristic algorithm [10]. It is 
inspired by grey wolves and imitates the structure of wolves' 
leadership and frame. GWO takes three crucial steps; the first 
step includes searching, searching at the quarry and going on 
to it. The second stage consists in tracking, circling and 
disrupting the quarry. The third move is to hitting the quarry. 
The entire Process is given in flow chart given in Fig-7[9], 
[10]. 
 
3.2 Modeling of IOPSS 

In Figure 2 the lead lag PSS structure was used. The control 
equations are given for this PSS 
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4. SIMULATION DIAGRAM & RESULTS 
 
Fig.6 is implemented on modified 3-machine 9 bus system 
with the inclusion of DFIG through MATLAB/Simulink. The 
simulation results are explained in three cases depends on the 
type of fault created. Between buses 5 and 7, a three phase 
fault is created.  
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A fault occurs in t=5 and has been resolved in 5.1s. Figures 5 
to 10 display the load angle change, the speed difference of 
the Rotor, electric power of each machine, the frequency 
change of every machine, deviation of the rotor angle are 
shown in figures 8 t0 19. 
The performance comparison is shown in table.1 and from 
this it is concluded that the proposed controller effectively 
reducing the settling time, steady state error and peak over 
shoot. 
 
 

 
Figure 6: Three machine test system 

 
Figure 7: Implementation of GWO algorithm for FOPSS parameter 

optimization 

 
Figure 8: Change in Load Angle Delta of M-1 

 

 
Figure 9: Change in Load Angle Delta of M-2 

 

 
Figure 10: Rotor Speed of M-1 

 

 
Figure 11: Rotor Speed of M-2 
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Figure 12: Electrical Power Output of M-1 
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Figure 13: Electrical Power Output of M-2 

 

 
Figure 14: Electrical Power Output of M-3 
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Figure 15: Rotor angle deviation of M-1 

 

 
Figure 16: Rotor angle deviation of M-2 
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Figure 17: Rotor angle deviation of M-3 

 

 
Figure 18: Change of frequency of M-2 
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Figure 19: Change of frequency of M-3 
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Controller 
Performance 
parameter Rise Time 

Settling 
Time 

Settling 
Min 

Settling 
Max Over Shoot Under shoot Peak 

Peak 
Time 

Fuzzy Logic 
Load Angle 
Deviations of 
M- 1 

0.0013 9.0564 -18.1050 7.6244 6.4610e+03 1.5400e+03 77.1337 0 

GWO-PSS 0.0013 8.6731 -18.1054 8.9720 1.9687e+03 485.5736 77.1337 0 

Fuzzy Logic Load Angle 
Deviations of 
M- 2 

5.7157e-4 19.997 -25.5449 33.9042 676.1744 158.3779 125.190 0 

GWO-PSS 5.6995e-4 19.996 -25.5453 36.7468 633.9629 149.7668 125.190 0 

Fuzzy Logic 
Load Angle 
Deviations of 
M- 3 

4.2761e-4 19.996 -25.2978 62.6131 464.8615 113.8934 125.466 0 

GWO-PSS 4.2627e-4 18.036 -25.2983 62.8108 446.7624 110.2461 125.466 0 

Fuzzy Logic Speed  
Deviations of 
M-1 

11.2770 19.255 0.3724 0.4352 173.9934 0 1.0204 2.0245 

GWO-PSS 7.0714 16.554 0.9956 0.9960 3.3828 0 1.0292 3.0162 

Fuzzy Logic Speed  
Deviations of 
M-2 

11.3838 19.256 0.3724 0.4352 175.0434 0 1.0242 1.6187 

GWO-PSS 0.0886 16.352 0.9951 1.0315 3.6116 0 1.0315 2.5800 

Fuzzy Logic 
Speed  
Deviations of 
M-3 

11.3174 19.257 0.3723 0.4352 174.8275 0 1.0233 1.7997 

GWO-PSS 17.1276 16.302 0.9955 0.9961 3.6792 0 1.0322 3.3376 

Fuzzy Logic 
Deviations of 
Electrical 
Power of M-1 

3.9519e-5 19.502 0.1638 3.3055 153.5920 0 3.3055 5.1048 

GWO-PSS 2.3744e-5 16.392 0.1531 1.4701 63.4107 0 1.4701 5.1119 

Fuzzy Logic Deviations of 
Electrical 
Power of M-2 

5.3050e-6 19.998 0.3767 2.7334 148.7450 0 2.7334 0.0167 

GWO-PSS 3.1749e-6 9.6385 0.3732 2.7334 173.7417 0 2.7334 0.0167 

Fuzzy Logic 
Deviations of 
Electrical 
Power of M-3 

2.2074e-5 19.999 0.4757 1.6560 57.2411 0 1.6560 5.0172 

GWO-PSS 1.6416e-5 8.7756 0.4861 1.5445 61.9932 0 1.5445 0.9177 

Fuzzy Logic Deviations of 
Rotor angle 
of M-1 

9.7109 19.820 -2.0987e+3 -1.8889e+3 0 0.8751 2.0987e+03 20 

GWO-PSS 4.2756 19.377 46.4639 62.8517 21.7599 0 62.8517 10.154 

Fuzzy Logic Deviations of 
Rotor angle 
of M-2 

9.7156 19.820 -2.0982e+3 -1.8883e+3 0 0.8884 2.0982e+3 20 

GWO-PSS 4.1138 19.384 46.8006 63.2636 21.9379 0 63.2636 
10.154
8 

Fuzzy Logic 
Deviations of 
Rotor angle 
of M-3 

9.7137 19.820 -2.0982e+3 -1.8883e+3 0 0.9044 2.0982e+3 20 

GWO-PSS 4.2010 19.392 46.8222 63.4699 22.2468 0 63.4699 10.079 

Fuzzy Logic 
Rotor 
Frequency 
deviations of 
M-1 

11.2770 19.255 22.3447 26.1102 173.9934 0 61.2231 2.0245 

GWO-PSS 7.0714 16.554 59.7336 59.7604 3.3828 0 61.7544 3.0162 

Fuzzy Logic 
Rotor 
Frequency 
deviations of 
M-2 

11.3838 19.256 22.3415 26.1106 175.0434 0 61.4533 1.6187 

GWO-PSS 0.0886 16.352 59.7042 61.8915 3.6116 0 61.8915 2.5800 

Fuzzy Logic 
Rotor 
Frequency 
deviations of 
M-3 

11.3174 19.257 22.3393 26.1106 174.8275 0 61.3992 1.7997 

GWO-PSS 17.1276 16.302 59.7283 59.7634 3.6792 0 61.9299 3.3376 

 

 
 
 
 
 

Table 1: Various time responses to disturbances of a) Integer PSS & ANFIS PSS 
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5. CONCLUSION 
This paper proposes Integer order power system stabilizer for 
the enhancement of stability and the parameters of this 
controller are optimized using grey wolf optimization 
algorithm. The proposed controller is tested on modified three 
machine nine bus system and the performance is compared 
with ANFIS based power system stabilizer. The results 
conclude that the proposed controller effectively improves 
performance parameters. 
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