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ABSTRACT 
 
Cloud Computing provides healthcare companies with the 
major convenience in the research and economic aspects. 
Cloud services ensure that large quantities of such sensitive 
data will be stored and managed securely. The gene sequence 
labs send inferred data to various sequence libraries under 
traditional flow of gene information through the Internet. 
Cloud service use will reduce DNA sequencing storage costs 
to a minimum. In this work, we developed a novel genomic 
bioinformatics-based system, using Amazon Cloud Services, 
that stores and processes genomic sequence information. An 
important task in bio-informatics that is used for the 
recognition and implementation of disease drug, is the exact 
recognition of exon regions in deoxyribonucleic acid (DNA) 
sequence. All exon identification techniques are based on 
three basic periodicity (TBP) properties of exons. With the 
comparison of various existing methods, adaptive signal 
processing techniques have been promising. This paper uses 
the maximum normalized logarithmic mean least square 
(MNLMLS) algorithm also its signed variants to develop 
multiple adaptive exon predictor (AEPs) with less 
computational complexity. Eventually, a performance 
evaluation is performed for different AEPs using various 
standard gene data sequences derived from National 
Biotechnology Information Centre (NBI) genomic sequence 
database, such as Sensitivity (Sn), Specificity (Sp) and 
Precision (Pr) measurements. 
 
Key words: Adaptive exon predictor, cloud computing, 
computational complexity, DNA, health care. 
 
1. INTRODUCTION 
 
Genomics is the immense field in which areas that code for 
proteins are identified using smart AEP based system 
presented here. Exon areas have a role to play in the 
assessment of diseases and drug design. Intergenic and genic 
sections are included in DNA sequence [1]. The primary 
protein segments structure is studied to support both exon  
 

 

 
sections tertiary also secondary structure. After determining 
this for overall exon segments, any malformations are likely 
to be identified, and heal diseases [2] [3]. All living things 
remain alienated aseukaryotes and prokaryotes. Protein 
coding sections are still referred to as exons in part of 
eukaryotes, whereas introns are known as non-protein coding 
sections. Just 3% of the eukaryotic human gene sequence has 
coding areas and rest remain non-coding areas. Consequently, 
it is an important task to detect coded sections in a DNA 
sequence [4] [5]. Therefore, several methodologies for the 
recognition of exon are proposed in literature [6]-[10].  
 
Adaptive techniques using AEP based smart communication 
system in a number of iterations may process more lengthy 
sequences. Our current work presents a novel adaptive exon 
predictor (AEP) with MNLMLS adaptive algorithms. To 
obtain better efficiency than LMS, the signed variants of 
MNLMLS algorithms are considered. LMS drawbacks are 
resolved by NLMLS algorithm, thereby increases speed and 
ability of exon tracking. Excess mean square error (EMSE) is 
also decreased during exon identification [11]-[13]. 
Sign-based algorithms also reduce the sign function by 
quantity of multiplication calculations [14]-[16]. Several 
errors also do not meet the monitoring requirements due to the 
stationary step-size data-independent algorithms [17]. Lower 
EMSE and larger step size are necessary for the best 
convergence rate. Disadvantages of LMS are overcome by use 
of MNLMLS based techniques. 
 

Based on the error signal generated in the iteration process 
shows instances changes of adaptive algorithm step sizes in 
[18]-[21]forbidden the step size. They exhibit better 
performance than the conventional Least mean squares (LMS) 
technique. To minimize the computational complexity, we 
combined MNLMLS algorithm with sign algorithms. The 
developed Hybrid AEP techniques are maximum normalized 
least mean logarithmic squares (MNLMLS), maximum 
normalized sign regressor NSRLMLS (MNSRLMLS), 
maximum normalized sign NLMLS (MNSLMLS), as well as 
maximum normalized sign sign LMLS (MNSSLMLS) 

 
Cloud Based Exon Prediction Methodology using 

Logarithmic Adaptive Algorithms for  
Genomic Signal Analysis 

Md. Zia Ur Rahman1, J. Yedukondalu2, Muralikrishna Kondaveeti3, Putluri Srinivasareddy4 

1 Dept. of E.C.E, K L University, KLEF, Green Fields, Vaddeswaram, Guntur-522502 A.P., India. 
Corresponding Author: mdzr55@gmail.com 

