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ABSTRACT

The article frmulates a coupled thermoplastic dynamic
boundary value problem based on the deformation theory of
transversally isotropic bodies. The coupled boundary value
problem consists of the motion equation, the thermoplasticity
constitutive relations for transversely isotropic bodies, the
Cauchy relation and the heat conduction equation, with the
corresponding initial and boundary conditions. A coupled
dynamic boundary value problem for a thermoplastic
transversely isotropic parallelepiped is considered. For the
numerical solution of the coupled boundary value problem, an
explicit finite-difference schemes are constructed. The
finite-difference equations are written in the form of recurrent
relations allowing to find the components of displacement and
temperature, taking into account the initial and boundary
conditions at each layer in time. On the basis of the obtained
numerical results, the stress-strain state of a transversely
isotropic thermoplastic parallelepiped is investigated and the
propagation of the plastic zone is shown.

Key words: Coupled problem, thermoplasticity, temperature,
displacements, difference scheme, plastic zone, deformation,
stress.

1. INTRODUCTION

Investigation the joint influence of the thermomechanical
forces on the strength and durability of structures is an actual
problem of engineering. Usually this type of problems in the
framework of the thermoelacticity or thermoplasticity can be
described by the system of motion and heat conduction
equations with a corresponding initial and thermo-mechanical
boundary conditions.

The coupled thermoelastic boundary value problems
was investigated firstly by Biot [1]. In the works of Lord &
Shulman[2] has been introduced a generalized coupled theory
with a wave-type heat equation The following works [3-10]
are devoted to the development of the theoretical foundations
of coupled thermomechanical deformations of solids subject
to both large and inelastic deformations. The coupled
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thermoplasticity problems are considered in [7,9-11,15,16].
The coupled and uncoupled thermomechanical boundary
value problems are numerically solved in following works
[12-14, 17-18,20].

The paper [18] considers the statement and numerical
solution of partially related problems of thermoelasticity. In
work [19] the analysis of heat transfer of water heating
convectors is given.

In Sections~2 using the deformation thermoplasticity
theory for transversely isotropic materials the dynamic
coupled boundary value problem are formulated. Note, the
boundary value problems, are reduced to the system
consisting of three nonlinear motion and one heat partial
differential equations.

In Section~3, using the finite difference method, the
discreet analogy of the coupled dynamic boundary value
problems based on deformation theory of thermoplasticity are
constructed. The finite-difference equations resolved in
relative to the desired quantities are reduced to recurrent
formulas and taking into account the initial and boundary
conditions a numerical results are determined.

In section~4, a clamped on all surfaces parallelepiped with
a given initial sinusoidal thermal load is considered. The
described process using the deformation theory of
thermoplasticity is formulated as a coupled boundary value
problem and numerically solved. The temperature distribution
and the appearing of the plasticity zones inside the
parallelepiped under the given initial and boundary conditions
are investigated.

2. FORMULATION OF THE COUPLED DYNAMIC
THERMOPLASTICITY BOUNDARY VALUE
PROBLEM

Consider a coupled dynamic boundary value problem of
thermoplasticity for a transversely isotropic parallelepiped
consisting of the motion equation

2 00, U
SO x,=plh 2123 ()
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constitutive relation of the deformation theory of

thermoplasticity for transversely isotropic bodies [17,20]
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where, o, - stress tensor, &, - strain tensor, u -

displacement components, X, - volume force, C, — tensor
of the fourth rank determining the mechanical properties of a
material, T-temperature, To-initial temperature, p, q— strain
tensor intensity, p’, q" — elastic limits in the longitudinal and
transverse directions of a transversely isotropic body,
B, - corresponds to thermal expansion coefficients,

p -density of the body, 8- delta Kronecker symbol, n-

external normal to the surfacex , s, s ,S - components of

the external load vector, A, —is the heat flow coefficients,

c -denotes heat coefficient at a constant deformation,
¥ =% +%, - the surface of the body under consideration, the

upper point denotes the time derivative.

