
Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5925 – 5931

5925

ABSTRACT

In our modern computer graphics systems, they use GPUs
(graphics processing units) to execute the low-level parallel
instructions, compiled from the shader language source
codes.
Recently, some graphics system specifications, including
OpenGL SC 2.0, introduce the off-line compilation. With this
new scheme, the independent off-line compiler will generate
the final binary executable codes. Typically, the target system
will execute the pre-compiled binary executable codes, at
some time later. In this paper, we analyzed the detailed
requirements on the shader language off-line compilation.
Based on these analysis, we designed the whole compiling
process and the binary file format for the off-line compiler. As
the verification process of our design, we implemented the
prototype off-line compiler for our existing OpenGL SC 2.0
implementation on the target embedded system. We executed
a set of pre-compiled binary files on the target system, and all
the results are the same to the desktop executions. We finally
showed that the shader language off-line compilers are
possible with our proposed schemes.

Key words : shader language, off-line compiler,
cross-compiler, prototype implementation

1. INTRODUCTION 1

In these days, we have many remarkable changes in many
computer-oriented fields, along to the development of modern
computer graphics and its related parallel execution
technology. The parallel computations originated from the
GPU (graphics processing unit) technology is one of the most
important changes. Shader language concepts [10,14] are
another renovations in the field of computer graphics.

At this time, among the 3D graphics Application Program

1 This work has supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education (Grand No.NRF-2019R1I1A3A01061310).

Interfaces (APIs), the most widely used one is OpenGL (Open
Graphics Library). It can be used for variety of platforms,
including desktops, tablets, and smartphones. Traditionally,
OpenGL is based on the fixed function hardware pipelines,
and it provides the fixed API functions, as shown in Figure 1
[13,15,22]. From OpenGL version 2.0 and later, they
introduce the new programmable graphics pipeline, as shown
in Figure 2 [3,12,16].

The Khronos Group[7], which is the de facto standard
organization, manages all the standard specifications for the
OpenGL family including OpenGL [5,6,15,16,18], OpenGL
ES (for embedded systems) [9,12,13,19,20], and OpenGL SC
(safety critical profile) [3,22]. At this time, in our commercial
markets, we have plenty of graphics hardware and also
application programs, providing and using OpenGL and/or
OpenGL ES facilities.

In contrast, OpenGL SC is actually derived from the OpenGL
family, as a safety critical version. This new standard is
designed to meet the needs for military, medical, automotive,
avionics, and other industrial applications in the safety
critical market. Actually, OpenGL SC plays an important role
in the safety-critical market. It provides the 3D graphical
interfaces. We have much increased needs for this 3D
graphics standard, along to the growth of the safety-critical
applications [2,21]. Especially, this standard has strong focus
in the medical applications and automotive applications [1].

From the year of 2015, they started to upgrade this
safety-critical standard, as a brand-new one. It targets the new
safety-critical graphics standard for the avionics and
automotive displays. As the final result, the OpenGL SC 2.0
specification [3] defines the new safety critical version of
OpenGL ES 2.0 [12], as shown in Figure 3. Now they are
working to adapt the new Vulkan API [4] for high-efficiency
graphics applications and computing programs. The Safety
Critical working group in the Khronos Group is also
developing cross-API guide-lines, which is effective for the
development of the safety critical systems and its related
standards.

A Shader Language Off-line Cross-Compiler on the Desktops
Nakhoon Baek

School of Computer Science and Engineering, Kyungpook National University,
Daegu 41566, Republic of Korea,

oceancru@gmail.com

 ISSN 2347 - 3983
Volume 8. No. 9, September 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter165892020.pdf

https://doi.org/10.30534/ijeter/2020/165892020

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5925 – 5931

5926

One of the most remarkable changes in the OpenGL SC 2.0
[3] is the introduction of off-line compilers in its shader
language compilation process. Previously, some graphics
vendors provide the off-line compiling features as the
OpenGL extensions. In contrast, OpenGL SC 2.0 requires the
off-line compiler as one of its core features. The importance of
the offline compiler is more emphasized in these days.