2 Dept. of ECE, Kallam Haranadha Reddy Institute of Technology, Guntur-522017, A.P., India,  
3Dept. of ECE, KKR & KSR Institute of Technology & Sciences, Guntur-522017, A.P., India,  

4Dept. of E.C.E, K L University, KLEF, Green Fields, Vaddeswaram, Guntur-522502 A.P., India,  

        ISSN  2347 - 3983 
Volume 8. No. 9, September 2020 

International Journal of Emerging Trends in Engineering Research 
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter196892020.pdf 

https://doi.org/10.30534/ijeter/2020/196892020 
  

 



Md. Zia Ur Rahman et al.,  International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  6103 – 6110 

6104 
 

 

algorithms. The evaluation of proposed AEPs is performed in 
terms of standard genomic database taken from NCBI gene 
database [22]-[26]. The performance of the several variants of 
proposed AEPs is measured in terms of convergence features, 
computational difficulty, Precision (Pr), Sensitivity (Sn) and  
 
Specificity (Sp). Several procedures for the exon 
identificationare described in [27]–[30]. The implementation 
of various types of AEPs based on adaptation methods is 
discussed in the following sections. The performance 
efficiency of developed AEPs is also described. 
 
2.ADAPTIVE ALGORITHMS FOR EXON 
PREDICTION 
 

The first step is gene sequence analysing it is considered 
based on densities of dimer nucleotide as NCBI sequence 
database. Then it is converted to numerical data in the 
proposed AEP. It remains a chief job of genomic processing 
because only digital or discrete signals can be used for signal 
processing. DNA sequence here is translated to binary 
information describing four binary streams with binary 
mapping. Converting the date into Digital information is the 
vital task in the processing of gene sequence while the signal 
processing techniques are used for the processing of such type 
of signal.  
 

In the digital notation nucleotide presence is represented by 
1 and nucleotide absence is represented by 0. Now the 
converted digital data is used as input of adaptive algorithm. 
By using signal processing adaptive filter algorithms 
generated an AEP. Let푀(푛)is mapped digital sequence, 푥(푛) 
is data sequence of DNA, 푑(푛) is TBP gene sequence, 푦(푛) 
adaptive filter output and 푒(푛) is the feedback signal that is 
used for updating weight coefficients obtained in feedback 
loop. Sequence length of LMS technique considered as ‘T’. 
The current step size parameter 'P' is used to generate the next 
weight coefficient with current weight coefficient asℎ(푛), 
also at that instant the input binary mapped sequence is 
represented as푀(푛). In [12] the mathematical analysis of 
LMS algorithm is described. Block diagram representation of 
AEP is shown in Fig.1. 
The LMS weight recursion is represented as 
 

h(n		 + 	1) = h(	n) + P	x(n)	e(n)																						(1) 
 

The computation complexity should be minimum for 
Adaptive algorithms to identify exon recognition and it is 
used in applications like to attract Nano bioinformatics. Input  
Gene information is clipping; a feedback signal is possible 
with decreased values. In [18],for this purpose techniques are 
studied. The signed variants are implemented for these 
techniques. 

The Signum function can be expressed as  
 

C{x(n)} =
1: x(n) > 0
0: x(n) = 0
−1: x(n) < 0

(2) 

 

 
Figure 1:Proposed AEP block diagram 

 
 
For reducing computational complexity of LMS these 

versions are used. Computational complexity is more for 
LMS compares to other three sign variants. Data Clipped 
LMS (DCLMS) technique can be expressed as LMS recursion 
by varying input data sequence. Input 푥(푛) is replaced by 
averaged values of 퐶[푥(푛)] , where signum function is used 
for removing 푥(푛) on the basis of element by element. 

