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 
ABSTRACT 
 
Nonlinear sensors and digital solutions are used in many data 
acquisition system designs. As the input-output characteristic 
of most sensors is nonlinear in nature. Hence obtaining data 
from a nonlinear sensor by using an optimized device has 
always been a design challenge. Linearization of non linear 
sensor in digital environment is a vital step in the instrument 
signal conditioning process.This paper proposes a real time 
implementation of Hybrid Neuro Fuzzy Logic (HNFL) in 
Field Programmable Gate Array (FPGA) to linearize the 
natural non linear characteristics of NTC thermistor. 
Linearization is achieved by using Adaptive Neuro Fuzzy 
Inference System (ANFIS) based on Takasi-Sugeno-Kang 
(TSK) fuzzy inference system (FIS) whose membership 
functions parameters are adjusted using back propagation 
and/or gradient algorithms. The network training is carried 
out in Matlab for obtaining the optimized membership 
functions parameters for ANFIS implemented on a Waxwing 
Spartan 6 FPGA Development Board using VHDL. Single 
precision floating point arithmetic subroutines are developed 
in IEEE-754 format. Graphical programming language is 
used for simulation, real time data acquisition and storage.  
 
Key words : ANFIS, FPGA, Sensor Linearization, VLSI.  
 
1. INTRODUCTION 
 
Sensors are the fundamental elements which are used in most 
of the measurement circuits to monitor the physical quantity 
(temperature, pressure, etc) or to give feedback signals to the 
control unit. Low-cost sensors with high sensitivity and 
resolution, with linear characteristics are required [1]. 
Generally Sensors gives analog output, which may sometimes 
shows nonlinear behaviour. This is due to natural nonlinear 
characteristic of sensor itself, dynamic nature of the 
environment, inherent sensor’s noise, aging and data loss due 
to transients or intermittent faults [2]. It is essential to have 
linear characteristics of the sensor as it will improve the 

 
 

system performance [3]. Linearization of this nonlinear 
behavior of sensors has always been a designed challenge. 
Linearization of nonlinear sensor in the digital environment 
is a vital step in the instrument signal conditioning process 
[4]. Several linearization techniques have been mentioned in 
many research works. These techniques are classified into 
three main classes. Analog hardware-based linearization 
circuit [5-6], software based linearization algorithms [7-11] 
and hybrid analog to digital conversion solutions [12]. 
 
Analog circuits are frequently used for improving the 
linearity of sensor characteristics, which implies additional 
analog hardware and typical problems particular to analog 
circuit such as temperature drift, gain and offset errors. Using 
the second technique, sensor nonlinearities can be 
compensated by means of arithmetic operations, if an 
accurate sensor model is available (direct computation of the 
polynomials), otherwise with the use of multidimensional 
look-up tables. Direct computation of the polynomial method 
is more accurate but requires a longer time for computation, 
while the look-up table method, though faster, is not very 
accurate [9-12]. The third technique is performed by 
interfacing a passive or an active nonlinear analog circuit 
between the sensor and an analog to digital converter (ADC) 
[13]. 
 
Linearization of non-linear sensors characteristics is often a 
quite complex and computationally intensive task. Hence 
Neural Networks and Fuzzy Systems which are two branches 
of artificial intelligence are gaining widespread acceptance in 
the field of learning and intelligent control [14-15]. This is 
mainly due to their intrinsic parallelism, their learning and 
adaptation capabilities and, to some extent, also to their 
increased fault tolerance. Fuzzy control and Neural Network 
control have many advantages as above, but fuzzy control also 
has a drawback that you have to set new control laws and 
membership functions every time types of system change even 
after you set control laws and membership functions. And 
neural network has a drawback that while learning, it can 
easily fail onto local minimum instead of global minimum, 
and it take much time to make as many neurons learn as how 
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complicated the system. In order to make up for the defects, 
research on integration of neural network and fuzzy logic that 
is Hybrid Neuro-Fuzzy Logic (HNFL) is under way. A 
proposed HNFL is an intelligent system that combines 
qualitative knowledge of symbolic fuzzy rules and learning 
capabilities of neural networks. 
 