In this paper, we show the design schemes for the OpenGL
family shader language offline compiler. We assume that the
system will be operated on the desk-tops, to generate a
specific target GPU instructions, and those instructions will
be executed on the independent embedded systems. The

design details and implementation results are followed in the
following sections.

2. DESIGN ASPECTS

In this section, we will show all the design aspects of our
shader language off-line compiler. In each subsection, we will
handle one of the technical issues in the whole design process.

2.1 Functional Interface changes

Along to the development of modern computer graphics
hardware, the role of GPU becomes much important. From

Figure 1: An example fixed function graphics pipeline of the OpenGL family.

Figure 2: An example of the programmable graphics pipeline of the OpenGL family.

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5925 – 5931

5927

the software developer’s point of view, it is better to provide
the direct access to the underlying GPUs. Thus, the newer
versions of OpenGL, more precisely, OpenGL 2.0 [16] and
later, provide the OpenGL shader language, its compiler, and
the shader language handling functions. All these features are
already provided by OpenGL [17], OpenGL ES [9], and also
OpenGL SC [3].

One more important change to the OpenGL SC 2.0 [3] is the
addition of off-line compilation features. In the case of
desktop OpenGL, OpenGL version 4.1 has its corresponding
off-line compilation features. The OpenGL SC 2.0 provides
this feature based on the desktop version of OpenGL 4.1 or
later.

To provide this off-line compilation feature, we started from
the real-time interception of the compiled binary images,
from the shader compiler. During the on-line compilation of a
specific shader language file, the result of compiled binary

images are intercepted to be saved to the external storage.
This captured binary image is later reused by the API function
of glProgramBinary. We have tested the implementation
results with those of the previous MESA implementation
[11], and confirmed that it works well.

In the original design of the OpenGL shading language, they
have online compilation features. Thus, from the OpenGL ES
2.0 and later, the shader compilers provide the immediate
compilation of the given shader source code. In the case of
OpenGL SC 2.0, they provide an alternative way of off-line
compilation. They provide a binary image interface, for the
following function syntax:

void glProgramBinary(

GLuint program,
GLenum format,
const void* image,
GLsizei length);

Figure 3: Historical chart for the OpenGL family.

Vertex
Shader
Program

Attribute
Variables

Temporary
Variables

Uniform
Variables

Primitive
Assembly

Fragment
Shader

Program

Varying
Variables

Fragment
Color

Varying
Variables

Temporary
Variables

Uniform
Variables

Figure 4: Architectural view of the OpenGL vertex shader and fragment shader.

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5925 – 5931

5928

We have the specific parameters, as the followings:

 program is the name of an OpenGL SC shader program

object. The saved program binary will be loaded into this
program object.

 format is the format specification of the OpenGL SC shader
language binary data.

 image is the memory address to the byte-unit array
containing the binary image to be loaded into the
OpenGL SC program object.

 length is the number of bytes contained in the
one-dimensional array of image.

Therefore, our goal is to provide all the features to support this
new function interface to the OpenGL SC 2.0 or similar
OpenGL-family libraries. Actually, our OpenGL SC 2.0
library implementation on the target embedded system

supports this API function, with the off-line compiled binary
files.

2.2 Architectural view of the OpenGL Shaders

Although some different views on the OpenGL shaders are
possible, we focused on the architectural view of the simplest
vertex shader and fragment shader pairs, as shown in Figure
4. In this architectural view, the attribute variables are the
input of the vertex shader, and the varying variables are the
output of the vertex shader. In the case of fragment shader, it
accepts varying variables as its input, and generates fragment
colors as its output. Between the vertex shader and fragment
shader, the fixed function unit of primitive assembly will be
located. The uniform variables are used to provide some
global variables and texture samplers.
The architectural view of the OpenGL shaders can be
simplified as shown in Figure 5. The shaders will be

Vertex
Shader
Program

Attribute
Variables

Uniform
Variables

Primitive
Assembly

Fragment
Shader
Program

Fragment
Color

Temporary
Variables

Combined Program

Figure 5: Conceptual view of the combined OpenGL shaders.

