

Volume 8. No. 2, February 2020 International Journal of Emerging Trends in Engineering Research Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter19822020.pdf

https://doi.org/10.30534/ijeter/2020/19822020

Implementation of Recursive Formulation for Parallel Self-Timed Adder using Verlog Logic

M.Siva Kumar¹, Syed Inthiyaz², D.Pavani³, G.Naga Kishore⁴, G.V.Harish⁵,S.V.Navya Sri⁶, Dasi Swathi⁷,Sanath Kumar Tulasi⁸

Associate Professor^{1,2,8}, Student^{3,4,5,6}

^{1,2,3,4,5,6,8} Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur.
 ⁷Department of ECE, PVP Siddartha college of engg and tech, Kanuru, Vijayawada.

ABSTRACT

In the brief implementation presents a parallel self-time adder in recursive approach of multi bit binary addition. In recent technology adder is a most priority one in all gadgets. The proposed design will have the capability to improve the Design metrics like speed, performance and reduced fan-out; here the proposed work implements a parallel self-timed adder with the aid of Verilog logic will achieve 8-Bit, 16-Bit, 32-Bit addition. Finally, this work will be designed in Verilog HDL and synthesized in Xilinx vivado FPGA and compared all the parameters in terms of area, delay and power.

or area, actuy and power.

Key words: Recursive Formulation, Fan-Out, Multibit Binary Addition.

1. INTRODUCTION

Double expansion will be the solitary the greater portion of paramount functioning a processor executes. Most of these self-timed adders forward been sketched for clocked circuits regardless of the truth that there stands a solid interest toward clock lesson concurrent processors circuits. Nonconcurrent circuits wouldn't admit any quantification of period of the time. Hence, they fastener extraordinary opportunity for stimulus configuration Similarly they would replacement from a few subjects for clocked (synchronous) circuits. Done standard, evidence stream to nonconcurrent circuits will be unnatural by A solicitation affirmation handshaking convention on make A pipeline in the nonattendance about tickers. Express handshaking blocks to little elements, for example, spot adders, need aid exorbitant. Therefore, it may be indirectly What's more effectively figured out how utilizing dual-rail convey escalation done adders.

A broad multi rail convey permit furthermore grants insistence beginning with a single-piece viper piece. Thus, nonconcurrent adders are possibly dependent upon full dual-rail encoding about continuously on signs or pipelined functioning utilizing single-rail information encryption. Additionally, dual-rail convey representational to acceptance. Same time these built consist of energy will out designs, they also present critical overhead of the Normal body of evidence accomplishment profits of nonconcurrent adders. In this way, a that is just a hint of something larger powerful elective methodology will be meriting from guaranteeing consideration that cam wood conveys these issues.

This short display a nonconcurrent self-timed adder utilizing calculation initially suggested. The configuration about past times is general Also utilization half-adders (HAs) alongside mux needing negligible linkages. Hence, it will be suitableness for very large-scale integrated circuits usage. This configuration meets expectations clinched alongside. A Parallel way to autonomous convey chain squares. The usage in this short may be exceptional similarly as it utilizes input through XOR rationale entryways on constitute.

A one-one recurrent non concurrent consecutive adder. Recurrent circuits make additional asset proficient over their non-cyclic parts. Besides, paramount appraise pipelining may be techno babble which might sue pipelined take-in's when outcomes would be settled. Recommended circlet supervises configured one-one pipelining of inputs differentiated through proliferation Also initial postponements of the entryways in out way. Hence, this may be successfully an single rail wave-pipelined methodology. Furthermore, truly not quite customary pipelined adders utilizing multi-rail ciphering will inevitably representable those sequence of convey symbols.

2. RELATED WORK

There are a horde outlines for dual adders and are centering here looking into nonconcurrent self-timed adders. Self-timed refers all the will result circuits that depends on specialist timing presumptions for those accurate functioning. Self-timed adders need's possibility on compile speedier mean for progressive result, likewise initial fruition sensing could keep away from those have to the Most exceedingly bad case packaged delay component about clocked circuits. These might be then clarified similarly as takes after.

