
Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1062 - 1066

1062


ABSTRACT

DVFS (Dynamic Voltage/Frequency Scaling) has been a
significant technique for reducing energy consumption of
processors. Energy-aware scheduling schemes make use of
DVFS feature of processors to adjust the execution speed of
processors depending upon workload; high speed for heavy
workload and low speed for light workload. This paper
proposes a combined DVFS scheme for EDZL (Earliest
Deadline until Zero Laxity)scheduling. The scheme combines
a per-core DVFS technique that calculates tasks' individual
speed and MOTE technique that lowers the execution speed
of a core by reclaiming slack time. Experiment results show
that our scheme can decrease the energy consumption in
executing periodic task.

Key words : DVFS, EDZL Scheduling, Embedded Systems,
Multicore, Periodic Task

1. INTRODUCTION

Reducing energy consumption has been a significant concern
in recent computing systems including mobile embedded
systems as well as cloud systems. There are many energy
saving techniques for various computer components [23]-[25]
such as PAVM (Power-Aware Virtual Memory),DPM
(dynamic power management), and DVFS (dynamic
voltage/frequency scaling). Among them DVFS is an
energy-saving technique for processors that adjusts processor
supply voltage and/or frequency according to the workload;
lowering the supply voltage/frequency on light workload
reduces the energy consumption of processors. The DVFS
technology developed by processor benders are
EIST(Enhanced Intel SpeedStep) by Intel [3], IET (Intelligent
Energy Management) by ARM [4], and PowerNow! by AMD
[5].
The problem of deploying DVFS in scheduling real-time tasks
is that a lower supply voltage/frequency may cause real-time
tasks to violate their timing constraints, i.e., to miss their
deadline. Thus, energy-aware scheduling schemes should
make use of DVFS feature of processors carefully.
Many researchers have studied DVFS techniques for real-time
scheduling on multicore systems. Some developed DVFS
techniques in partitioning approach[6]-[9], where tasks are

partitioned into groups and each task group is executed on a
processing core statically. In partitioning approach, a
uniprocessor scheduling algorithm [10][11] is employed on
each core. Some researchers devised DVFS techniques in
global approach [12]-[16], where tasks can start or resume on
any available processing core.
Earliest Deadline until Zero Laxity (EDZL) [17] is a global
real-time scheduling algorithm. It assigns the highest priority
to jobs with zero laxity. It gives to the remaining jobs priority
according to EDF (Earliest Deadline Frist). EDZL dominates
global EDF [18], and is superior to other EDF variants
[19]-[21].There are some research works on DVFS techniques
for EDZL algorithm. Piao et al. [14] proposed a DVFS
technique for EDZL that calculates a static uniform speed; at
any time all cores execute periodic tasks at the speed. Han et
al. [22] proposed energy-aware EDZL scheduling that
computes static individual speed for each periodic task on
per-core DVFS platforms; all cores can execute periodic tasks
at different speed.
In this paper, we propose an aggressive DVFS technique for
EDZL scheduling algorithm on multicore platforms. By
combining Han’s DVS technique with MOTE [1] which is an
on-line DVS technique, our scheme can safely reduce the
execution speed of cores. The experiment results show that
our scheme can further reduce the energy consumption of
periodic tasks compared with Han’s technique. It can reduce
more energy by %.

2. SYSTEM MODEL

2.1 Processor Model
We assume that there arem identical processing cores P1, P2,
…, Pm and each core contains an individual clock, i.e.,
per-core DVFS platforms where the clock frequency of each
core can be adjusted individually. The speed of core Piis
denoted by si = f / fmax where f is the current frequency and fmax
is the maximum frequency of Pi. The range of si is [smin, smax]
where sminis the minimum speed and smax(=1) is the maximum
speed. For example, if a core executes a job from time t1 to
time t2 with a clock frequency 0.5 fmax, the speed of the core
during [t1, t2) is 0.5 and the amount of execution is (t2 - t1) 
0.5.

