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ABSTRACT

This paper proposes integer order power system stabilizer for
the enhancement of inter-area stability. The parameters of
this controller are optimizing using grey wolf optimization
algorithm. The proposed controller is tested on modified three
machine nine bus system and is implemented in
MATLAB/Simulink environment. The performance of this
controller is compared with ANFIS based power system
stabilizer and the results demonstrated that proposed
controller improving the inter-area stability effectively.

Key words: Integer order power system stabilizer (IOPSS),
Acrtificial Neuro fuzzy Inference system (ANFIS), Grey wolf
optimizer (GWO).

1. INTRODUCTION

PSS is an economical way of removing LFO [1]. A variety of
intelligent optimization algorithms have been implemented
for the tuning of parameters of PSS in order to enhance the
PSS 's efficiency and adaptability, such as genetically
modifying algorithms[2], grey wolf optimizations[3].
However, in some conditions, PSS may have limits on the
suppression of LFO [5, 6]. PSSs may not provide adequate
damping in inter-area modes, particularly in large-scale
transmission systems even if they are properly tuned
according to China's "Stabilizing System Test Guide" [4]. A
bigger benefit for the PSSs is important for PSS to provide
adequate damping for the oscillations concerned.
Unfortunately, the additional increase in the PSS gain can
reduce the damping of additional modes and lead to divergent
oscillations [7].

This paper is organized into five sections: first section deals
with Introduction, second section focusing on ANFIS based
PSS, third section deals with GWO-IOPSS, fourth section is
simulation & discussion on results and fifth section is
conclusion[11],[12].

6139

2. ANFIS BASED PSS

This Artificial Neuro fuzzy Inference system is basically
Mamdani fuzzy inference system and this is mapping input
and output characteristics [7]. First input characteristics will
be mapped into input Member functions, then input Member
functions mapped into rules and rules will be mapped into
output characteristics and then output characteristics mapped

Into output membership functions, and finally output
membership functions will be mapped to a single valuable
output [8].The structure of ANFIS model for PSS of Machine
1 & 2 and flow chart of ANFIS controller and model
structures are shown in figures 2, 3, & 4 respectively.

3. INTEGER ORDER CONTROLLER

In this paper, GWO based Integer order power system
stabilizer (IOPSS) was proposed for enhancing the stability of
power system [4]. IOPSS is a combination of gain block, lead
lag blocks and washout block. The number lead lag blocks
decided based on the leading angle required [5]. The structure
of IOPSS is shown in fig.1.
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Figure 1: Structure of Integer Order Power System Stabilizer

A typical PSS is given for each generator. Three power
stabilizers must be installed for three area power system. For
integer controllers, a total of 12 parameters are available out
of three generators two are identical so total 10 parameters
need to be tuned here.

KPSSP Tl(l)’ T2(1) ' T3(1)1 T4(1)v KPSS(Z)’ T1(2)v T2(2)v T3(2)v &T4(2) (1)
The Gain parameters (KPSS) and time constants for the
integer order PSS controller are adjustable and these
parameters affect the system response. Consequently we need
an efficient optimization algorithm that ensures the optimal
global values for these parameters. This paper uses the GWO
algorithm to optimize parameters of IOPSS by minimizing
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Integral of Time multiply Absolute Error (ITAE) is shown in

fig.5.

Integral of Time multiply Absolute Error of change in speed

of all areas was defended as objective function is shown in

Fig.5.

3 = [t(80,)+ (A0, )+ (A0, )t )
0

The objective function J can be minimized by considering by

the following system constraints for integer controller.

For machine 1 and machine 2

l
Figure 4: ANFIS Model structure of PSS of M-2
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Figure 5: Objective function Simulink diagram

3.1 Grey Wolf Algorithm (GWO)
s Grey wolf algorithm has been developed by Mirjalili, a
Load Error of Speed Deviation & . .. . .
Change in Error of Speed Deviation population dependent metaheuristic algorithm [10]. It is
inspired by grey wolves and imitates the structure of wolves'
; - leadership and frame. GWO takes three crucial steps; the first
bl et step includes searching, searching at the quarry and going on
] to it. The second stage consists in tracking, circling and
SeltTolerance disruptipg the quarry. T_he th_ird move is to h_itting_ the_quarry.
Error & Epoc The entire Process is given in flow chart given in Fig-7[9],
+ [10].
Training of
Data S .
a“; _ 3.2 Modeling of IOPSS

Testing of No In Figure 2 the lead lag PSS structure was used. The control
Data Set

equations are given for this PSS

VPSS(max) If V3 2 VPSS(max)
If Error is VPSS(i) =4V, if VPSS(max) =V, >'Vpss(max)
less than or equal .
to Tolerance VPSS(min) if vV, < VPSS(min) (4)
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Figure 2: Flow chart of ANFIS controller Vv, _3V1 +-L 2
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4, SIMULATION DIAGRAM & RESULTS

Fig.6 is implemented on modified 3-machine 9 bus system

with the inclusion of DFIG through MATLAB/Simulink. The

simulation results are explained in three cases depends on the

| type of fault created. Between buses 5 and 7, a three phase
fault is created.

