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ABSTRACT 
 
CBIR gained substantial importance in the recent fifteen 
years. Variety of modern systems have designed to 
effectively retrieve images from database and recognition of 
the objects in computer vision. Among all methods, 
Histogram of Gaussian (HOG) and Scale Invariant Feature 
Transform (SIFT) are standard procedures for attaining the 
features of the image. The image features achieved by SIFT 
are helpful in several applications, but these features prone 
to zero-order statistics as they derived from histogram 
quantities. This results in; there lacks the natural mechanism 
of high descriptiveness of image features. A novel method is 
developed based on Multivariate Gaussian distribution 
which establishes the relation among SIFT features in the 
neighbourhood. The exciting part of this approach lies in 
representing the non-linear Gaussian space into linear space 
as the Gaussian space is in Riemannian manifold. The 
Gaussian space can be mapped into linear Euclidean space 
using Lie group theory. The tests were conducted 
systematically on Caltech-101 and ZANG image databases 
to endorse this approach. The experiments demonstrated that 
a significant amount of the CBIR system performance has 
improvised with the proposed approach.  
 
Key words: Computer vision, Descriptors, Image retrieval, 
Multi-variate Gaussian distribution.  

1. INTRODUCTION 

Content-Based Image Retrieval (CBIR) achieved 
significant impact in recent decades in which the similar 
images extracted to query model based on a low level and 
derived visual features. Extensive exploration has absorbed 
to distinguish local characteristics of the image in the past 
ten years. Various descriptors have invented for 
demonstrating the area of interest in the pictures confined by 
region detectors, colour gradients detectors and shape 
detectors [1], [2]. Extraction of local characteristics of the 
image plays an ultimate role in the success of many image 
descriptors in the vision tasks. The complicated job in CBIR 
is to shape up features which are high uniqueness, i.e. 
features are invariant to geometrical transformations. 
Belongie et al. [3], [7] proposed a texture-based 
transformation approach to represent image area which is 
articulate in and texture space using multi-orientation filter 
banks and the second-moment matrix. They additionally 
utilized the Gaussian window and Expectation-
Maximization (EM) algorithm to achieve differentiation and 
scale invariance. Zhang et al. [4], [8] developed the CBIR 

system using Gabor texture features for image retrieval. 
Texture features obtained by the mean and variance of the 
images which are filtered Gabor approach. Variation 
standardization in their approach is comprehended by a 
circular shift of the extracted image values so that all images 
have the same dominant direction. Hiremath and 
Jagadeesh[5] presented a novel process for relating texture, 
colour, and shape information and attained higher retrieval 
efficiency. In their method, the image segregated into non- 
intersecting tiles of equivalent size. The local descriptors of 
an image obtained based colour and texture attained by 
utilizing moments as well as Gabor filtered features of these 
tiles, respectively [1]. Roman et al. [7] demonstrated a 
machine learning system for obtaining low-dimensional 
image features in higher-level Gaussian Process (GP) tasks. 
Such issues are progressively numerous and indispensable 
but have previously revealed severe practical implications. 
To overcome this issue, they alternatively present a novel 
algorithm for marginalizing GP hyperparameters. This 
approach would give marginal predictions and better 
performance than previous hyperparameter correction. 
Venugopal et al. [6] projected a novel technique for shape-
based image extraction using Adapted Fourier Descriptors 
which obtain shape information of an image that is distinct 
to rotation, scale, translation.  

Peihua et al. [8], [9] proposed an image classification 
technique using multivariate Gaussian distribution which 
also describes the process of transforming Gaussian into 
linear space by specifying a multiplication operation on the 
manifold. Dongsheng et al. [10] described a Generic Fourier 
descriptor (GFD) to diminish the limitations of prevailing 
shape representation techniques. Their proposed shape 
descriptor originated by sampling 2-D Fourier transform on 
a polar shape image. The attained shape descriptor is robust 
and independent concerning applications. Xiangyuan Zhao 
and Brian Nutter [11] presented a CBIR system by utilizing 
Deep Autoencoder (DAE) and Wavelet Transformation.  
Wavelets transform are a promising method for image 
retrieval based on texture properties. Montazer et al. [12] 
introduced a synchronized methodology utilizing SIFT and 
wavelet transform to define the picture characteristics 
effectively. In CBIR, as massive image information bases 
are being gathered, sorting out the image data sets for 
effective retrieval is a non-trivial issue. A classic function 
valued descriptor is innovatively exceptional, which 
separates visual picture data and utilized in the few 
application of computer vision, such as object movement 
recognition, perceiving objects, object classification [18].  