2.1 Utilizing Single-Rail Data Encoding for Pipelined Adders

A nonconcurrent Request/Acknowledgement technique may be employed to accredit the adder hinder just as to lay up the progression of transferred signals. In the huge bulk situations, a multi rail delivers show is availed for interior bitwise stream of carry produce. The double rail sign can speak to in excess of dual justification esteems (invalid, 1, 0), and in this manner can be availed to produce bit-level proclamation after a piece activity is terminated. Ultimate completion is identified when every piece acknowledgement signal are attained (high). Be that as it may, the early end reasonable employment is costly because of high fan-in necessities.

2.2 Dual-Rail Encoding for Delay Insensitive Adders

Delay insensitive adders (DI) Clock less adders benefiting from tying limitations or DI functioning's. It can hence work properly in the presence of attached yet wire delays and unexplained gate. There are numerous differences of DI adders, for instance Delay insensitive (DI) ripple carry adder and Delay insensitive (DI) carry adder with look ahead. Delay insensitive (DI) adders use double-rail training and are simulated to result in increasing complication. But dual-rail encoding copies the complexity of the cable, it can still be employed to generate circuits that are almost as effective as the one rail versions using dynamic-logic or nMos designs only. A demonstration of 40 transistors per Delay insensitive-RCA adder bit is shown while 28 transistors are used by the traditional CMOS RCA to CLA, Identical to CLA, the DICLA describes dual rail encoding for propagating, generating and killing equations. They do not connect the transmitting bits in a chain but arrange them in a classified tree. They can therefore run quicker if there is a long transport chain. Another development is the assumption that the outcome of dual rail encoding will strengthen from the settlement of either 0 or 1 way. The result of double railing need not convince the two ways to be evaluated. In this way, it is probable that the impart lookahead hardware is further accelerated to direct forward murder sign to desired state in the tree. As DICLA with urged hardware (DICLASP), this is put forward and implied.

3.PASTA DESIGN

In the following sector, the design and speculation of PASTA is exhibited. The summer first confesses two (2) operands to execute half summations for each piece. Hence, it intensifies utilizing prior produced convey and wholes to perform half-augmentations over and again until all delivers bits are devoured and composed at zero (0) level.

3.1 PASTA Architecture:

The common design of adder is arousing in Fig1. The persistence allowance for dual-input mux compares to the

Request handshake carry and will be 0 to 1 change meant by SELECT. It will at initial point chooses the real operands during SEL = 0 and then alters to input/convey ways for ensuing cycles employing SEL = 1. The input mode from the HAs strengthens the several cycles to advance till culmination when all convey sign will expect zero qualities.

Figure 1: General block diagram

3.2 State Diagrams

At Fig. 2, for the fundamental process and the iterative duration of the proposed development, two State of arts are drawn. The state i0s spoken to by a pair of (Ci+1 Si) in whichCi+1, Si talk8 to do and integrate qualities from the ith bit summer square appropriately. During the fundamental stages, the circuit only operates in main mode as a combinational HA. It is clear that state(11)cannot turn up because of the use of Has rather than FAs.

Figure 2: PASTA State diagrams. (a) Starting phase. (b) Iterative phase.

The input way through the multiplexer square is actuated during the adaptive stage (SEL=1). The conveyance advances (Ci) are allowed to complete the recursion by the same number of times as intended.

Starting with those definition for basic mode circuits, the introduce plan can't a chance to be recognized Likewise an essential mode circlet Likewise those input–outputs will experience a few moves preceding transforming those final yield. It is not a muller out attempting outside those key mode Possibly Concerning illustration internally, a few moves will detract place, similarly as demonstrated. In the state outline. This will be practically equivalent to will cyclic consecutive circuits the place entryway postponements need aid used on differentiate distinctive states.