Recently, application of neural networks and fuzzy logic 
techniques has emerged as a promising area of research in the 
field of instrumentation and measurement [16-19]. 
Neuro-Fuzzy system’s modeling capability was demonstrated 
by S. N. Engin et al. [20]. It is shown that the ANFIS can 
modelize a nonlinear system very accurately by means of data 
taken from mathematical model [21]. 
 
FPGAs belong to the wide family of programmable logic 
component [22], their densities are now exceeding 10 million 
gates [23]. FPGAs can be defined as a matrix of configurable 
logic blocks (combinatorial and/or sequential), linked to each 
other's by an interconnection network that is also entirely 
reprogrammable. FPGAs technology allows developing 
specific hardware architectures within a flexible 
programmable environment. This specificity of FPGA gives 
the designer a new degree of freedom comparing to 
microprocessors implementation, since the hardware 
architecture of the synthesized system is not imposed a priori. 
Motivated by reducing the complexity and the cost of the 
measurement system, a new architecture based ANFIS is 
proposed to synthesize the linearization function of the 
measurement chain. The ANFIS system model is obtained 
using characteristics data of sensor. As an example, a 
negative coefficient temperature (NTC) thermistor sensor is 
taken, and any nonlinear sensor can be used in this work. 
 
The obtained circuit is realized on Waxwing Spartan 6 FPGA 
Development Board from Numato Lab. Moreover, the 
developed device can be easily modified, implemented and 
used in many applications of instrumentation and control. An 
analysis and test of the implemented architecture show that 
the device does an accurate linearization.  
 
2. ACTUAL SYSTEM DESCRIPTION 
 
The actual system block diagram is shown in Figure 1 and 
Figure 2 shows the actual implemented system. The NTC 
thermistor, 1K resistor and +5V voltage source are connected 
in series and this configuration is a voltage divider circuit. 
The non linear analog voltage across 1K resistor is given to 
the ADC (MCP 3202). Further the digital output of ADC is 
given to the digital device named Waxwing Spartan 6 FPGA 
(XC6SLX45) Development Board. An ANFIS is 
implemented in FPGA. The ANFIS takes the digital output 
(in non linear form) from ADC and processes it and gives a 
linearize digital signal, which is further given to DAC (MCP 
4921) and personal computer. Subroutines were developed in 

VHDL code and then implemented in Waxwing Spartan 6 
FPGA Development Board, so that digital device FPGA can 
communicate with ADC, DAC and personal computer. In 
personal computer, graphical programming language such as 
LabVIEW is used for simulation and real time data 
acquisition and storage.  

 
Figure 1: Actual System Block Diagram 

 

 
Figure 2: Actual System 

 
The schematic of voltage divider circuit is shown in Figure 3.  
 

 
Figure 3: Schematic of voltage divider circuit 
 

The thermistor used in a voltage divider circuit is a NTC 
Thermistor whose resistance RT at temperature T can be 
modeled by 

 

1 1
e (1)O

O
TR R xp

T T
  

  
  

  
 
where the NTC thermistor used in this work has RO = 10,000 
ohms, is the resistance at a reference temperature TO = 298 K 
(25 °C) and β = 3950, with a tolerance of ±10%. 
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3.  ANFIS LINEARIZER MODELIZATION 
 
3.1 Elements of ANFIS Architecture 
 
As ANFIS is going to be hardware implemented, hence it is 
necessary to have a detailed knowledge of its architecture. 
Figure 4 shows the ANFIS architecture wherein the square 
nodes denotes the functions with parameters to be learnt 
whereas circular nodes represent fixed operations. 
 

 
Figure 4: ANFIS Architecture 

 
If x is A1 and y is B1 then according to Sugeno rule form 

f1 = p1x + q1y +r1                                                                              

(2) 
 
Here inputs x and y represents premise variables of the fuzzy 
rule. A1, B1 represents premise parameters and p1, q1 and r1 
represents consequence parameters. Using f1 and f2 functions 
and w1 and w2  weight values, the final output function F is 
given by (3). 