We assume that a core’s power dissipation isP  V2f,where V
is the supply voltage and f is the frequency of the core [2].
Since it is assumed that f  Vand the core speed s is

Energy-aware EDZL Scheduling of Periodic Tasks on Multicore Systems

Sangchul Han
Dept. of Software Technology, Konkuk University, Korea, schan@kku.ac.kr

 ISSN 2347 - 3983

Volume 8. No. 4, April 2020
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter18842020.pdf

https://doi.org/10.30534/ijeter/2020/18842020

Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1062 - 1066

1063

proportional to f, we have P  s3[2]. For example, if a core
executes a job during [t1, t2) at speed s, the amount of energy
consumption of the job is (t2 - t1) s3.

2.2 Task Model
A tasks system consists of n periodic tasks  = {1, 2, …, n}.
Each task is denoted by i = (ei, pi) where pi is a period and ei
is the worst-case execution time assuming the task executes at
smax;  i generates a job i,jat time j∙pi (j=0,1,2,…) which
requires the execution of ei time units at most, and i,j should
be finished its execution by absolute deadline di,j = pi(j+1).
The utilization of i denoted by ui is ei/pi and the total
utilization of denoted by U() is iui. We define Umax()=
max{ui|i}.

Letri,j(t) denote the amount of remaining execution of i,j at
time t. If i,j executes all the remaining execution at speed s,
the remaining execution time is ri,j(t)/s. The laxity of a job is
defined as the maximum amount of time for which the job can
idle (or may not execute)without missing its deadline. This
amount of time depends upon the speed at which the job
executes during its remaining execution. Suppose i,j executes
its remaining execution at speed s, its laxity at time t is as the
equation below.

,࢚)࢐,࢏࢒ ࢙) = ࢊ − ࢚ −
(࢚)࢐,࢏࢘

࢙
 (1)

3. ENERGY-AWARE EDZL SCHEDULING

3.1 DVFS for EDZL Scheduling
There are some research works on the schedulability of
EDZL. Park et al. [18] proposed a utilization-based
schedulability test and proved that EDZL dominates EDF, i.e.,
EDZL can successfully schedule any EDF-schedulable task
set. Baker et al. [19], [20] presented an EDZL schedulability
test. They demonstrated that the test is superior to existing
EDF schedulability tests. Lee et al. [21] proposed another
EDZL schedulability test (Theorem 1). They showed that their
test outperforms Baker's test with respect to the number of
task sets that pass the test.

Theorem 1.(Theorem 2 in [21]) On m-core platforms, a task
set  is schedulable by EDZL if there exists m*(= 1, 2, …, m)
satisfying (2), where T1 = {i | i (m - m*) task with the
largest ui }.

∑ ∋௜ఛ೔ݑ భ் ≤ ݉∗ − (݉∗ − 1) ∙ |௝ݑ〉ݔܽ݉ ௝߬ ∈ ଵܶ〉 (2)

Note that T1 =  - T2 where T2 is a set of (m – m*) tasks whose
utilization is highest. Briefly, T1 is a set of (n - m + m*) tasks
whose utilization is lowest.

The first study on DVFS scheme for EDZL scheduling is [14].
Based on Baker's test, Piao et al. [14] presented a technique
that calculates a uniform speed on full-chip DVFS platforms.
The execution speed of all cores can be safely altered to the
uniform speed to reduce energy consumption of cores. Han et

al. [22] presented an power-ware EDZL scheduling technique
utilizing Lee's test [21]. This technique is simpler and more
effective than Piao’s because Lee's test is simpler but tighter
than Baker's test. On full-chip DVFS platforms where all
cores share one clock, the technique computes static uniform
speed - all cores operate uniformly at the computed speed.
Theorem 2shows that, for a given task set, there exists a
uniform speed at which the task set can be successfully
scheduled by EDZL on m processing cores.

Theorem 2.(Theorem 1 in [22]) Suppose a task set is
scheduled by EDZL on m-core platforms. If there exists m*
that satisfies (2), then  is schedulable with a uniform speed S
(0 <S 1) that satisfies the following equation.