3.3 Addition of Binary Bits using Recursive Formulation:

Let S j I and C j i+1 signify the whole and convey, separately, for I th bit at the j th cycle. The underlying condition (j = 0) for expansion is figured as pursues:

$$S_i^0 = a_i \oplus b_i$$
$$C_{i+1}^0 = a_i b_i.$$
 (1)

The j_{th} emphasis for the recursive expansion is planned by

$$S_{i}^{j} = S_{i}^{j-1} \oplus C_{i}^{j-1}, \quad 0 \le i < n$$

$$C_{i+1}^{j} = S_{i}^{j-1}C_{i}^{j-1}, \quad 0 \le i \le n.$$
(2)
(3)

The recursion is ended at kth emphasis when the accompanying condition is met:

 $C_n^k + C_{n-1}^k + \dots + C_1^k = 0, \quad 0 \le k \le n.$ (4)

The proposed plan will create the right outcome by a solitary piece calculation time and end in a split second as (4) held. Enlistment: Acquire that Ck i+1 = 0For a bit of ith at kth stage. Given a chance to be this kind of piece for which Ck l+1 = 1.

We demonstrate that it will be efficiently transferred to succeeding higher part in the (k+1) the cycle. The kth concentration of the lth bit state (Ck l+1, Sk l) and (l + 1)th piece state (Ck l+2, Sk l+1) might be in slightly of (0, 0, (0, 1) or (1, 0) statements as shown in the state table. As Ck l+1 = 1, it indicates Sk l = 0. By (3), Ck+1 l+1 = 0 for any state of knowledge between 0 and l.We are currently considering the condition (l + 1) of the pieces (Ck l+2, Sk l+1) for kth process. It might similarly be in somewhat of (0, 0), (0, 1), or (1, 0) statements.

The (0, 0) and (1, 0) states from the kth cycle correctly generate yield of (0, 1) after (2) and (3) at (k+1)th concentration. For (0, 1) express, the support spreads effectively through that bit stage after (3). In this manner, all the single-piece adders will effectively slaughter or engender the conveys until all conveys are zero satisfying the ending condition. Starting with those definition for basic mode circuits, the introduce plan can't a chance to be recognized Likewise an essential mode circlet Likewise those input–outputs will experience a few moves preceding transforming those final yield.

It is not a muller out attempting outside those key mode Possibly Concerning illustration internally, a few moves will detract place, similarly as demonstrated. In the state outline. This will be practically equivalent to will cyclic consecutive circuits the place entryway postponements need aid used on differentiate distinctive states.

3.4. Implementation

In this project we have implemented Verilog codes for multi-bit binary addition by implementing different modules like MUX, XOR, Half Adder, Full Adder ,And logics designed in Verilog HDL and synthesized in Xilinx vivado FPGA and compared all the parameters in terms of area, delay and power.

4. SIMULATION RESULTS

4.1 Power Report:

Figure 4: 16-Bit PASTA

Figure 5: 32-Bit PASTA

M.Siva Kumar et al., International Journal of Emerging Trends in Engineering Research, 8(2), February 2020, 355 - 360

4.2 Synthesis Report:

Ein Edt Firm Josis Rep	titu Muqon rafart Jan Reb G-Ontra econo	Implementation Complete								
9, + + 6 h X	F Φ Σ K # X	III Default Layout 🗸 🗸								
Three Hampelor ± 0 7	PROJECT MANAGER - PAR_VTVADD	7								
· PROJECT MARAGER	Sources 7 _ 0 0 × Project Summary	7 0 0 X								
O Settings Add Sources	Q 2 0 + 2 0 0 Sympa Est	1								
Language Templates	Sources (1)									
Q IPCatalog	> Constants Projection (Constants) Projections Zhides_RTL_2018Recurster Approach to the Design of a Paralle	I Self-Tened Adder Parallel								
· PINTEGRATOR	Henerchy Libraries Complix Order Productionity Afte-7 Productionet w/lar(fictor23)-2									
Create Block Design	Scarce file Properties 7 _ C C X Top module name Recursive_FA_SET									
Open Block Dealign	Reparative_Fa_bitit v + + TargetTargeage Verifity Simultantianguage Need									
Generate Block Design	Z Former 2									
SINULATION	General Poperios									
Run Simulation	TciConsole Messages Log Reports Designifians x	2 - 0 6								
· RTLANALYSIS	Q = 0 (() > + %									
> Open Elaborated Design	Name Constraints Status WNS THS WHS THS TRUS Table Power Failed Routes LUT FF BRAME URAM									
		0 0 10/23/19/2 16 PM 0 0 10/23/19/4 25 PM								
 Smmitsis Run Svittesis 	√ingl_t constra_1 route_designCompilet NA NA NA NA NA Sola 0 41 8 010 1	5 0 1023/19425 PM								
> Open Bynthesized Design										
V IPLEMENTATION	Activate Win	dows activate Windows								