The updated weight recursion expressions of DCLMS 
algorithm is represented as 

 
h(n	+ 1) = h(	n) + P	C{x(	n)}	푒(	n)																(3) 

 
Updated weight recursion expressions of ECLMS 

algorithm is obtained by applying signum function to the e(n)  
 

h(n + 1) = h(n) + P	x(n)	C{e(n)}																		(4) 
 

Also, the updated weight recursion expressions of DECLMS 
is obtained by applying signum function to both   x(n), e(n) it 
is expressed as 
 

h(n + 1) = h(n) + P	C{x(n)}	C{e(n)}												(5) 
 
Due to its robustness as well as simplicity, the standard 
adaptive LMS technique is suitable for exon forecast. In order 
to choose parameter of step size for the convergence as well as 
stability, understanding of preceding input power level rate is 
required for LMS filter. As one of the statistical unknown 
levels is generally the input power level, it will normally be 
assessed through information prior start of adaptation process. 
The vector of the input information is proportionate to weight 
update process. Other one being its step size is fixed. Both 
these remain two setbacks of LMS. 
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Figure 2: Mathematical modeling of MNLMLS Algorithm. 
 
 
An algorithm must be designed so that weak as well as strong 
signals can be handled in real time. Therefore, the tap 
coefficients must be adapted accordingly on the basis of filter 
changes in input as well as output. Thus, LMS algorithm is 
suffered with gradient noise amplification limitation for large 
input data sequences. Normalized LMLS algorithm is 
considered as a unique LMS algorithm application that takes 
into consideration signal level variation at the filter output 
also chooses a logarithmic normalized cost function which 
leads to a faster converging as well as stable adaptation 
algorithm. MNLMLS algorithm overwhelms LMS limitations 
and increases convergence speed and exon tracking ability. 
Here, we have used MNLMLS and its adaptive algorithm 
based on SRA to enhance AEP efficiency. The MNLMLS 
algorithm overcomes the LMS disadvantages and increases 
the ability of exon identification and quicker convergence 
when error is high. This also reduces the surplus EMSE in the 
exon identification process. These MNLMLS adaptive 
algorithms are used for developing AEPs in order to cope with 
computing difficulty of an AEP in practical applications. 

 
Fig. 2 describes the mathematical modeling of MNLMLS 
algorithm.To reduce the computational burden of proposed 
algorithm we combined with various signum variants. With 
the combination of sign function the three simplified models 
of MNLMLS are MNSRLMLS, MNSLMLS, and 
MNSSLMLS algorithms are derived. 
The weight recursion for MNSRLMLS, MNSLMLS, and 
MNSSLMLS models becomes 
 
ℎ(푛 + 1)

= ℎ(푛) +
푃

휀 + max	( |푥(푛)| )
퐶[푥(푛)]푒(푛)[

훼 푒(푛)

1 + 훼 푒(푛)
](9) 

 
ℎ(푛 + 1)

= ℎ(푛) +
푃

휀 + max	( |풙(푛)| )
푥(푛)퐶 푒(푛)

훼 푒(푛)

1 + 훼 푒(푛)
(10) 
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ℎ(푛 + 1)
= ℎ(푛)

+
푃

휀 + max	( |풙(푛)| )
퐶[푥(푛)]퐶 푒(푛)

훼 푒(푛)

1 + 훼 푒(푛)
(11) 

 
At last, we implemented four AEPs by using these adaptive 
algorithms and compared their performance with AEP with 
LMS. Sensitivity, Specificity and Precision are taken for the 
performance measures. The performance measures proved 
that the MNSRLMLS shows better performance than the 
other variants. Computational difficulty is the performance 
metrics for the several techniques considered for the 
applications. 
 
3.  COMPUTATION COMPLEXITY AND 
CONVEREGENCE ISSUES 
 

The number of multiplications required for the 
computations is taken as the performance metric. Main aim is 
not only to get computation complexity accurate analysis also 
for better convergence performance of various MNLMLS 
adaptive techniques. The sign based models are without 
complex multiplications which are necessary for prediction of 
exon regions. In the case of LMS, it requires T+1 complex 
multiplications and one addition in the computation of weight 
recursion. Whereas for the MNSRLMLS based adaptive 
technique requires T complex multiplications.The other two 
sign variants of MNLMLS algorithms require 2T+1 multiply 
computations. With MNSRLMLS, it needs fewer 
multiplications with less computing difficulty compared to 
other MNLMLS based techniques. Table I describes the 
computational complexities of conventional LMS and three 
sign variants of MNLMLS algorithms.The MNLMLS based 
developed AEPs exhibits a smaller number of computations 
for the location of the desired gene position in a genomic input 
sequence and can be used in nano bioinformatics applications 
[5]. 