ܵ ≥ ݔܽ݉ ቄܷ௠௔௫(ఛ), ଵ

௠∗ ൫∑ ௜ݑ + (݉∗ − 1) ∙ |௝ݑ}	ݔܽ݉ ௝߬ ∈ ଵܶ}ఛ೔∈ భ் ൯ቅ (3)

On per-core DVFS platforms where each core contains
individual clock and its speed can be adjusted individually,
the technique computes static individual speed for each task,
denoted by S1, S2, ..., Sn, for EDZL scheduling. On this
platform, when a job is about to execute on a core, the core’s
speed is adjusted to the individual speed of the task of the
job.Algorithm 1 finds such m∗that minimizes the uniform
speed for T1 and determines the individual speed of each task.

Algorithm 1.(Algorithm 2 in [22]) Calculate individual
speedS1, S2, ..., Sn
function calculate individual speed(m, τ)
1 Smin= 1, mmin∗= m
2 form∗from1tomdo
3 T1 ← {τiτ|τi m − m∗tasks with the largest ui}
4 ifτiT1 ui≤ m∗− (m∗− 1)·Umax(T1) then
7 s ← calculate_uniform_speed(m ,T1)
8 ifs<Sminthen
9 Smin← s, mmin∗← m∗
10 fi
11 fi
12 done
13 T1 ← {τiτ|τi m − mmin∗tasks with the largest ui}
14 forτiT1doSi← Smindone
15 forτiτ − T1doSi ← uidone
16 return S1, S2,..., Sn

3.2Combining with MOTE Technique
Algorithm 1 computes individual speed of tasks off-line. We
combine the off-line scheme with an on-line technique MOTE
[1]. MOTE is integrated with a scheduler. When a job τi,j is to
be executed on a core, the core’s speedis set to the individual
speed or si

MOTE computed by (4).At time t, the scheduler
calculates tnext by Algorithm 2 of [1], and then computes si

MOTE

by applying Algorithm 3 of [1].

௜ெை்ாݏ =
௪೔
ೞ೔(௧)∙௦೔

௠௜௡൛ௗ೔,ೕ ,௧೙೐ೣ೟ൟି௧
 (4)

Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1062 - 1066

1064

Where wi
si(t) is the amount of remaining execution in the

worst case assuming the execution speed of τi,j is si. The core
speed is set to min{si

MOTE,si}.Of course, the core speed should
not be lower than smin.

4. EXPERIMENTS

We evaluate the proposed scheme through a simulation.
We generate periodic task sets increasing the total utilization
of task sets U from 0.25m to 0.90m with a step of 0.2, where m
= 4,8,16.For each U,a group of tasks set is generated. Each
group consists of 100 task sets. When we generate a task τi, we
randomly choose pi and ui from a uniform distribution over
(10,1000] and (0.1,1], respectively. ei is given by pi × ui. We
test every task set using both Baker’s test [20] and Lee’s [21].
A task set that does not pass either of one is discarded. During
simulation, when a job is released, its actual execution time is
randomly chosen from [1, ei].

The processor model of this simulation is Strong ARM
SA-1100 processor whose characteristics are given in Table 1.
Frequency and supply voltage are altered together to one of
the levels. When a core executes a job with speed s, the core’s
frequency/voltage level is altered to the lowest level whose
speed is no lower than s. When a job is completed or
preempted, its energy consumption is calculated and summed
up. Let a job execute for e time units at a certain
frequency/voltage level. Then the amount of energy
consumption is (e/s)P where s is the speed and P is the power
of the level.

Table 1: StrongARM SA-1100 processor characteristics
Volt.(V) Freq.(MHz) Speed Power(%)

1.50 206 1.000 100
1.42 195 0.947 78.9
1.30 180 0.874 63.2
1.20 165 0.801 50.0
1.15 150 0.728 39.9
1.10 135 0.655 33.6
1.08 120 0.583 33.3
0.95 105 0.510 19.8
0.90 90 0.437 15.0
0.82 75 0.364 11.8
0.80 60 0.291 9.44

We compute and sum up the amount of energy consumed by
every task in a task set for its hyper-period. Then we
normalize it to the amount of energy consumption without any
DVFS technique. For each total utilization value, the
normalized energy consumptions of task sets are averaged.
Figure 1, 2, 3, and 4 demonstrate the average normalized
energy consumption for m = 2, 4,8, 16, respectively

As shown in the figures, our combined scheme can further
reduce energy consumption. Han’ scheme cannot reclaim
dynamic slack time that occurs when a job actually demand a
less amount of execution than the worst-case. By combining

with MOTE our scheme can reclaim such slack time. For
instance, when m = 2 and the total utilization is 1.6, our
scheme saves 7.92%of normalized energy in average. For a
fixed number of cores, on the whole, more energy can be
saved as the total utilization increases. For task sets with high
total utilization, it is likely that there exist heavy execution
tasks. Such tasks may have much slack time if their jobs
actually demand far less execution than the worst-case. Those
slack time can be reclaimed by on-line DVFS techniques such
as MOTE.