Figure 6: 8-Bit PASTA

Figure 7: 16-Bit PASTA

	ecuritive Approach to the Design of a Parallel Self-Terred Adder Parallel Self_Terred_Adder_1987.9948_VEXD0.9845_VEXD0.9	- d	×	
D + + E B X		II Default Layout		
Flow Kenigstor 2 8 7	PROJECT MANAGER - PHR_MINDO		?	
· PROJECT MANAGER	Sources 7 - D G X Proof Seman	2 11	rs y	
Getings Add Sources			7 0 0 X	
Language Temptates				
P Calling	Constraints Project location: Zintoke_RTL_2013Recursive Approach to the Design of a Parame Production Sources (1) Production location: After7	I Self-Timed Adder/Par	and	
· IP INTEGRATOR	Herarchy Librates CompleOrder Project part schaft/pg236-2			
Create Block Design	Topmodule name Recursive_FA_11BIT			
Egen Block Design	Properties 7 = 0.0.X Similarity and			
Generate Brack Design	+ + 0			
SINJLATION	Synthesis Inglement	atce		
Run Simulation	Select an object to see properties Status: 🗸 Complete Status:	J Canole	ele .	
· RTL WHEYER	L. C.		>	
> Open Elaborated Design	TclConsole Messages Log Reports Design Runs ×	? -	00	
× 5000-6535	Q, 조 & H 《 > > + % Norme Canabarta Status WHS THS WHS THS TIMS TotalPress Failed Rooks UVT /F DRAWs	URAN OSP Stat		
Fin Sabess	I have Constants Status INIS THE WHS THE THIS TOTAL Power Failed Routes LUT IF DRAMS ✓ √ SVITE_1 consts_1 surth_design Constant		31944	
> Open Synthesized Design	√mpt_1 constra_1 roung_assign Companial NA NA NA NA NA NA 2.155 0 85 15 0.00	D D 10/2	3/19.4.5	
· INPLEVENTATION	Activate Win	daws		
Runimplementation	Go to Settings to	activate Windows	,	