                

1 1 2 2
1 1 2 2

1 2

(3)
w

F
f w f

w f w f
w w




 


    
With reference to Fig. 5, ANFIS Linearizer shows five layers 
[21]. 
Layer 1: Every node is adaptive in this layer. Here 
fuzzification process takes place. Output of each node is given 
by (4).  

                     
 
 

i

i 2

1,i A

1,i

1, 2 (4)

3, 4B

O x for i

O x for i


  

  
    

 
Thus O1,i(x) represents membership grade for inputs x and y. 
The membership functions could be trapezoidal, triangular or 
any other type.  
Layer 2: In this layer, nodes are fixed and output of each node 
is given by (5) which represents a weight of the rule. 
 

   
i i2,i A 1, 2 (5)i BO w x y for i    

 
 
 

Layer 3: In this layer, nodes are fixed. The ratio of the ith rule's 
firing weight to the sum of all rules weights is computed and 
is given by (6). 

                          
3,

1 2

i
i i

w
O w

w w
 

                                  (6) 
 
Layer 4: In this layer, nodes operate as a function block, 
whose variables represents the input values and parameters 
are adaptive. Overall output (TSK output) of this layer is 
given by (7).  
 

 4,i (7)  i i i i i iO w f w p x q y r                         

 
Here pi, qi and ri denotes consequent parameters to be 
determined. 
Layer 5: Output of this layer is the summation of all the input 
signals. The final output is given by (8). 
 

5, (8)
i i

i
i i i

i i
i

w
O

f
w f

w
 


 

 
Classically, the characteristic of a nonlinear sensor can be 
linearized using analog or digital electronic circuit [25]. The 
first method, which is based on using logarithmic operational 
amplifier (which correspond to the inverse of sensor’s 
characteristic), is very fast, but it gives good results only if the 
measure signal depends on measurand, and/or disturbance 
variables are time invariant [26]. In other words, if the sensor 
has a great sensibility to noise, it is difficult to linearize using 
analog electronic circuit. The second methods are more 
accurate and flexible but they need many clock cycles to give 
output, as a result, they are ineffective against applications 
that need very fast information treatment [25]. Logarithmic 
interpolation is done on the sensor’s inverse characteristic 
with two parameter logarithmic function corresponding to the 
inverse of (1). With reference to Figure 1, ANFIS architecture 
has single input and single output. The ANFIS architecture 
has to learn sensor’s inverse characteristic. Table 1 represents 
learning phase results for different approaches. The error 
between the ANFIS output and sensor's inverse characteristic 
output represents mean square errors (MSE). 
 
In this work, ANFIS architecture is going to be hardware 
implemented. Analysis of the learning phase results presented 
in Table 1 guide us to choose the method highlighted in gray; 
two input triangle membership functions and two linear 
output membership functions with three parameters each one. 
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Table 1: Learning Phase Results 
 

Input Membership Training Method Output 
Membership  

Type 

Error Epoch 
Type Number 

 
 

Triangle 

2 Hybrid Constant 0.089562 500 
Linear 0.042277 200 

Back Propagation Constant 0.10639 500 
Linear 0.20319 500 

3 Hybrid Constant 0.065469 250 
Linear 0.069862 50 

Back Propagation Constant 0.073769 500 
Linear 0.066717 500 

4 Hybrid Constant 0.028184 100 
Linear 0.039662 20 

Back Propagation Constant 0.035134 500 
Linear 0.031191 500 

 
 

Trapeze 

2 Hybrid Constant 0.052064 300 
Linear 0.043712 200 

Back Propagation Constant 0.051347 500 
Linear 0.14182 500 

3 Hybrid Constant 0.043692 200 
Linear 0.018114 200 

Back Propagation Constant 0.044042 500 
Linear 0.040508 500 

4 Hybrid Constant 0.032136 200 
Linear 0.0081451 220 

Back Propagation Constant 0.034315 500 
Linear 0.029078 500 

 
 

Bell 
Shape 

2 Hybrid Constant 0.068148 500 
Linear 0.029257 500 

Back Propagation Constant 0.11602 500 
Linear 0.17479 500 

3 Hybrid Constant 0.014575 500 
Linear 0.0094959 230 

Back Propagation Constant 0.066668 500 
Linear 0.032527 500 

4 
 

Hybrid Constant 0.0080987 500 
Linear 0.0068352 120 

Back Propagation Constant 0.063041 500 
Linear 0.026443 500 

 
 

