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ABSTRACT 
 
The main objective of this research is to obtain the 
periodic solution by inserting the ideas of Laplace 
Transformation, Pade’s Approximant and Inverse 
Laplace Transformation are applied. In this 
research article the Standard Duffing Equation of 
motion possessing symmetric oscillations is 
examined by using the Sumudu Transform Series 
Decomposition Method. The Duffing oscillator is a 
periodically forced oscillator with a nonlinear 
elasticity. For this type of oscillatory system there 
are frequencies at which the vibration suddenly 
jumps and these jumps depend upon whether the 
frequency is increasing or decreasing. Between 
these frequencies, multiple solutions exist for a 
given frequency of excitation, and the initial 
conditions determine which of these solutions 
represents the response of the system. The Sumudu 
Transform Series Decomposition Method 
(STSDM) is claimed as an efficient method for 
solving problems in Engineering and Science 
fields. It gives divergent series solution. 
This article explores on studying the application 
capacity of STSDM in getting solution for 
symmetric oscillations of Duffing Equation of 
Motion which are simple and nonlinear. 
 
Key words: Sumudu Transform (ST); Inverse 
Sumudu Transform (IST), Adomian Polynomials; 
Duffing Equation, Truly Nonlinear Oscillators, 
Laplace Transform (LT), Inverse Laplace 
Transform (ILT); Pade’s Approximant (PA). 
 
1. INTRODUCTION 
 
A nonlinear second-order ordinary differential 
equation of the Duffing oscillator is [1-15]. 
 
 

)()( 0 tGxgxx       (1) 
Over dot denote differentiation with respect to 
time, t.   is the damping factor. )(0 tG  is a time 
dependent forcing function. The cubic polynomial 
restoring force function is  

dcxbxaxxg  32)(                              (2)  
Eq. (2) represents: 
Asymmetric oscillations for 0b   and/or 0d . 
 Symmetric oscillations for 0 db . 

0c , is for the hardening type of the system. 
0c , is for the softening type of the system. 

STSDM is considered to be an efficient tool for 
cracking a large number of physical problems in 
Science and Engineering. Sumudu Transform 
reduces the complexity in the integration of highly 
integral functions which are nonlinear. The rate of 
convergence increases the solution’s series 
expansion. Nonlinear terms in the DE are resolved 
by the Adomian Polynomials.  

This paper studies the application capacity 
of STSDM in getting solution for symmetric 
oscillations of Duffing Equation of Motion which 
are simple and nonlinear. 

 
2. ANALYSIS 
 
A Duffing Equation of Motion which is simple and 
nonlinear is obtained by  

03.0 3  xxx     (3) 
0x and 1x   at 0t   (4) 

the restoring force function is 33.0)( xxxg  . 
If (3) and (4) are applied by ST[18-23] , one can 
see 
   )(3.0)()( 32 txtxSvvtxS   (5) 

If (5) is applied by IST, the result becomes  
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  )(3.0)()( 321 txtxSvSttx    (6) 

Assuming the series solution 
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The Adomian Polynomial Functions in (7) are  
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Comparing like terms on both sides and using (8) 
in (7) one can have 

ttx )(0     (9) 
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the series solution of (3) with boundary constraints 
(4) are got as 
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The series solution (15) is unable to exhibit the 
periodicity.  

Applying LT,  4
4  PA, and the ILT, the solution 

of the problem is got as  
)96113.2(0103828.0)10982.1(928746.0)( tSINtSINtx   (16) 

The phase diagram for (1) with the boundary 
constraints (2) arises as 

 
)13246.11)(13246.01(

15.01
22

422

xx
xxx



               (17)                             

For +ve and –ve amplitudes the behavior 
oscillations are one and the same. The singular 
point of DE(1) in the phase diagram (that is x  Vs x 
curve) got from the zeros of g(x) is (0,0). The 

primitive of g(x) w.r.t is x is 23.01)( xxg   
and g(0)=1>0, which implies that the singular point 

(0,0) is turned into centre. If )( *xg  is negative 

then *x  is a saddle point. 
Eq.(17)gives the phase diagram ( xVs x) 

for the DE (1) with boundary constraints (2). xVs x 
plot arises out of Eq.(17) and this graph depicts the  
boundary which is closed. Consequently the 
existence of the periodic solution is being obtained. 
Eq. (17) depicts the equal magnitude of +ve & –ve 
amplitudes (that is x=+0.9397 or -.09397, x=0), 
when x=0, 1x  or  1x . From the STSDM 
solution (16) one can have x

 
values as 1.047,-

1.016 at x=0. The STSDM gives the solution 
exactly in the neighborhood of the domain in which 
boundary constraints are described. 

 
 

 

Figure 1 :Phase diagrams of Duffing equation 
arised out of the solution of STSDM versus Exact 

Solution 

The solution obtained by the STSDM method is 
divergent in order to make the solution convergent 
the concept of Laplace transformation and Pade’s 
approximant and Inverse laplace transformation is 
applied like the procedure followed for the 
modified differential transform method.  

Praveen & Rao [10], solved the duffing equation of 
motion having the symmetric oscillations. The 
solution obtained by the above mentioned 
procedure gives the solution exactly near the region 
where the initial conditions are specified. They 
used the Harmonic balance method to examine the 
performance of the nonlinear oscillations. The 
solution obtained by using the Harmonic balance 
method coincides exact solution.  

The following diagram shows the comparison of 
the solution obtained by Harmonic balance method 
with the exact solution. 
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Figure 2 :Phase diagrams of Duffing equation 
arises out of the solution of Harmonic balance 

method Vs Exact Solution 

The discrepancy in solution (16) is mainly due to 
the first harmonic frequency and is not three times 
of third harmonic frequency, which results in 
different magnitudes. In their study they also 
suggested some modification to the procedure and 
obtained the solution and again compared the 
solution with the exact solution which is  able to 
capture the actual trend in the phase diagram.  

The following figure 3 shows the comparison of the 
solution obtained after modification to the solution 
obtained by MDTM to the exact solution. 

 

Figure 3: Phase diagrams of Duffing equation 
arised out of the solution of modified STSDM 

solution versus Exact Solution 

3. CONCLUSION 

The behaviour of oscillations of the Duffing 
equation of motion (1) with boundary constraints 
(2) can easily be understood through generation of 
phase diagrams. Since the controlling equation is a 
second order NLODE, one has to verify the 
approximate solution and its first derivative with 
the numerical solution. Hence in this research 
article, the first order differential equation is 
arrived after integrating the Duffing equation of 
motion and applying the boundary constarints, 
which can depicts the exact phase diagram. The 
periodic solution of the Duffing equation of motion 
obtained by STSDM is not capturing equal 
magnitudes of first derivative of x at x=0, t=0 and 
at the period of oscillations.The STSDM provides 

the solution accurately near to the region where the 
initial conditions are specified. It follows the actual 
trend in the phase diagram when the solution (16) 
is modified. 
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