Equations (1)-(6) represent a dynamic coupled boundary
value problem of thermoplasticity for transversely isotropic
bodies. The boundary value problem (1)-(6), after some
transformations, can be written in the following form, with
respect to displacements and temperature

Cﬂ_m Ciz:z Cﬂals (Cuzz sz)i + (7)

+(C11x3+C1313) —1%1* F=p

sz 2t szzz + C2323 + (Con + sz) + 8)
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3. THE FINITE DIFFERENCE EQUATIONS FOR
COUPLED DYNAMIC BOUNDARY VALUE

PROBLEMS OF THERMO PLASTISITY

The coupled thermoplasticity boundary value problem based
on deformation theory of thermoplasticity for transversely
isotropic materials presents by the egs. (7-10) considered in
the domain Q ={t>0,0<x<l, 0<y<l,, 0<z<I}.
In order to construct a grid equations consider three sets of
parallel  lines  x =ih (i=0,N,), y;=jh, (j=0,N,),
z, =kh, (k=0,N;)  where h =1/N,, h,=1/N,,
h,=1,/N, , in the domain €Q and taking
t, =mz (m=0,1,2,..), where T - a step on the axis t.
Then replacing the derivatives in egs.(7-10) by difference
quotients, we obtain



Abduvali A. Khaldjigitov et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3958 - 3964

qml%rlu,k —Qf%k U

C, qr,]jﬂ..k _2|"Ezj,k +qr,]j—1,k +

W =205 W Viajak—Wajax —Viajax W aj 1
+q3]3 ) ) i + q_122+(:12|z J J J J +
g e an
Wy ke -W, ik ~Wy ik +W ikl

4nhy

_AlTiELj,k T plm RANTRLIT
A v

HCuz+Carg)

(11)
Vi =2 AV PR AR

= Lk
V=2 Y W =W U g U
i,jk+l i,jk i, j k-1 \ +1, j+Lk i1, j+1k +1, j-Lk i-1,j-1k
%T +(CZZJJ +q2]2} +

4hh,
V\{]j+lk+1 _V\{,]j—lkﬁ _V\{,]jﬁ,k—l 'HM,] ik

(G +Cs)
4nh,
n n H1 1
ﬁzleHlk lelk F2 Vlnjk 2Vlnjk-’_verk
2, 7
(12)
o V\&Lj,k _Z\Ir\fzj,k +V\r—1.j,k 1Cp V‘Ejﬂ,k _Z"P‘i;j,k +V\[,]j-1,k N
c V\{]j,kﬁ_zvéj,k +V\1,]j,k-1 +(Cﬁu+q_313)qn+lj’kﬁ _qn-J,j,k:t;r:jilj,k-l+qn-1j,k-1 4
v
+(C3322+C232.;) Lkl i Ak Vi jHLk-L |,J—1,k—1_
4hh,
_@31-.”1 kil Ti,nj,k—l _E= V\r]&k _ZV\EJ,k +v\{,)j_,lk
n 3=P 2
(13)
211 |+L]k 2T|r;k+-|—lnljk +/1?2-|—|r;+1k ZT +-|—|n1 -1k +/1§ |Jk+1 ZTlr;kJr-I—lr;kl
h hf K
o T wo—wt Ut Ut
_Cc Lok ok _'|'ij [ﬁn 1.k 1.k Lok 1.k +
T 4hr
+ﬂ Vuﬂixk _Vunlﬁu _vl(‘]iLk i j-Lk +ﬂ V\ulr:lm V‘.’le 4 \M‘;m +V\{‘Ilk < =0
dhr ® dhr

(14)
Solving the difference equations (11-14), with respect to
u™ v w™ and Tn+l accordingly, we obtain
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The resulting recurrent formulas (15-18), taking into account
the initial and boundary conditions, make it possible to find
the numerical values of the sought functions at each layer in
time. First, we solve the thermoelastic problem; in this case,
the values of F,E,F, in formulas (15)-(17) are trivial. On each

layer, plastic zones are determined in time, where the values
of the sought functions are re-calculated.

4. NUMERICAL TEST

Let’s consider a clamped all sides parallelepiped with an
internal initial sinusoidal temperature at the time t =0. The
described process using the deformation thermoplasticity
theory has been modelled by the egs. (7-10). The initial
conditions take the following forms:

u(x, y,z,t)L:0 =0+ V(X y,Z,t)L:0 =01 w(x, y,z,'[)L:0 =0
Ao Mg M g (9)
at t=0 at t=0 t=0

T(xy,2.t)_ =T,sin(zx)sin(zy,)sin(rz,)