Generally, visual information exploited using local 
descriptors such as SIFT or HoG [20], [24]. The image data 
acquired by applying SIFT technique is productive in many 
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image processing applications. However, it just acquires 
low-level features such as histogram frequencies of an 
image, i.e., and there is no association established between 
the image features and this results in accurate definiteness of 
image features [12], [20]. Too, histograms frequencies 
generally experience quantization issue. Multivariate 
Gaussian (μ, ∑) is a noticeable methodology to originate 
proficient descriptiveness of image information in higher 
dimensional space N(d) [8], [16]. The foremost 
disadvantage of this methodology is Gaussian space prone to 
non-linear space, i.e. non-linear space defined by Gaussian 
usually lies in a manifold. The non-linear Gaussian space 
can be transformed into Linear Euclidean space by 
characterizing a direct logarithmic procedure on manifold 
[8], [15], [21] to resolve this issue. The technique for 
transforming of Gaussian space into linear space (Euclidean 
space) has exploited in detail in this paper. The subsequent 
features have distinguished to as Log-Euclidean Multivariate 
Gaussian descriptors. 

The rest of this paper has composed as follows. Section 
2 demonstrates the specifics of SIFT descriptors. Section 3 
presents the Riemannian manifold. In Section 4, Gaussian 
Embedding in Linear Space has presented. Section 5 
describes Log Euclidean Multivariate Gaussian Descriptors.   
Section 6 explore the test result to estimate and analyze our 
descriptors. Finally, Section 7 concludes the paper. 

2. RELATED WORK 

2.1 Introduction SIFT 

The essential aspect of CBIR in pattern analysis and 
computer vision industries is to extract correlated images 
from an extensive image store efficiently. However, the 
specific aspect of this methodology is the accurate extraction 
of images because images are often prone to geometrical 
changes. i.e. while capturing an image, there could be 
rotational variance, changes in posture, disorderly 
background, scale changes, brightness variations and 
incomplete occlusion [9], [10], [12]. Determining of low-
level perceptual features using SIFT is the prospective 
methodology in which object features in the images selected 
based on visual pixel quantities which can then 
distinguished to other features of an image [20], [22], [35]. 
In this methodology, the set of arguments can be used to 
extract visual information; but then how many arguments 
and all arguments are necessary or optional is not 
comprehended. The organization of default arguments is 
portrayed in the first paper by David Lowe [12], [20], yet 
whether these all are necessary or optional is not clear. 

The essential background of the SIFT procedure has 
introduced in this section. The SIFT approach has 
comprehended in four-stage process that obtain accurate 
useful characteristics from an image which are extremely 
reasonable for the vision applications such as image 
tracking, recognition and categorize objects [12]. These 
characteristics considered to be free from rotational changes, 
scale variations, noise, small changes in viewpoint and, 
illumination variance. Clusters of features from an image 
that is similar to a cluster of characteristics from another 
image may indicate, with a high likelihood, areas that match. 
The four stages of the SIFT algorithm is given in Lowe's 
paper [20]. The SIFT procedure categorized into four stages, 
as following.  

 

2.1.1 Scale-space Extrema Detection.  

Finding the scale at which the images features are more 
discriminate is determined in the scale space extrema 
detection. Multiple octaves are created from blurred pictures 
to identify scale-invariant areas through dissimilar scales 
using the convolution of Gaussian, as specified in Eq. (1). 
The variance of Gaussian designated as the change between 
two consecutive images inside the identical octave as shown 
in Eq. (2) [45]. Let the input image represented as I(x, y) 
and the scale space determined by convolution with 
Gaussian kernel : 

L(x, y, σ) = G(x, y, σ) * I(x, y)                          Eq. (1) 
In the Eq. (1), * is the convolution operator, and the 

function computes G (x, y, σ): The difference of Gaussian 
DoG(x, y, σ) among two images has calculated, first with 
L(x, y, σ) and next with k times L(x, y, σ). DoG(x, y, σ) is 
then shown in the Eq. (2): 

DoG(x, y, σ) = L(x, y, kσ) – L(x, y, σ)                Eq.(2) 
Local minima and maxima can be determined by 

comparing eight neighbours at an identical scale, and its 
nine neighbours up and down one scale from DoG. Minima 
or maxima of all successive 26 points has called to as a local 
extremum. 

2.1.2 Feature Localization  

The characteristics which are having minimal effect in 
scale space have disposed of in this stage. DoG function 
normally indicates high reaction at edges in the fact that area 
along the border is ineffectively defined and consequently 
sensitive to the minimal effect of distortion in the image.  
Interpolation is a beneficial procedure to remove undesirable 
edges and pixels which are in the neighborhood of low 
illumination. 
i. Local Extrema Detection: 

Neighbours of each keypoint equated to distinguish 
local maximum and minimum of DoG images. Keypoint 
around regions 3x3 of DoG at neighboring and present scale 
are examined to recognize local maximum and minimum. 
ii. Rejecting Low Contrast Keypoints 

The low contrast points can be eliminated because 
these points are susceptible to noise or are poorly 
determined along edges. A quadratic function of three 
dimensions applied to the local example points to govern the 
position of the maxima. A Taylor series is expanded (up to 
the quadratic terms) on to the DoGD(x; y; σ), and  Origin of 
low Contrast points can be determined shown in Eq. (3), so 
the origin is located at the sample point. 