Table1: Ccomputations required for LMS and various 
MNLMLS based AEPs 

S.No Algorithm Multiplications Additions 
1 LMS T+1 T+1 
2 MNLMLS T+7 T+2 
3 MNSRLMLS T T+2 
4 MNSLMLS T+5 T+2 
5 MNSSLMLS 2 2 

 
Fig.3 describes the convergence performance of MNLMLS 

and its three sig variants. All the recommended MNLMLS 
based techniques have obviously faster convergence than the 
LMS based AEP. Therefore, the MNSRLMLS adaptive 
algorithm is considered better, based on computing difficulty 
as well as convergence efficiency in contrast to LMS and its 
other signed algorithms, among the algorithms considered for 
AEP implementation. It was obvious that MNSRLMLS 

converges quicker compared to MNSLMLS and 
MNSSLMLS based AEPs from convergence features. 

 
 

 
Figure 3: MNLMLS algorithm and its signed versions convergence 

curves  

4. RESULTS AND DISCUSSION 
 

Performance analysis of several AEPs are discussed. AEP 
block diagram is described in Figure 1. Several AEP models 
are implemented based on MNMLS algorithm and its three 
sign variants. LMS-based AEP is implemented for 
comparison analysis. From NCBI database [19], Ten genomic 
datasets are considered for performance comparisons. The 
performance of the implemented models is measured through 
by taking the parameters such as Precision (Pr), Sensitivity 
(Sn), also Specificity (Sp). The detailed study of these 
specifications is mentioned in [13]. The numerical values of 
simulation results of various algorithms are mentioned in 
Table 3. 

 
As part of the determination of exon segments by using DSP 
methods, there are few measures based on changes in the 
threshold level in the output spectrum used for comparison. 
Nucleotides amount situated like introns in exon locating 
phase remains expressed as True Negative (TN), whereas 
exon areas exactly predicted is stated for instance True 
positive (TP). Besides, all the amount of exon areas 
positioned as intron areas is indicated to be False negative 
(FN), then compares with number of introns for exact 
prediction like areas of false positive (FP) exon prediction. 
Ten gene datasets of NCBI remains regarded to analyze the 
performance efficiency of various algorithms. The accession 
for these sequences remainsX59065.1, E15270.1, U01317.1, 
X77471.1, AF009962, X92412.1, AB035346.2, AJ223321.1, 
AJ225085.1, and X51502.1 respectively as shown in Table 2. 
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Table 2: Gene datasets from NCBI gene databank 

 
 

Expressions for performance metrics are  
 

푃푟 = 	 (푇푃 + 푇푁)	/	(푇푃 + 퐹푃 + 푇푁 + 퐹푁) 
 

푆푝	 = 	푇푃/	(푇푃	+ 	퐹푃) 
 

푆푛 = 	푇푃/	(푇푃 + 퐹푁) 
Specificity (Sp) is the amount of exon regions exactly 

found as a part of exons sections, while Sensitivity (Sn) is 
measured as the amount of exons quantity that remains 
adequately forecasted. The analysis results of Exon gene 
sequence 5 predictions with MNLMLS based methods are 
described in the Fig. 5. The threshold levels are taken from 0.4 
to 0.9 with the interval of 0.05. The efficiency of metrics Pr, 
Sn, and Sp is evaluated by using these values. It is precise at 
the value of threshold equal to 0.8.Consequently, the 
measures for performance at threshold value 0.8 are depicted 
in Table III. The exons with greater A+T percentage 
nucleotides of a DNA sequence usually exhibit intergenic 
sequence components, whilst low A+T and greater G+C 
nucleotides show potential genes. Mostly, high CG 
dinucleotide content is often found ahead for a gene. 
Functions of statistics for a gene sequence remains beneficial 
for determining whether the input gene sequence has 
protein-coding segments. For DNA sequence having 
accession AF009962, Fig.4 shows a standard nucleotide 
density plot. Its dimer distribution is displayed in a bar 
illustration using MATLAB software. 

 
It has been shown from Fig. 4 that T-T base pair dimers are 
more in this gene sequence 5 when contrasted to all its dimers. 
The gene sequence is incorporated with 680 T-T base pair 
dimmers and it also contains 527 A-T and 70 G-C dimers. The 
G+C content is shown to be smaller than the A+T dimer 
content which demonstrates that it has less gene count. 