Figure 3: ANFIS Model structure of PSS of M-1
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A fault occurs in t=5 and has been resolved in 5.1s. Figures 5 80 Load Angle of Machine-1

to 10 display the load angle change, the speed difference of 70| ' ' ' ' | ' |
the Rotor, electric power of each machine, the frequency s — |
change of every machine, deviation of the rotor angle are s0| |
shown in figures 8 t0 19. 8 w0l |
The performance comparison is shown in table.1 and from -l |
this it is concluded that the proposed controller effectively § 20| |
reducing the settling time, steady state error and peak over 3 10

shoot. 0 m:v ) -
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Figure 6: Three machine test system
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Figure 12: Electrical Power Output of M-1
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Figure 13: Electrical Power Output of M-2

Electrical power of Machine-3
1.8 T T T T T T T T
GWO-INTEGER

16 F Fuzzy-PSS 4
1.4 B
12 4
1 3
0.8 B
0.6 B

0.4 \ . . \ \ . . \ \
0 2 4 6 8 10 12 14 16 18 20

Time, Seconds
Figure 14: Electrical Power Output of M-3
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Figure 15: Rotor angle deviation of M-1
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Figure 16: Rotor angle deviation of M-2
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Figure 17: Rotor angle deviation of M-3
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Figure 18: Change of frequency of M-2
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Table 1: Various time responses to disturbances of a) Integer PSS & ANFIS PSS

Performance Settling Settling Settling Peak
Controller | parameter Rise Time Time Min Max Over Shoot Under shoot Peak Time
. Load Angle
Fuzzy Logic Deviations of 0.0013 9.0564 -18.1050 7.6244 6.4610e+03 1.5400e+03 77.1337 0
GWO-PSS M-1 0.0013 8.6731 -18.1054 8.9720 1.9687e+03 485.5736 77.1337 0
Fuzzy Logic | -0adAngle 5.7157e-4 19.997 -25.5449 33.9042 676.1744 158.3779 125.190 0
Deviations of
GWO-PSS M- 2 5.6995e-4 19.996 -25.5453 36.7468 633.9629 149.7668 125.190 0
Load Angle
Fuzzy Logic Deviations of 4.2761e-4 19.996 -25.2978 62.6131 464.8615 113.8934 125.466 0
GWO-PSS M-3 4.2627e-4 18.036 -25.2983 62.8108 446.7624 110.2461 125.466 0
Fuzzy Logic Spee.d . 11.2770 19.255 0.3724 0.4352 173.9934 0 1.0204 2.0245
Deviations of
GWO-PSS M-1 7.0714 16.554 0.9956 0.9960 3.3828 0 1.0292 3.0162
Fuzzy Logic Spee.d . 11.3838 19.256 0.3724 0.4352 175.0434 0 1.0242 1.6187
Deviations of
GWO-PSS M-2 0.0886 16.352 0.9951 1.0315 3.6116 0 1.0315 2.5800
Speed
Fuzzy Logic Deviations of 11.3174 19.257 0.3723 0.4352 174.8275 0 1.0233 1.7997
GWO-PSS M-3 17.1276 16.302 0.9955 0.9961 3.6792 0 1.0322 3.3376
. Deviations of
Fuzzy Logic . 3.9519e-5 19.502 0.1638 3.3055 153.5920 0 3.3055 5.1048
Electrical
GWO-PSS Power of M-1 2.3744e-5 16.392 0.1531 1.4701 63.4107 0 1.4701 5.1119
Fuzzy Logic | Deviations of 5.3050e-6 19.998 0.3767 2.7334 148.7450 0 27334 | 0.0167
Electrical
GWO-PSS Power of M-2 3.1749¢e-6 9.6385 0.3732 2.7334 173.7417 0 2.7334 0.0167
. Deviations of
Fuzzy Logic . 2.2074e-5 19.999 0.4757 1.6560 57.2411 0 1.6560 5.0172
Electrical
GWO-PSS Power of M-3 1.6416e-5 8.7756 0.4861 1.5445 61.9932 0 1.5445 0.9177
Fuzzy Logic | Deviations of 9.7109 19.820 | -2.0987e+3 | -1.8889e+3 0 0.8751 2.0987e+03 | 20
Rotor angle
GWO-PSS of M-1 4.2756 19.377 46.4639 62.8517 21.7599 0 62.8517 10.154
Fuzzy Logic Deviations of 9.7156 19.820 | -2.0982e+3 | -1.8883e+3 0 0.8884 2.0982e+3 | 20
Rotor angle 10.154
GWO-PSS of M-2 41138 19.384 46.8006 63.2636 21.9379 0 63.2636 8
) Deviations of
Fuzzy Logic Rotor angle 9.7137 19.820 | -2.0982e+3 -1.8883e+3 0 0.9044 2.0982e+3 20
GWO-PSS of M-3 4.2010 19.392 46.8222 63.4699 22.2468 0 63.4699 10.079
Rotor
Fuzzy Logic Frequency 11.2770 19.255 22.3447 26.1102 173.9934 0 61.2231 | 2.0245
deviations of
GWO-PSS M-1 7.0714 16.554 59.7336 59.7604 3.3828 0 61.7544 | 3.0162
Rotor
Fuzzy Logic Frequency 11.3838 19.256 22.3415 26.1106 175.0434 0 61.4533 1.6187
deviations of
GWO-PSS M-2 0.0886 16.352 59.7042 61.8915 3.6116 0 61.8915 | 2.5800
Rotor
Fuzzy Logic Frequency 11.3174 19.257 22.3393 26.1106 174.8275 0 61.3992 1.7997
deviations of
GWO-PSS M-3 17.1276 16.302 59.7283 59.7634 3.6792 0 61.9299 | 3.3376
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