Gauss 

2 
 

Hybrid Constant 0.21132 500 
Linear 0.044937 500 

Back Propagation Constant 0.23609 500 
Linear 0.2041 500 

3 
 

Hybrid Constant 0.059039 500 
Linear 0.017174 420 

Back Propagation Constant 0.12191 500 
Linear 0.041409 500 

4 Hybrid Constant 0.018454 500 
Linear 0.010377 250 

Back Propagation Constant 0.12445 500 
Linear 0.036323 500 

 
 

Gauss2 

2 Hybrid Constant 0.074492 500 
Linear 0.027118 500 

Back Propagation Constant 0.11443 500 
Linear 0.17679 500 

3 Hybrid Constant 0.03082 500 
Linear 0.016948 100 

Back Propagation Constant 0.083049 500 
Linear 0.055935 500 

4 Hybrid Constant 0.0150537 500 
Linear 0.0089628 400 

Back Propagation Constant 0.062011 500 
Linear 0.030194 500 

 

3.2 Generating Input and Target Data 
 
Input data is generated with the help of data sheet provided by 
the manufacturer of thermistor. The data sheet provides the 
values of thermistor resistance with respect to temperature. 
From these values the input data that is thermistor non linear 
voltage across 1k ohm resistor is calculated with the help of 
voltage divider formula The non linear data generated that is 

V1K is then plotted with respect to temperature by taking the 
help of third party software. The corresponding plot is shown 
in Figure 5. Once again by taking the help of third party 
software, the linear fit is obtained along with the slope and 
intercepts values. The corresponding linear fit is shown in 
Figure 6. From this linear fit the target data was generated to 
train the ANFIS.  

 
Figure 5: Temperature v/s Input Data Plot 

 

 
Figure 6: Linear Fit Plot. 

 
 
3.3 Training ANFIS 
 
For linearization of nonlinear sensor’s characteristic, a 
neuro-fuzzy toolbox from Matlab-Simulink software was used 
for training the ANFIS linearizer. With the help of given 
input-output data set of modeled system, ANFIS creates a 
Takasi-Sugeno-Kang fuzzy inference system (TSK FIS). This 
makes fuzzy system to learn from data set of modeled system.  
Table 2  illustrate the parameters obtained in the learning 
phase of the ANFIS. 
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Table 2:  Parameters for ANFIS architecture 
 

Input Membership Output Membership 
 

Tri1 
a -3.13  

f1 
p 0 

b -35 q 4.5 
c 5.169 r -0.03 

 
Tri2 

a 0.21  
f2 

p 0 
b 3 q 1.225 
c 6.305 r 0.5 

 

4. FPGA DESIGN & IMPLEMENTATION 
 
4.1 Elements of ANFIS Architecture 
 
ANFIS architecture for linearization of nonlinear sensor’s 
characteristic is illustrated by Figure 7. 

 

 
Figure 7: ANFIS architecture for linearization 

 
With reference to Figure 7, the overall output is given by (9). 
Equation (10) gives the expression for Trii(x) function 
. 

       
   

1 1 1 2 2 2

1 2

(9)f
q x r Tri x q x r Tri x

Tri x Tri x




  
 

 

  (10)
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0
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i
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i i
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i

Tri x

if x a

x a a
x if a x b

b a b a b a

c x c
x if b x c

c b c b c b

if c x






   

  

 
   

  













 
Hence, for the implementation of ANFIS linearizer, two 
circuits each for the expressions given by (9) (f1(x) and f2(x)) 
and (10) (Tri1(x) and Tri2(x)) are required. Here q, r, a, b and 
c are the parameters obtained in the learning phase of the 
ANFIS. 
 

4.2 FPGA Implementation of Linearizer 
 

A.  FPGA Implementation of Floating Point Arithmetic  

In FPGA implementation of ANFIS linearizer, decimal 
floating point (FP) arithmetic plays an important role. 

