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ABSTRACT 
 
In our modern computer graphics systems, they use GPUs 
(graphics processing units) to execute the low-level parallel 
instructions, compiled from the shader language source 
codes.  
Recently, some graphics system specifications, including 
OpenGL SC 2.0, introduce the off-line compilation. With this 
new scheme, the independent off-line compiler will generate 
the final binary executable codes. Typically, the target system 
will execute the pre-compiled binary executable codes, at 
some time later. In this paper, we analyzed the detailed 
requirements on the shader language off-line compilation. 
Based on these analysis, we designed the whole compiling 
process and the binary file format for the off-line compiler. As 
the verification process of our design, we implemented the 
prototype off-line compiler for our existing OpenGL SC 2.0 
implementation on the target embedded system. We executed 
a set of pre-compiled binary files on the target system, and all 
the results are the same to the desktop executions. We finally 
showed that the shader language off-line compilers are 
possible with our proposed schemes. 
 
Key words : shader language, off-line compiler, 
cross-compiler, prototype implementation  
 
 
1. INTRODUCTION 1 
 
In these days, we have many remarkable changes in many 
computer-oriented fields, along to the development of modern 
computer graphics and its related parallel execution 
technology. The parallel computations originated from the 
GPU (graphics processing unit) technology is one of the most 
important changes. Shader language concepts [10,14] are 
another renovations in the field of computer graphics. 
 
At this time, among the 3D graphics Application Program 
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Interfaces (APIs), the most widely used one is OpenGL (Open 
Graphics Library). It can be used for variety of platforms, 
including desktops, tablets, and smartphones. Traditionally, 
OpenGL is based on the fixed function hardware pipelines, 
and it provides the fixed API functions, as shown in Figure 1 
[13,15,22]. From OpenGL version 2.0 and later, they 
introduce the new programmable graphics pipeline, as shown 
in Figure 2 [3,12,16]. 
 
The Khronos Group[7], which is the de facto standard 
organization, manages all the standard specifications for the 
OpenGL family including OpenGL [5,6,15,16,18], OpenGL 
ES (for embedded systems) [9,12,13,19,20], and OpenGL SC 
(safety critical profile) [3,22]. At this time, in our commercial 
markets, we have plenty of graphics hardware and also 
application programs, providing and using OpenGL and/or 
OpenGL ES facilities. 
 
In contrast, OpenGL SC is actually derived from the OpenGL 
family, as a safety critical version. This new standard is 
designed to meet the needs for military, medical, automotive, 
avionics, and other industrial applications in the safety 
critical market. Actually, OpenGL SC plays an important role 
in the safety-critical market. It provides the 3D graphical 
interfaces. We have much increased needs for this 3D 
graphics standard, along to the growth of the safety-critical 
applications [2,21]. Especially, this standard has strong focus 
in the medical applications and automotive applications [1]. 
 
From the year of 2015, they started to upgrade this 
safety-critical standard, as a brand-new one. It targets the new 
safety-critical graphics standard for the avionics and 
automotive displays. As the final result, the OpenGL SC 2.0 
specification [3] defines the new safety critical version of 
OpenGL ES 2.0 [12], as shown in Figure 3. Now they are 
working to adapt the new Vulkan API [4] for high-efficiency 
graphics applications and computing programs. The Safety 
Critical working group in the Khronos Group is also 
developing cross-API guide-lines, which is effective for the 
development of the safety critical systems and its related 
standards. 
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One of the most remarkable changes in the OpenGL SC 2.0 
[3] is the introduction of off-line compilers in its shader 
language compilation process. Previously, some graphics 
vendors provide the off-line compiling features as the 
OpenGL extensions. In contrast, OpenGL SC 2.0 requires the 
off-line compiler as one of its core features. The importance of 
the offline compiler is more emphasized in these days. 
 
In this paper, we show the design schemes for the OpenGL 
family shader language offline compiler. We assume that the 
system will be operated on the desk-tops, to generate a 
specific target GPU instructions, and those instructions will 
be executed on the independent embedded systems. The 

design details and implementation results are followed in the 
following sections. 
 
 
2.  DESIGN ASPECTS  
 
In this section, we will show all the design aspects of our 
shader language off-line compiler. In each subsection, we will 
handle one of the technical issues in the whole design process. 
 

2.1 Functional Interface changes 
 
Along to the development of modern computer graphics 
hardware, the role of GPU becomes much important. From 

 
 

Figure 1: An example fixed function graphics pipeline of the OpenGL family. 
 