Shader
Language

Off-line
Compiler

OpenGL
SC 2.0
system

Shader
Language

Source
Codes

Screen
Output

Graphics
Data

Fragment Shader
GPU instructions

Vertex Shader
GPU instructions

Attribute Variable
Information

Uniform Variable
Information

House-keeping Data

Our Binary File Format

Figure 6: Our binary file format for the off-line shader compiler.

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5925 – 5931

5929

combined, and the attribute variables will be provided as the
input data, and the fragment colors will be set as the final
result. Uniform variables are regarded as another input data
of the globally defined constant values.

Based on this conceptual view of the combined OpenGL
shaders, we designed the underlying binary file format as the
output of the off-line shader compiler. Since the finally
combined shaders will be executed on an independent system,
we should design the file format as the complete source of the
all required information on the target embedded system. The
details are explained in the next subsection.

2.3 Our file format design

The overall binary file format for our off-line shader compiler
consists of the following elements, as shown in Figure 6:

 fragment shader binary code: It contains the GPU

instructions for the fragment shader. User will provide
the fragment shader source code to the off-line compiler,
and then, the compiler will generate this GPU
instructions, which may be specific to the fragment
shaders.

 vertex shader binary code: It contains the GPU
instructions for the vertex shader. It is somewhat similar
to the fragment shader binary code, while it is specific to
the vertex shader, rather than the fragment shader.

 attribute variables: The binary file should provide all the
information on the attribute variables. The data type, the
number of elements, the array size, and others should be
indicated for each attribute variables. In some cases, the
redundant attribute variables can be removed by the
compiler optimization process.

 uniform variables: The binary file should also provide all
the information on the uniform variables. The data type,
the number of elements, the array size, and others should
be indicated for each uniform variables. In some cases,
the redundant uniform variables can be removed by the
compiler optimization process.

 house-keeping information: Some extra data are also
provided for the house-keeping purpose. For example,
the binary file format version should be provided as the
key of the binary file version controls. Also, the OpenGL
shader language compiler version should be included
into the binary file. Other data values are dependent to
the GPU's and target embedded systems.

We also have some security issues. The off-line compiler and
its corresponding OpenGL functional interfaces should be
protected from any kind of hacks and intrusions. As the first
step, the binary file format should be encrypted, and later
decrypted at the execution time. We already added these

features to the off-line compiler output files, and the binary
file loading routines.

3. PROTOTYPE IMPLEMENTATION

To show the feasibility of our conceptual design on the shader
language off-line compilers, we used the existing MESA
shader language compiler [11] as the test platform. Our
selection of the MESA version 10 has only the on-line
compiling feature. We have succeeded the compilation of the
isolated part of the MESA compiler implementation.

As the next step, we modified the routines to newly generate
our own binary file formats. Using those output of the binary
files from the shading language compilers, our OpenGL SC
2.0 library implementation has the contribution to the final
integration of the binary file execution. Therefore, our
OpenGL SC 2.0 library can execute the binary format API
function of glProgramBinary.