and boundary conditions

u(x, y,z,t)‘Z =0, v(x, y,z,t)‘Z =0, w(x, y’z’t)‘z -0,
T(xy.2,t) =0 (20)
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Elastic moduli, hardening moduli, elastic limits, heat capacity Table 2: Strain tensor intensity values g, at y=0.9, t=0.07
at constant deformation, thermal expansion tensor, thermal
conductivity tensor, density had the following dimensionless 7 1o 0.1 0.2 0.3 0.4 0.5
values: 0 | 0] 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
C1122=0.21, C1133=0.19, Cy33=0.19, C3333=5.356, 0.1 | 0 | 0.05295 | 0.07524 | 0.09512 | 0.10844 | 0.11311
Cr1r5=2.39,Cy315=2.39. 0.2 | 0 | 0.04995 | 0.07114 | 0.09020 | 0.10297 | 0.10744
Cinr=2.735. C1111=5.68, Cyp0=5.68, b11=0.25, b22=hi1, 0.3 [ 0[0.03817 | 0.05432 | 0.06887 | 0.07861 | 0.08203
b33=0.37 0.4 | 0 | 0.02026 | 0.02880 | 0.03651 | 0.04166 | 0.04346
! . . 0.5 | 0 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
41,7003, 25, =003, 257001, 4, =25, As=2.24, p=081, 0.6 | 0 | 0.02026 | 0.02880 | 0.03651 | 0.04166 | 0.04346
c.=35,4,=25 1;=224, 1=0.01, 0.7 | 0 | 0.03817 | 0.05432 | 0.06887 | 0.07861 | 0.08203
P =0.08, " =0.04, T, =20, Ny =N, =N, =10. 0.8 [ 0 | 0.04995 [ 0.07114 | 0.09020 | 0.10297 | 0.10744
0.9 | 0| 0.05295 | 0.07524 | 0.09512 | 0.10844 | 0.11311
Below we give the zones of plasticity in different layers in 1 |0 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

time and in sections along the coordinate axes of the
considered transversely isotropic parallelepiped.

Table 1: Strain tensor intensity values p, at z=0,7 , t=0,07

yx 0| o1 0.2 03 0.4 05

0 | 0| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
010 ]0.10273 | 0.11462 | 0.12015 | 0.11984 | 0.11940
0.2 | 0] 0.11439 | 0.08931 | 0.07044 | 0.04453 | 0.02822
0.3 | 0] 0.12001 | 0.07069 | 0.05097 | 0.02713 | 0.00359
0.4 | 0] 0.11963 | 0.04476 | 0.02715 | 0.01420 | 0.00012
05| 0] 0.11914 | 0.02836 | 0.00372 | 0.00027 | 0.00008
0.6 | 0] 0.11960 | 0.04472 | 0.02715 | 0.01420 | 0.00012
0.7 | 0] 0.11995 | 0.07066 | 0.05097 | 0.02713 | 0.00359
0.8 | 0] 0.11432 | 0.08935 | 0.07055 | 0.04465 | 0.02822
0.9 0] 0.10289 | 0.11478 | 0.12024 | 0.11987 | 0.11940
1 | 0 ] 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

Figure 2: Plasticity zone by intensity of tensor deformations g
in the XOY plane at z=0.8, t=0.07 (¢ >q ), q'=0.04
Next, we present the numerical results and 3D graphs of the

functionsu (x,y, 2, t),v (X, ¥,z t), w(x,y,z, t)and T (X, Y, Z, 1)
in the area under consideration.

Table 3: Displacement values u(x,y,z,t) at z=0.3 and t=0.09

y *1o| o1 0.2 0.3 0.4 05

0 | 0| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

0.1 |0 | -0.01143 | -0.01372 | -0.01076 | -0.00574 | 0.0000
0.2 | 0 | -0.01898 | -0.02335 | -0.01833 | -0.00976 | 0.00000
0.3 | 0 | -0.02558 | -0.03158 | -0.02482 | -0.01322 | 0.00000
0.4 | 0 | -0.03002 | -0.03706 | -0.02913 | -0.01551 | 0.00000
0.5 | 0 | -0.03158 | -0.03896 | -0.03062 | -0.01631 | 0.00000
0.6 | 0 | -0.03005 | -0.03706 | -0.02913 | -0.01551 | 0.00000
Figure 1: Plasticity zone by intensity tensor of deformations p 0.7 1 0 1-002562 | -0.03159 | -0.02482 | -0.01322 | 0.00000
in the XOY plane at z=0.7, t=0.07 (p > p*), p'=0.08 0.8 | 0 | -0.01903 | -0.02335 | -0.01833 | -0.00976 | 0.00000
0.9 | 0| -0.01147 | -0.01372 | -0.01072 | -0.00569 | 0.00000
1 | 0| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
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Table 5: Displacement values w(x,y,z,t) at x=0.3 and t=0.09