 
 

Figure 4: Plot for Nucleotide density of dimers for gene sequence 5 
with accession AF009962. 

 
The following steps represents step by step process of 
developed AEP. 

(a) The gene data sets taken from NCBI database are 
analyzed to find out the existence of gene locations 
by using PSD plots and are shown in Fig. 5 for genes 
dependent upon nucleotide density base pairs for 
G+C also A+T dimers. Following the assessment, 
this sequence is then converted into digital notation 
after analysis using the digital mapping technique, 
while input of AEP remains to be binary information 
from Figure 1. 

(b) This ensuing sequence is then given as input for the 
implemented AEP following assessment. TBP 
obedient biological information is used as a 
reference signal for developed MNLMLS dependent 
AEPs. 

(c) For updating filter coefficients, derived e(n) 
feedback signal from Fig.1 has been used. 

(d) Once this signal becomes minimal, the genes from 
DNA sequences are precisely located using PSD 
plots. 

(e) Plots of desired exon areas are shown in PSD. 
Moreover, Sp, Pr and Sn are also taken for the 
comparison analysis. 

 
For all sign versions of MNLMLS algorithms gene sequence 
5parameter measures with Accession AF009962 are 
simulated using MATLAB software. The performance 
measures of MNSRLMLS based AEP are superior than that of 
MNLMLS based AEP, with low computational burdens due 
to less number iterations. It is observed that this model can be 
able to locate exons sections accurately at 3934-4581 with 
high resolutions and a sharp spike in the plots of PSD. 
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Figure 5: PSD plots with position of exon (3934-4581) located for 
genomic data sequence using several developed AEPs, (a). LMS 
based AEP, (b). MNLMLS based AEP, (c). MNSRLMLS based 
AEP, (d). MNSLMLS based AEP, (e). MNSSLMLS based AEP. 
(For these plots the x-axis is Relative Base Location and 
y-axis is Power Spectrum) 

 

In such cases, the MNSRLMLS algorithm becomes efficient 
due to low complexity in performing the computations and in 
terms of exon locating ability. The signum function present in 
all signed versions of MNLMLS reduces the computational 
complexity and thus all signed versions predict the exon 
locations more accurately. 
Of all these algorithms, MNSRLMLS based AEP is effective 
in terms of accurate exon prediction when compared to LMS, 
MNLMLS and its other signed variants with Specificity Sp, 
0.7890 (78.90%), Sensitivity Sn 0.7789(77.89 %), also 
Precision, Pr 0.7806 (78.06%) respectively. At 0.8 threshold 
value, the exon prediction appears to be better for 
MNSRLMLS based AEP. The PSD plots for three signed 
variants of MNLMLS algorithm are depicted in Fig. 5(b), (c), 
and (d) respectively. Finally, all proposed MNLMLS based 
AEPs are more effective to discover exon areas in genomic 
sequences compared with the prevailing LMS technique. 
 
 
 
 
 
 

Table 3:Performance Measures of various Implemented AEPS in terms of Sn, Sp and Pr Parameters 
 

 

4. CONCLUSION 
In this work we presented the process for the detection of exons 
in gene sequence.  For the adaptive exon identification, a 
modern approach using smart communication-based system is 
described here. For this MNLMLS-based adaptation techniques 
are used to process multiple DNA sequences. The PSD plots of 
developed MNLMLS algorithm and its three variants 
techniques are depicted in Fig. 5. Performance measures of 
exon prediction are mentioned in Table III. The implemented  
AEP model can exactly locate exon position at 3934-4581 with 

greater resolution in PSD plots. MNSRLMLS variant shows 
better performance in terms of computational complexity, the 
performance measures are measured for gene sequence 5 
having accession AF009962 at the threshold value of 0.8. The 
computation complexity of the MNSRLMLS based AEP is less 
compared to MNLMLS based AEP. Also, the MNSRLMLS 
based AEP provides faster convergence in the identification of 
exact exon locations. Hence the MNSRLMLS based AEP is the 
best choice and can be used in system on chip 
nano-bioinformatics applications and cloud-based exon 
prediction applications. 
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