To test our implementation, we used variety of OpenGL
shader language source codes. Those shader language source
codes are compiled on the Linux-based systems, and we saved
the compiled result as the binary files. Those files are then
transferred to the target embedded system. The system then
use our OpenGL SC 2.0 library implementation, and execute
those shader programs, without any compilation on the target
embedded system.

precision mediump float;
varying vec2 texCoord; /* texture coordinate */
uniform sampler2D texMap; /* texture mapping */
void main(void) {
 gl_FragColor = texture2D(texMap, texCoord);
}

Figure 7: An example fragment shader source code.

precision mediump float;
varying vec2 texCoord; /* texture coordinate */
attribute vec2 a_texCoord;
attribute vec4 pos; /* vertex position */
uniform mat4 mvp; /* transformation matrix */
void main(void) {
 gl_Position = mvp * pos;
 texCoord = a_texCoord;
}

Figure 8: An example vertex shader source code

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5925 – 5931

5930

Figures 7 and 8 shows one of the example shader language
source codes, for the fragment and vertex shader,
respectively. Figure 9 shows the final result of the off-line
compiler. We have the GPU-specific instructions for the
fragment and vertex shader, variable information on the
attribute variables and uniform variables, and some extra
house-keeping information.

With the example shader language binary file, we have
executed it, and finally get the successful results, as shown in
Figure 10. We executed the same OpenGL program on the
desktops, and compared it with the embedded system results,
we concluded that the system works successfully with various
OpenGL shader programs.

4. CONCLUSION

In these days, the 3D graphics systems typically executes the
GPU machine instructions, with the programmable graphics
pipeline and the compilation results from the shader language
supporting features [23,24,25]. The original OpenGL
specification provided only the on-line compilation, which
means the on-the-y compilation of the source codes at the
execution time, on the target system. In contrast, they recently
introduced the off-line compilation features, especially for the
OpenGL SC 2.0 specification. In this case, the independent
off-line compiler generates all the executable information for
the given shader language source codes. Later, the target
execution system should execute those compiled results, as
the separate system.

In this paper, we analyzed the detailed requirements on the
shader language off-line compilation. Based on these
analysis, we designed the whole compiling process and the
binary file format for the off-line compiler. As the verification
process of our design, we implemented the prototype off-line
compiler with MESA implementation. Our implementation
of OpenGL SC 2.0 library on the target embedded system is
enhanced with the binary file format support. We tested
variety of shader programs, to be compiled and transferred to
the target embedded system. We executed the pre-compiled
binary files on the target system, and all the results are the
same to the desktop executions.

Conclusively, we show that the shader language off-line
compilers are possible with our schemes. We also presented
the feasible verification results with various shader programs.
Our result is promising to the extensions. In addition to the
fragment and vertex shader units, we can add the geometry
shader unit to the possible set of pre-compilation. The new
language specifications since OpenGL 3.0 are also target to be
added to our system.

REFERENCES

1. Baek, N., Baeck, G.: Design of OpenGL SC emulation

library over the desktop OpenGL 1.3. 29th Digital
Avionics Systems Conference, 2010.

2. Cole, P.: OpenGL ES SC: Open standard embedded
graphics API for safety critical applications. 24th
Digital Avionics Systems Conference, 2005.