Figure 1: Average normalized energy consumption when m = 2

Figure 2: Average normalized energy consumption when m = 4

Figure 3: Average normalized energy consumption when m = 8

Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1062 - 1066

1065

Figure 4: Average normalized energy consumption when m = 16

5. CONCLUSION

This paper proposes a dynamic voltage/frequency scaling
scheme for EDZL, a global real-time scheduling algorithm.
Our scheme combines an off-line DVFS technique (Han’s
individual task speed scheme) on per-core DVFS platforms
with an on-line slack reclamation technique (MOTE) to
decrease processing cores’ energy consumption. The
proposed scheme can save more energy than Han’s scheme by
at most 7.92%.

ACKNOWLEDGEMENT

This paper was supported by Konkuk University in 2018.

REFERENCES
1. V. Nelis, J. Goossens, R. Devillers, and N. Navet,

Power-aware real-time scheduling upon identical
multiprocessor platforms, in Proc. IEEE International
conference on sensor networks, ubiquitous and
trustworthy computing (SUTC’08), pp. 209–216, 2008.

2. A. Chandrakasan, S. Sheng, and R.
Brodersen.Low-Power CMOS Digital Design, IEEE
Journal of Solid-State Circuit, vol. 27, no. 4, pp.
473–484, 1992.
https://doi.org/10.1109/4.126534

3. Intel Product Specifications. Retrieved November 29,
2018, from: https://ark.intel.com/.

4. J. Khan, S. Bilavarn, and C. Belleudy.Energy Analysis
of a DVFS based power strategy on ARM platforms,
inProc. IEEE Faible Tension Faible Consommation
(FTFC), Paris, France, pp. 1–4, 2012.
https://doi.org/10.1109/FTFC.2012.6231734

5. AMD Products. Retrieved November 29, 2018, from:
http://www.amd.com/en-us/products.

6. H. Aydin, and Q. Yang, Q. Energy-aware partitioning
for multiprocessor real-time systems,in Proc. 17th
International Symposium on Parallel and Distributed
Processing (IPDPS’03), Nice, France, 2013.

7. J.J.Chen, and T.W. Kuo. Multiprocessor
energy-efficient scheduling for real-time tasks with
different power characteristics,in Proc. the 2005
International Conference on Parallel Processing
(ICPP’05), Oslo, Norway, pp. 13–20, 2005.

8. C.Y. Yang, J.J. Chen, and T.W Kuo. An approximation
algorithm for energy-efficient scheduling on a chip
multiprocessor. in Proc. Conference on Design,
Automation and Test in Europe (DATE’05), Munich,
Germany, pp. 468–473, 2005

9. J.J. Chen, and C.F. Kuo. Energy-efficient scheduling
for real-time systems on dynamic voltage scaling
(DVS) platforms,in Proc. 13th IEEE International
Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’07), Daegu, Korea, pp.
28–38, 2007.
https://doi.org/10.1109/RTCSA.2007.37

10. C.L. Liu, and J.W. Layland. Scheduling Algorithms for
Multiprogramming in a HardReal-Time
Environment, Journal of the ACM. vol. 20, no. 1, pp.
46–61, 1973.
https://doi.org/10.1145/321738.321743

11. N.C. Audsley, A. Burns, M.F. Richardson, and A.J.
Wellings.Hard real-Time scheduling: the
deadline-monotonic approach,in Proc. IFAC/IFIP
Workshop on Real Time Programming, Atlanta, USA, pp.
127-132, 1991.