X

7 0 0.1 0.2 0.3 0.4 0.5

0 | 0| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

0.1 | 0 | -0.01695 | -0.02967 | -0.04034 | -0.04735 | -0.04978

0.2 | 0| -0.01983 | -0.03530 | -0.04812 | -0.05651 | -0.05941

0.3 ] 0| -0.01558 | -0.02775 | -0.03785 | -0.04445 | -0.04673

0.4 ] 0| -0.00831 | -0.01481 | -0.02019 | -0.02372 | -0.02493

0.5 | 0 | 0.00000 | 0.00000 0.00000 0.00000 0.00000

0.6 | 0 | 0.00831 | 0.01481 0.02019 0.02372 0.02493

0.7 ] 0| 001558 | 0.02775 0.03785 0.04445 0.04673

1 - 0.8 | 0| 0.01983 | 0.03530 0.04812 0.05651 0.05941

ane 0.9 |0 | 001695 | 0.02967 0.04034 0.04735 0.04978
et 1 | 0| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

Figure 3: The graph of the distribution of the function
u(x,y,zt) in the plane XQY at z=0.3 and t=0.09

Table 4: Displacement values v(x,y,zt) at z=0.3 and t=0.09 JiG 0o
y *lo| o1 0.2 0.3 0.4 05
0 | 0] 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
0.1 | 0] -0.01135 | -0.01903 | -0.02568 | -0.03013 | 0.00000
0.2 | 0] -0.01362 | -0.02337 | -0.03165 | -0.03713 | 0.00000
0.3 | 0] -0.01066 | -0.01834 | -0.02486 | -0.02918 | 0.00000
0.4 | 0 | -0.00567 | -0.00977 | -0.01324 | -0.01554 | 0.00000
0.5 | 0 | -0.00000 | 0.00000 0.00000 | 0.00000 | 0.00000 }~ 005
0.6 | 0 | 0.00567 | 0.00977 0.01324 | 0.01554 | 0.00000
0.7 | 0] 0.01066 | 0.01834 | 0.02486 | 0.02918 | 0.00000
0.8 | 0| 0.01362 | 0.02337 0.03165 | 0.03713 | 0.00000
0.9 | 0| 0.01135 | 0.01903 0.02568 | 0.03013 | 0.00000
1 | 0] 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

Figure 5: The graph of the distribution of the function
w(x,y,z,t) in the plane ZOY at x=0.3 and t=0.09

I Table 6: Temperature values T(x,y,z,t) at z=0.5 and t=0.05

|_| |_|..': _'| ."-... X
/ 7 0 0.1 0.2 0.3 0.4 0.5
0 | 0| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
0.1 | 0| 1.98896 3.63207 4.98561 5.86017 6.16171
| A 0.2 | 0 | 3.63200 6.63959 9.11426 10.71307 | 11.26434
00E ™ = ] : 0.3 | 0 | 4.98561 9.11433 12.51135 | 14.70607 | 15.46281
| % 0.4 | 0 | 5.86019 10.71313 | 14.70607 | 17.28578 | 18.17527
05| 0| 6.16175 11.26439 | 15.46281 | 18.17527 | 19.11052
0.6 | 0 | 5.86019 10.71310 | 14.70607 | 17.28578 | 18.17527
0.7 | 0 | 4.98561 9.11427 12.51135 | 14.70607 | 15.46281
0.8 | 0 | 3.63200 6.63949 9.11426 10.71307 | 11.26434
0.9 | 0| 1.98893 3.63200 4.98556 5.86015 6.16171
1 | 0] 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

Figure 4: The graph of the distribution of the function
v(x,y,z,t) in the plane XQY at z=0.3 and t=0.09
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Figure 6: Temperature distribution graph of T (X, y, z, t) in the
plane XOY at z=0.5 and t=0.05

Note that, in the considered model problem, the axis of
rotation was the OZ axis. Tables (1-2) and Figures (1-2) show
the appearance of plastic zones, and Table 6 and Figure 6
show the temperature field. Since the initial and boundary
conditions are set symmetrically, in Tables (3-5) and Figures
(3-5) you can see the symmetry of the displacements u(x,y,z)
and v(x,y,z), and displacements w(x,y,z) are different from
others. This shows the effect of anisotropy on the
elastic-plastic state of a transversely isotropic parallelepiped
and the reliability of the numerical results obtained.

5. CONCLUSION

A coupled dynamic thermoplastic boundary value problem for
the deformation theory of transversely isotropic bodies is
formulated. A discrete analogue of the problem is compiled
by the finite difference method. On the basis of explicit
finite-difference equations, recurrent formulas are obtained
that allow calculating the numerical values of the required
functions. A numerically dynamic coupled first boundary
value problem on a thermoplastic transversely isotropic
parallelepiped is solved. 3D-graphs of the distribution of
displacement functions u(x,y,z), v(xy,z), w(x,y,z) and
temperatures T(x,y,z). The propagation of plasticity zones in
various sections of a transversely isotropic parallelepiped
under the action of a temperature field is investigated.
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