IEEE-754 industry standard is used for FP number 
presentation. Decimal number represented in this standard 
consists of a sign bit S, 8 bits of an exponent E, and 23 bits of 
an unsigned fraction M [24]. Figure 8 shows the same  

 

 
Figure 8:  IEEE-754 Floating Point Representation. 

 
The IEEE 32 bit floating adder/substractor, multiplier and  
divider have been implemented in this work to carry out the 
32-bit floating point arithmetic. Test bench result for floating 
point multiplier and adder are shown in Figures 9 and 10 
respectively. 
 

 
Figure 9: Test bench result for floating point Multiplier. 

 

 
Figure 10: Test bench result for floating point Adder. 

 
 

B.  FPGA Implementation of ANFIS 
 

The functional diagram of the proposed FPGA-based 
ANFIS linearizer is shown in Figure 11 which contains two 
adder and multiplier circuits along with seven different 
essential blocks, namely: 

 
 The ROM block for storing parameters of all the 

membership functions and the pre calculated constants in 
order to avoid usage of additional digital dividers and 
adders circuits for optimizing FPGA hardware resources. 
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 Two blocks (Tri1 and Tri2) for input membership functions. 
Each function needs two multipliers, a substractor and an 
adder. 

 
 Two blocks (f1 and f2) for the output membership functions. 

Each function needs a multiplier and an adder. 
 
 S-1 block for computing 1/S value to S input. 
 
 Control unit block for the correct functioning of the 

different blocks at the right moments. 

 
Figure 11: Functional diagram of the digital ANFIS 

 
The following Figure illustrate state machine diagram for 
control unit. 

 
Figure 12: State Machine Diagram 

 
Table 3  illustrate Xilinx Synthesis Report summary for 
ANFIS. 

 
 
 
 
 
 

Table 3: Xilinx Synthesis Report 
 

Device Utilization Summary 
Slice Logic Utilization Used Availabl

e 
Utilizatio

n 
Number of Slice Registers 4259 54576 7% 
Number of LUTs 251 27,288 19% 
Number of occupied Slices 1734 6,822 25% 
Number of MUXCYs 2992 13,644 21% 
Number of bounded IOBs 26 218 11% 
Number of DSP48A1s 0 58 0% 
  
 
6. SOFTWARE IMPLEMENTATION 
 
The ANFIS simulation and real time data acquisition 
software was developed in user friendly and graphical 
programming language known as Lab VIEW (Evaluation 
Copy) and ANFIS code was developed in VHDL. 
 

7. RESULTS AND DISCUSSION 
 
FPGA based thermistor signal linearizer has been developed 
by using HNFL with minimum resources and without much 
loss in speed. Figure 13 shows simulation results for one set of 
input and output membership functions. Figure 14 shows the 
real time linearization of thermistor characteristics. The 
results obtained from the FPGA validate the LabVIEW 
simulation.  

 

 
Figure 13:  Front panel of simulation software 

 

 
Figure 14:  Front panel of real time data acquisition software 
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The values extracted from the saved data files are used to 
trace the graphs of Figure 15 and Figure 16.  

 
Figure 15:  Simulated Linearized Output 

 
Figure 16:  Hardware ANFIS Linearized Output 

 
Figure 17: Error between simulated and  designed 

linearizer 
 

Figures 15 and 16 shows the simulated and hardware ANFIS 
model linearized output respectively. Figure 17 shows the 
error between the simulated model and hardware ANFIS 

model. These graphs shows a maximum error in absolute 
value of 2.8 ×10-2 °C between the simulated model and 
ANFIS FPGA model. 
 
 
7. CONCLUSION 
 
The proposed design for ANFIS linearizer is very much useful 
in sensor applications; it is possible to implement sensors 
with linearized output digital code. This solution appears to 
be of lower cost and suitable for VLSI integration, with or 
without the sensor.  
Future works include implementation of hardware 
co-simulation of some smart features like linearization of 
nonlinear sensor, auto calibration of sensor, sensor drift 
compensation and sensor fault detection on Xilinx’s FPGA 
using Xilinx’s System Generator tool which helps in the 
evaluation, testing and validation of a new algorithm, a new 
component or a new prototype without damaging the actual 
system. 
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