12. K. Funaoka, A. Takeda, S. Kato, and N. Yamasaki.
Dynamic Voltage and Frequency Scaling for Optimal
Real-Time Scheduling on Multiprocessors, in Proc.
3rd IEEE International Symposium on Industrial
Embedded Systems (SIES’08), Le Grande Motte, France,
pp. 27–33, 2008.
https://doi.org/10.1109/SIES.2008.4577677

13. V. Nelis, J. Goossens, R. Devillers, and N. Navet.
Power-Aware Real-Time Scheduling upon Identical
Multiprocessor Platforms,in Proc. IEEE International
Conference on Sensor Networks, Ubiquitous and
Trustworthy Computing (SUTC’08), Taichung, Taiwan,
pp. 209–216, 2008.

14. X. Piao, H. Kim, Y. Cho, S. Han, M. Park, and M. Park.
Power-Aware EDZL Scheduling upon Identical
Multiprocessor Platforms,in. Proc. International
Conference on Reliable and Autonomous Computational
Science (RACS 2010), Atlanta, USA, pp. 61–80, 2010.

15. S. Funk, V. Berten, C. Ho, and J. Goossens. A global
optimal scheduling algorithm for multiprocessor
low-power platforms ,in Proc. 20th International
Conference on Real-Time and Network Systems, Pont à
Mousson, France,pp. 71–80, 2012.
https://doi.org/10.1145/2392987.2392996

16. S. Han, M. Park, X. Piao, and M. Park. A dual speed
scheme for dynamic voltage scaling on real-time
multiprocessor systems, The Journal of
Supercomputing,vol. 71, no. 2, pp. 574–590, 2015.
https://doi.org/10.1007/s11227-014-1310-y

17. S. Cho, S.K. Lee, A. Han, and K.J. Lin. Efficient
Real-Time Scheduling Algorithms for Multiprocessor
Systems,IEICE Trans on Communications,vol. E85-B,
no. 12, pp. 2859–2867, 2002.

Sangchul Han, International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1062 - 1066

1066

18. M. Park, S. Han, H. Kim, S. Cho, and Y. Cho.
Comparison of Deadline-based Scheduling
Algorithms for Periodic Real-Time Tasks on
Multiprocessor,IEICE Trans on Information and
Systems,vol. E88-D, no. 3, pp. 658–661, 2005.

19. M. Cirinei, and T.P. Baker. EDZL Scheduling
Analysis,in Proc. 19th Euromicro Conference on
Real-Time Systems (ECRTS’07), Pisa, Italy, pp. 9–18,
2007.
https://doi.org/10.1109/ECRTS.2007.14

20. T.P. Baker, M. Cirinei, and M. Bertogna. EDZL
scheduling analysis,Real-Time Systems,vol. 40, no. 3, pp.
264–289, 2008.

21. J. Lee, and I. Shin. EDZL Schedulability Analysis in
Real-Time Multicore Scheduling,IEEE Transactions
on Software Engineering, vol. 39, no. 7, pp. 910–916,
2013.

22. S. Han, M. Park, and W. Paik.Dynamic
Voltage/Frequency Scaling for EDZL Scheduling in
Multicore Real-Time Systems, Journal of Engineering
and Applied Sciences, vol. 14, no. 21, pp. 8039-8046,
2019.
https://doi.org/10.36478/jeasci.2019.8039.8046

23. M S. Kumar, F. Noorbasha, S. Inthiyaz, M. Jameela, A.
Sandhya, Md. Imran, and S. K. Tulasi. Low Power
Carry Look-Ahead Adder using Transmission Gate
Multiplexer, International Journal of Emerging Trends
in Engineering Research, vol. 8, no. 1, 2020.
https://doi.org/10.30534/ijeter/2020/03812020

24. B. Lakshmi, and B. Navyasri. Energy Efficient Routing
Mechanism for Harsh Environment in Wireless
Sensor Networks, International Journal of Emerging
Trends in Engineering Research, vol. 7, no. 9, 2019.
https://doi.org/10.30534/ijeter/2019/04792019

25. P.S. Akram, G.V. Ganesh, A. S. Kumar, K.S. Chand, and
M.R. Varma. Non-Volatile 7T1R SRAM cell design for
low voltage applications, International Journal of
Emerging Trends in Engineering Research, vol. 7, no. 11,
2019.
https://doi.org/10.30534/ijeter/2019/487112019