 

 
 

Figure 2: An example of the programmable graphics pipeline of the OpenGL family. 
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the software developer’s point of view, it is better to provide 
the direct access to the underlying GPUs. Thus, the newer 
versions of OpenGL, more precisely, OpenGL 2.0 [16] and 
later, provide the OpenGL shader language, its compiler, and 
the shader language handling functions. All these features are 
already provided by OpenGL [17], OpenGL ES [9], and also 
OpenGL SC [3]. 
 
One more important change to the OpenGL SC 2.0 [3] is the 
addition of off-line compilation features. In the case of 
desktop OpenGL, OpenGL version 4.1 has its corresponding 
off-line compilation features. The OpenGL SC 2.0 provides 
this feature based on the desktop version of OpenGL 4.1 or 
later.  
 
To provide this off-line compilation feature, we started from 
the real-time interception of the compiled binary images, 
from the shader compiler. During the on-line compilation of a 
specific shader language file, the result of compiled binary 

images are intercepted to be saved to the external storage. 
This captured binary image is later reused by the API function 
of glProgramBinary. We have tested the implementation 
results with those of the previous MESA implementation 
[11], and confirmed that it works well. 
 
In the original design of the OpenGL shading language, they 
have online compilation features. Thus, from the OpenGL ES 
2.0 and later, the shader compilers provide the immediate 
compilation of the given shader source code. In the case of 
OpenGL SC 2.0, they provide an alternative way of off-line 
compilation. They provide a binary image interface, for the 
following function syntax: 
 
void glProgramBinary( 

GLuint program, 
GLenum format, 
const void* image, 
GLsizei length ); 

 
 

Figure 3: Historical chart for the OpenGL family. 
 
 

Vertex
Shader
Program

Attribute
Variables

Temporary
Variables

Uniform
Variables

Primitive
Assembly

Fragment
Shader

Program

Varying
Variables

Fragment
Color

Varying
Variables

Temporary
Variables

Uniform
Variables

 
 

Figure 4: Architectural view of the OpenGL vertex shader and fragment shader. 
 

 



Nakhoon Baek,  International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  5925 – 5931 

5928 
 

 

We have the specific parameters, as the followings: 
 
 program is the name of an OpenGL SC shader program 

object. The saved program binary will be loaded into this 
program object. 

 format is the format specification of the OpenGL SC shader 
language binary data. 

 image is the memory address to the byte-unit array 
containing the binary image to be loaded into the 
OpenGL SC program object. 

 length is the number of bytes contained in the 
one-dimensional array of image. 

 
Therefore, our goal is to provide all the features to support this 
new function interface to the OpenGL SC 2.0 or similar 
OpenGL-family libraries. Actually, our OpenGL SC 2.0 
library implementation on the target embedded system 

supports this API function, with the off-line compiled binary 
files. 

2.2 Architectural view of the OpenGL Shaders 
 
Although some different views on the OpenGL shaders are 
possible, we focused on the architectural view of the simplest 
vertex shader and fragment shader pairs, as shown in Figure 
4. In this architectural view, the attribute variables are the 
input of the vertex shader, and the varying variables are the 
output of the vertex shader. In the case of fragment shader, it 
accepts varying variables as its input, and generates fragment 
colors as its output. Between the vertex shader and fragment 
shader, the fixed function unit of primitive assembly will be 
located. The uniform variables are used to provide some 
global variables and texture samplers. 
The architectural view of the OpenGL shaders can be 
simplified as shown in Figure 5. The shaders will be 
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Figure 5: Conceptual view of the combined OpenGL shaders. 
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Figure 6: Our binary file format for the off-line shader compiler. 
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combined, and the attribute variables will be provided as the 
input data, and the fragment colors will be set as the final 
result. Uniform variables are regarded as another input data 
of the globally defined constant values. 
 
Based on this conceptual view of the combined OpenGL 
shaders, we designed the underlying binary file format as the 
output of the off-line shader compiler. Since the finally 
combined shaders will be executed on an independent system, 
we should design the file format as the complete source of the 
all required information on the target embedded system. The 
details are explained in the next subsection. 
 

2.3 Our file format design 
 
The overall binary file format for our off-line shader compiler 
consists of the following elements, as shown in Figure 6: 
 
 fragment shader binary code: It contains the GPU 

instructions for the fragment shader. User will provide 
the fragment shader source code to the off-line compiler, 
and then, the compiler will generate this GPU 
instructions, which may be specific to the fragment 
shaders. 

 vertex shader binary code: It contains the GPU 
instructions for the vertex shader. It is somewhat similar 
to the fragment shader binary code, while it is specific to 
the vertex shader, rather than the fragment shader. 

 attribute variables: The binary file should provide all the 
information on the attribute variables. The data type, the 
number of elements, the array size, and others should be 
indicated for each attribute variables. In some cases, the 
redundant attribute variables can be removed by the 
compiler optimization process. 

 uniform variables: The binary file should also provide all 
the information on the uniform variables. The data type, 
the number of elements, the array size, and others should 
be indicated for each uniform variables. In some cases, 
the redundant uniform variables can be removed by the 
compiler optimization process. 

 house-keeping information: Some extra data are also 
provided for the house-keeping purpose. For example, 
the binary file format version should be provided as the 
key of the binary file version controls. Also, the OpenGL 
shader language compiler version should be included 
into the binary file. Other data values are dependent to 
the GPU's and target embedded systems. 