Figure 8: 32-Bit PASTA

4.3 RTL View:

Figure 9: 8-Bit PASTA

Figure 10: 16-Bit PASTA

Figure 11: 32-Bit PASTA

4.4 Output:

Figure 12: 8-Bit PASTA

688 a	1082	A	61.7	1) IX	140	(🍵	n h	lΓΠ	11		E c	F	<u>a</u> a	0	A						_			
	-	100		1	-	- 11	_		_	1				1		_	_	1		- h				11 -		
t Simulate	12	Fiff	15	Ŧ	*	8 .	0	4 *		100	ns 🛉 🖥		X	90	66	1	0	ч.	19	9	٩ 5	\$			9	99
e																								, i		
Messag	s																									
Rearsive_FA_16	π																									
							h		h.	h					h_	L.							٦.		1	
reset																										
án sel				_		_		_		-						-		_				-		-		_
30 A	28778	376		30117		38718		28719		28720		28721		76777		38723		38724		28725		38725		38727		38728
	32958	1032		33336		12838	=	30940		133942		32044		30346		33346		32650		30852		33854		133856		32858
รมา	61736	518	1550		51553		\$1556		51559		51562		61565		51568		51571		51524		61577		61580		\$1583	
reg_a	28778	3715		30717		28718		38719		269720		28721		26722		28723		2672		28725		28725		38727		28728
reg_b term	32958	12834	=	3835		12838	⊨	3864)		33842	-	32044		33946	=	32346		32850	=	33852	=	30554		33856		32858
at	1		=	0	1	5	- 11	h	- 11	-	1	h		5	1	5	1	h	1		1	h	1	5	1	5
cursive_FA_16bit					-	-	*	Ĩ	ľ	1			-	Ĩ		ľ	-	-	<u> </u>	Ĩ	-	Ĩ		-	i.	ř.
							h		Π_	h					h_	h							٦.	Π_		
reset																										
a	28776 32958	28715 17724		28717 37836		28718 12838		28719 32940		29720 133942		28721 32944		28722 32946		38723 33848		28724 32850		28725 33852		28725 32854		38727 33856		28728 32858
	0	51.054	=	10330		125.98		520MJ		.50992		32099	-	500%0		36996		3,2000		58952		-0004		,32836		3,2008
sel							⊨								=											
sл	61736	500	1550		81553		51556		51559		61562		61565		51568		51571		81974		<u> 51577</u>		61580		51583	
		-		_		_		_		<u> </u>				_		<u> </u>				_		_				
term				_	_	_		_	_		-				_	-	_		_	-	_	m	_	-		34
	61736	307	≡	9	U 61662	3 61555	151556	8	61660	61567		51565		61554	J 61568	19 61630	J 51571	10 51547	U 81674	AU 61617	U 51577	10	U 61581	151551	61523	
	1									-	=					-	01001	000								01110
s_samp	61652	500	1550		51545	51553	51544	51555	51543	51559	51562		51565		51564	51568	51539	51571	5154).	51 5 74	51537	61577	51536	(51580	51551	51583
N	w 200	Ons Innin	580			l res		0 ns		0 ns	68		680) Diris	73		74			0ns		0 rs) rs
Curso	1 181	4ns		19		10	.94	010	V1	010		110		10	70	10	10			10		010	10	10		15
	1) (

Figure 13: 16-Bit PASTA

	le Simulate Add		1		1	-		_					1	_	_	_								
· 6 8 8 8	\$ 66 2211	NEBN	1		X	XEX		h	II.	11		11	5	¢ ę	Q									
out Simulate	+ #1 H	111	1	* 16	6	4	4 🔶	₽.	100 n	4		X	97	69	1	18	Q.1	19	a Fi	6	40	11	0	Q Q Q B
lave :					<u></u>		_					_						_	1.					_
	1									-														- 1
Nessage													_	_				_	_	_			_	
TB_Recursive_FA_328					_	_		_	L	L .		L	L .		_	_	L	L		L	_	L	L	
🔷 dk	No Data-																							
🐓 reset 🌢 án	-No Data- -No Data-																							
ovun ∳sel	No Data-				-			=	-														-	
yso ∳a	No Data-	514	104630		046833		50463K	7	5046392	8	504633		534678	0	1046333		504633	2	5045788	2	504633	4	504528	
3 5	No Data-		5505212		50507		5505215		55(5/13		551 520		550522		550.5024		550520		(19)1920		55,523		550578	
olan olan sama sama sama sama sama sama sama sa	No Data-	44 M		19668117		558)		3998		5558)	8	55560)		5558		5563)		\$630)	_	(12:00		55:80		5595
🕹 c at					_				<u> </u>														<u>۳</u>	
👌 reg_a	No Data-	504	1046282	5 5	04233		5016262	7	50%392		504628		504628	0	1046331	1	\$7428	2	976338	3	504638	4	504628	5
🚯 reg_b	No Data-	50	statik	, s	5650E		in contra		8(6)		8. M		(1) 1 00		57 M		30.JAK		(13)1980		37. MA		(30) 1 48	
🔶 term	No Data-																							
🔷 at	No Data-	1	p –	: 0				1	þ	1	0	1		1	0	1	0	1		1	0	1	0	1
Recursive_FA_32807																								
🔷 dk																								
🔶 reset	No Data-																							
*	No Data-		0808		(現物)		0868	1	108(6%		10218)		0288		0283		1.018		0593		0218		0.68	
\$ \$	-No Data- -No Data-	550	5505212	-	805034	_	5505215		5505233		550 500		501922		\$50,502		550500		5535926		\$50,523		5501938	21
olycin olysel	No Data-				-				-														-	
ov so √ysum	No Data-	59250		55668117	=	5959)		55758		555581	_	55959)		SSGERT		555591	_	552580		1250	_	559.530	_	5995
c out	No Data-	1510				-		orn CC 1	ľ.		Ĭ		ĺ				ĺ			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
🕹 tem	No Data-																							
4	No Data-	1	40	0	2		54	0	54	0	58		n	0	72	0	84		54	1	86		80	0
🚯 s	No Data-	S99	i995	5596 S	õ96)	i\$96	5596	i998	iiii	3556	5595	5595	5595	isse	3595	5596	5596	5595	5996	5596	5596	5596	5595	5995
🗳 t	No Data-																							
🔶 s_samp	No Cata-	559	5596	55565	896)	1896	5996	5595	555£	\$855	\$\$95	5596	5596	5556	\$595	\$\$95	5596	5596	5996	5596	\$556	5596	5996	5995
No No	v _20			1000		160			1			100000	0.00	100	linnin i			1000	i mund		luumu i			2000
Cursor		D5 ns	0 rs	1800	10	182	016	185	an G	185	015	.00	0 ns	- 61	0 rs	192	015	17	Ons	19	0 ns	8	0ns	2000 ns 2005 n
3474) (_			_	_	_	_	_	_	_			_	_	_		_		_	_		
	Datafow 🔕 Objects																						_	