3. Fabius, A., Viggers, S.: OpenGL SC Version 2.0.0.
Khronos Group, 2016.

4. Group, K.: Vulkan 1.0.35 - A Specification. Khronos
Group, 2016.

5. Kessenich, J.: The OpenGL Shading Language,
Language Version: 1.20. Khronos Group, 2006.

112 28 64
0x20024b5a 0x02047ee0 0x20224b5a 0x02047fe0 0x20010d01 0x00007d07 0x02600032
0x20003a40
0x0e8d0fa0 0x860a0001 0x2000007e 0000000000 0x0040007e 0x20000208 0x06690000
0000000000
0x2002565a 0x02067ce0 0x2022565a 0x02067ee0 0x20010d01 0x00007b07 0x02800032
0x20003a40
0x0e8d0f60 0x8a0c0001 0x2000007e 0000000000
768 192
0x20224b41 0x09060ee0 0x202a4b41 0x090612e0 0x00600041 0x22c03ae8 0x3a0000d8
0x008d0120
0x00600041 0x23403ae8 0x3a0000dc 0x008d0120 0x20004d01 0x00017707 0x20010b01
0x000c7c07
0x20010b01 0x000d7d07 0x0060015b 0x0f1e0000 0x3900e1c8 0x01800410 0x0060015b
0x131e0000
... (omitted) ...
0x3903b1c8 0x00d80452 0x0060015b 0x781e0000 0x390301c8 0x00e0045a 0x0060015b
0x791e0000
0x390341c8 0x00e8045a 0x0060015b 0x7a1e0000 0x390381c8 0x00f0045a 0x0060015b
0x7b1e0000
0x3903c1c8 0x00f8045a 0x06600031 0x20003ae0 0x0e8d0ee0 0x92080017 0x2000007e
0000000000
0x92e3 0x1 4 17 a_position
0x92e3 0x1 4 18 a_texcoord
0x92e4 0x10 5 2 gl_FragColor
0x92e1 0x1 0 0 0x8b5c 4 4 0 mvp
0x92e1 0x10 0 3 0x8b5e 0 0 0 s_map
0x60000 0x4000000
Figure 9: The binary codes generated by our off-line
compiler.

Figure 10: Screen output from the execution of the binary
codes with appropriate graphics data.

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5925 – 5931

5931

6. Kessenich, J.: The OpenGL Shading Language,
Language Version: 4.50. Khronos Group, 2016.

7. Khronos Group: http://www.khronos.org/
8. Lipchak, B.: OpenGL ES version 3.0. Khronos Group,

2012.
9. Lipchak, B.: OpenGL ES version 3.2. Khronos Group,

2016.
10. Malizia, A.: Mobile 3D Graphics. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2006.
11. Mesa3D.org: The Mesa 3D Graphics Library.

Mesa3D.org, 2017.
12. Munshi, A.: OpenGL ES Common Profile

Specification, version 2.0.24 (Full Specification).
Khronos Group, 2009.

13. Munshi, A., Leech, J.: OpenGL ES
Common/Common-Lite Profile Specification, version
1.1.12 (Full Specification). Khronos Group, 2008.

14. Pulli, K., Vaarala, J., Miettinen, V., Aarnio, T., Roimela,
K.: Mobile 3D Graphics: with OpenGL ES and M3G.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2007.

15. Segal, M., Akeley, K.: The OpenGL Graphics System: A
Specification, Version 1.3. Khronos Group, 2001.

16. Segal, M., Akeley, K.: The OpenGL Graphics System: A
Specification, Version 2.1. Khronos Group, 2006.

17. Segal, M., Akeley, K.: The OpenGL Graphics System: A
Specification, Version 4.4 (Core Profile). Khronos
Group, 2013.

18. Segal, M., Akeley, K.: The OpenGL Graphics System: A
Specification, Version 4.5 (Core Profile). Khronos
Group, 2016.

19. Simpson, R.J.: The OpenGL ES Shading Language,
Language Version: 1.00. Khronos Group, 2008.

20. Simpson, R.J.: The OpenGL ES Shading Language,
Language Version: 3.20. Khronos Group, 2016.

21. Snyder, M.: Solving the embedded OpenGL puzzle -
making standards, tools, and APIs work together in
highly embedded and safety critical environments.
24th Digital Avionics Systems Conference, 2005.

22. Stockwell, B.: OpenGL SC: Safety-Critical Profile
Specification, version 1.0.1 (difference specification).
Khronos Group, 2009.

23. S. Alon, E. D. Festijo and C. D. Casuat, Tree Extraction
of Airborne LiDAR Data Based on Coordinates of
Deep Learning Object Detection from Orthophoto
over Complex Mangrove Forest, IJETER,
8(5):2107-2111, 2020.

24. M. Kumar and R. H. Sree, Home Computerization
Monitoring System with Google Supporter, IJETER,
8(6):2240-2244, 2020.

25. N. Baek, A Simplified Implementation of the
Fixed-Function Graphics Pipeline: DRM Approach,
IJATCSE, 9(2):1551-1555, 2020.