 
We also have some security issues. The off-line compiler and 
its corresponding OpenGL functional interfaces should be 
protected from any kind of hacks and intrusions. As the first 
step, the binary file format should be encrypted, and later 
decrypted at the execution time. We already added these 

features to the off-line compiler output files, and the binary 
file loading routines. 
 
 
3.  PROTOTYPE IMPLEMENTATION 
 
To show the feasibility of our conceptual design on the shader 
language off-line compilers, we used the existing MESA 
shader language compiler [11] as the test platform. Our 
selection of the MESA version 10 has only the on-line 
compiling feature. We have succeeded the compilation of the 
isolated part of the MESA compiler implementation. 
 
As the next step, we modified the routines to newly generate 
our own binary file formats. Using those output of the binary 
files from the shading language compilers, our OpenGL SC 
2.0 library implementation has the contribution to the final 
integration of the binary file execution. Therefore, our 
OpenGL SC 2.0 library can execute the binary format API 
function of glProgramBinary. 
 
To test our implementation, we used variety of OpenGL 
shader language source codes. Those shader language source 
codes are compiled on the Linux-based systems, and we saved 
the compiled result as the binary files. Those files are then 
transferred to the target embedded system. The system then 
use our OpenGL SC 2.0 library implementation, and execute 
those shader programs, without any compilation on the target 
embedded system. 
 
 

 
precision mediump float; 
varying vec2 texCoord; /* texture coordinate */ 
uniform sampler2D texMap; /* texture mapping */ 
void main( void ) { 
    gl_FragColor = texture2D(texMap, texCoord); 
} 
 
Figure 7: An example fragment shader source code. 
 
precision mediump float; 
varying vec2 texCoord; /* texture coordinate */ 
attribute vec2 a_texCoord; 
attribute vec4 pos; /* vertex position */ 
uniform mat4 mvp; /* transformation matrix */ 
void main(void) { 
    gl_Position = mvp * pos; 
    texCoord = a_texCoord; 
} 

 
Figure 8: An example vertex shader source code 
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Figures 7 and 8 shows one of the example shader language 
source codes, for the fragment and vertex shader, 
respectively. Figure 9 shows the final result of the off-line 
compiler. We have the GPU-specific instructions for the 
fragment and vertex shader, variable information on the 
attribute variables and uniform variables, and some extra 
house-keeping information. 
 
With the example shader language binary file, we have 
executed it, and finally get the successful results, as shown in 
Figure 10. We executed the same OpenGL program on the 
desktops, and compared it with the embedded system results, 
we concluded that the system works successfully with various 
OpenGL shader programs. 
 
 
4. CONCLUSION 
 
In these days, the 3D graphics systems typically executes the 
GPU machine instructions, with the programmable graphics 
pipeline and the compilation results from the shader language 
supporting features [23,24,25]. The original OpenGL 
specification provided only the on-line compilation, which 
means the on-the-y compilation of the source codes at the 
execution time, on the target system. In contrast, they recently 
introduced the off-line compilation features, especially for the 
OpenGL SC 2.0 specification. In this case, the independent 
off-line compiler generates all the executable information for 
the given shader language source codes. Later, the target 
execution system should execute those compiled results, as 
the separate system. 
 
In this paper, we analyzed the detailed requirements on the 
shader language off-line compilation. Based on these 
analysis, we designed the whole compiling process and the 
binary file format for the off-line compiler. As the verification 
process of our design, we implemented the prototype off-line 
compiler with MESA implementation. Our implementation 
of OpenGL SC 2.0 library on the target embedded system is 
enhanced with the binary file format support. We tested 
variety of shader programs, to be compiled and transferred to 
the target embedded system. We executed the pre-compiled 
binary files on the target system, and all the results are the 
same to the desktop executions. 
 
Conclusively, we show that the shader language off-line 
compilers are possible with our schemes. We also presented 
the feasible verification results with various shader programs. 
Our result is promising to the extensions. In addition to the 
fragment and vertex shader units, we can add the geometry 
shader unit to the possible set of pre-compilation. The new 
language specifications since OpenGL 3.0 are also target to be 
added to our system. 
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