Figure 14: 32-Bit PASTA

4.5 Comparisons:

Table 1: comparisons of LUT, flip-flops, Total Power, Dynamicpower and Static power.

with Recursive Approach

Table 1: Attributes of Cleveland dataset

HDL : VERILOG	Recursive Approach to the Design of a Parallel Self Timed Adder VIVADO - XC7A200TFFG1156-2										
	8-Bit	16-Bit	32-Bit								
LUT	41	86	119								
Flip Flops	8	16	32								
Total Power (W)	5.058	9.166	26.352								
Dynamic Power (W)	4.979	9.040	25.868								
Static Power (W)	0.089	0.127	0.485								

5.CONCLUSION

5.

This short bestows an efficient execution of PASTA. This work presents to decrease fan-out impact in all the number-crunching activities. This proposed work will have an ability to improve the exhibition in Recursive methodology of self time parallel adder, here the proposed work will accomplish 8-Bit, 16-Bit

and 32-Bit parallel self time adder. At long last this work structured in Verilog HDL and combined in Xilinx vivado FPGA reduces design complexity and analyzed every one of the parameters like total power includes dynamic power, static power and number of flip-flops.

ACKNOWLEDGEMENT

Authors like to express their gratitude to department of ECE of K L University and DST through ECR/2016/000569, SR/FST/ETI-316/2012 and EEO/2016/000604

REFERENCES

1. Siva Kumar, Syed Inthiyaz, Ch. Krishna Vamsi, Sk.HasaneAhammad, K. Sai Lakshmi, P. Venu Gopal, A.BalaRaghavendra ."Power Optimization using Dual SRAM Circuit'.in International Journal of Innovative Technology and Exploring Engineering.

2. M.Siva Kumar, Syed Inthiyaz, P.Venkata Krishna

,Ch.JyothsnaRavali, J.Veenamadhuri, Y.Hanuman

Reddy,Sk. HasaneAhammad, "Implementation of Most Appropriate Leakage Power Techniques In VLSI Circuits Using NAND and NOR Gates". In International Journal of Innovative Technology and Exploring Engineering

3. Prasanna kumar.P, Sivakumar.M "Implementation of digital beam former software on FPGA based system 2018 journal of advanced research in Dyanamical and control systems

4. A. Madanayake et al., "Low-power VLSI architectures for DCT/DWT: Precision vs approximation for HD video, biomedical, and smart antenna applications," IEEE Circuits Syst.Mag., vol. 15, no. 1, pp. 25–47,1st Quart., 2015.

https://doi.org/10.1109/MCAS.2014.2385553

5. H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C.Lucas, "Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 4, pp. 850-862, Apr. 2010.

6. B. K. Mohanty and S. K. Patel, "Area-Delay - Power Efficient Carry-Select Adder," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 6, pp. 418-422, June 2014.

https://doi.org/10.1109/TCSII.2014.2319695

7. R. Hegde and N.R. Shanbag. "Soft digital signalprocessing,"IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol. 9, no.6, pp. 813-823, Jun. 2001.

8. C.-K. Tung, Y.-C. Hung, S.-H. Shieh, and G.-S. Huang, "A low-power high-speed hybrid CMOS full adder for embedded system," in Proc.IEEE Conf. DesignDiagnostics Electron. Circuits Syst., vol. 13.

9. Inthiyaz S Madhav B Kishore P, "Flower image segmentation with PCA fused colored covariance and gabor texture features based level sets" in Ain Shams Engineering Journal (2018).

10. Inthiyaz S, Kishore P, Madhav B, "Pre-informed level set for flower image segmentation" in Smart Innovation, Systems and Technologies (2018).

11. Inthiyaz S, Kishore P, Madhav B," Flower segmentation with level sets evolution controlled by colour, texture and shape features" in Cogent Engineering (2017).

12. M Siva Kumar, Fazal Noorbasha, Syed Inthiyaz, etc all "Low Power Carry Look-Ahead Adder using Transmission

Gate Multiplexer" in International Journal of Emerging Trends in Engineering Research,

Volume 8, No. 1 January 2020.

13. Sanath kumarTulasi , Syed Inthiyaz, Y.Harshitha, T.Gowthami, P.Avighna, "Design And Implementation Of Power Efficient Amalgamative 32-Bit Generic summer" in International Journal Of Scientific & Technology Research Volume 9, Issue 01, January 2020.

14. Myla, S., Marella, S.T., Swarnendra Goud, A., (...),Kumar, G.N.S., Inthiyaz, S. "Design decision takingsystem for student career selection for accurate academicsystem" in International Journal of Scientific and Technology Research (2019), VOLUME 8, ISSUE 09, SEPTEMBER2019, pp-2199-2206

15. Syed Inthiyaz, M V D Prasad, R. Usha Sri Sai, P. Lakshmi, N.T.B. Sri Pavan Kumar, SkHasaneAhammad,"Agriculture based plant leaf health assessment tool: ADeep Learning perspective" International Journal of Emerging Trends in Engineering Research, 7(11),November 2019, 690-694. https://doi.org/10.30534/ijeter/2019/457112019

16. Ahammad, S.H., Rajesh, V., Venkatesh, K.N., (...), Rao, P.R., Inthiyaz, S." Liver segmentation using abdominal CT scanning to detect liver disease area" International Journal of Emerging Trends in Engineering Research,7(11), November 2019,

664-669.https://doi.org/10.30534/ijeter/2019/417112019

17. Prasad, M.V.D., Inthiyaz, S., Teja Kiran Kumar, M.,(...), Kumari, R., Ahammad, S.H.. "Human activity

recognition using deep learning" International Journal of Emerging Trends in Engineering Research, 7(11), November2019,536-41.

https://doi.org/10.30534/ijeter/2019/227112019

18. Syed Inthiyaz, Sanath Kumar Tulasi, R.S.L.Jayanthi, Ch.sahitya, Ch.jyothi, "Design Of Bi-Trigger Sram Using SchmittTrigger For Low Power 13t Cmos" Application International Journal Of Scientific & Technology Research Volume 8, Issue 12, December 2019,1466-1471.

19. Reddy P,Kumar M,Krishna B,Inthiyaz S, Ahammad S, "Customized Digital Logic Circuit based design for Physical Unclonable Function" in Journal of Critical Reviews (2019).

20. M Siva Kumar, Syed Inthiyaz, M Aditya, etc all "Implementation of GDI Logic for Power Efficient SRAM Cell with Dynamic Threshold Voltage Levels" in International Journal of Emerging Trends in Engineering Research, Volume 7, No. 12 December 2019.

21. Murali Krishna B, Siva Kumar M Rajesh J, Inthiyaz S, et al, "FPGA implementation by using XBee transceiver" in Indian Journal of Science and Technology (2016).

https://doi.org/10.17485/ijst/2016/v9i17/93032

22. Siva Kumar, M., Inthiyaz, S., Dhamini, J., Sanjay, A., Chandu Srinivas, U." Delay estimation of different approximate adders using mentor graphics" in International Journal of Advanced Trends in Computer Science and Engineering.