퐷(푥) = 퐷 + 푥 + 푥 Eq. (3) 
In Eq. (3), x is offset from a particular point, D as well 

as its derivatives estimated at each sample point. The region 
of the extremum 푥 is obtained by calculating the derivative 
of D concerning offset x=( x; y; σ)T and taking it to zero as 
shown in Eq. (4). 

푥 =                                   Eq. (4) 
If the value of offset 푥  is greater than 0.5 in any 

dimension implies that extremum point lies nearer to any 
other sample point.     
iii. Eliminating Edge Responses: 

The edges of the DoG disclose great reaction at the 
peak, pitiable other direction. 2x2 Hessian matrix (H) used 
to calculate basic curvature. To detect eigenvalues of the 
boundaries, Harris corner detector is a utilized in which 
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eigenvalue of one edge dissimilar from others. The Hessian 
matrix (H) is given as 

퐻 =
퐷 퐷
퐷 퐷  

Tr(H) is a trace, Det(H) is determining factor of H 
resulting from Eq. (5), (6) respectably. Let  be the 
eigenvalue with higher degree and  the smaller. 

푇푟(퐻) = 퐷 + 퐷 = 훼 + 훽  Eq. (5) 
퐷푒푡(퐻) = 퐷 퐷 − (퐷 )      Eq. (6) 

( )
	( )

= ( )
∗

= ( ) = ( ) Eq. (7) 
If ∞ and ß are equally large, a curve is originated. 
If ∞<< ß or ∞ >> ß an edge is originated. 
If ∞ and ß taking smallest values, there are no key 

points of attention at this pixel (x; y). Thus, the expansion of 
corner feedback can be calculated by r (=r ß). (r+1)2/r is at a 
min when the two Eigenvalues have equally derived from 
Eq. (7). 

2.1.3 Orientation Assignment 

Typically, pictures have captured at various angles; 
thus obtained features might be inclined to geometrical 
changes. Rotational invariance can be accomplished by 
appointing each point is gradient slope in its locality. Slope 
has designed with 32 bin direction histogram, and 
noteworthy keypoints closer to the middle have more effect 
on direction. Each key direction is one different component 
[10]. 

Let L be the Gaussian flattened image and m is 
gradient magnitude which is taken from scale space, the 
computation of orientation is given in Eq. (8): 

푚(푥, 푦) =
(퐿(푥 + 1, 푦) − 퐿(푥 − 1,푦)) + (퐿(푥,푦 + 1) − 퐿(푥, 푦 − 1)) Eq. (8) 

Orientation (θ) is  
휃(푥, 푦) = tan	(퐿(푥, 푦 + 푎) ( , )

( ( , ) ( , ))
) 

For each key point form histogram of orientation from 
Gaussian smoothed image.  

Highest peak and variable peaks below 80% of the 
extreme of the histogram have used to make a key points. A 
portion of the focuses can be appointed different directions. 
Uppermost peaks and alternative peaks at intervals 80% of 
extreme of the histogram are taken to produce key point. 
Barely any more number of the keypoints might be allocated 
different directions. 

2.1.4 Creating the Feature Descriptor 

 A Descriptor derived from an image made with 128-
dimensional array which represent pixel characteristics of 
region surrounding the key point and has appeared in Figure 
1. A 4x4 size histograms computed, which is positioned on 
the key point and rotated to organize the key orientation in 
the all directions. The procedure of producing feature 
descriptors have specified below [42].   

i. Divide the keypoint segment into 4x4 sub-segments.  
ii. Generate histogram for each sub-region, 16 bins 

utilized to create 16 histograms. Trilinear Interpolation has 
utilized to place features into histogram bins. Tests are 
Gaussian weighted with N(σ) = 1.5 district width. 

 

 
 
Figure 1: Image gradients and key point descriptors 
 
To generate keypoint descriptors [29], [34], [47] the 

native gradient statistics also utilized. Interchange the 
gradient features to contrast with the keypoint orientation 
then Gaussian function could be utilized to reweight the 
occurrences with N(σ) = 1.5 keypoint scale. With this data, 
histogram at given point made over a window focused on 
the key point. This resulting feature vector is consisting of 
128 elements. 

3. INTRODUCTION TO RIEMANNIAN GEOMETRY 

Let M be a manifold that could be a mathematical 
space locally seems like Euclidean space with all of its usual 
topologies. A topological space could be a set of points 
together with its neighbourhoods for every pixel. In other 
words, the features a neighbourhood that's homeomorphism 
to Euclidean space of n-dimension [15], [26]. 
Homeomorphism could be a continuous perform that maps 
one mathematical space to a different space and features a 
continuous mathematical function. Mathematically 
dimensions are degrees of freedom. A point is zero-
dimensional said to be no degree of freedom. The line is 
one-dimensional so require x-direction, a plane is two 
dimensional hence need both the x and y directions, a sphere 
is three-dimensional requires x, y, and z directions. We can 
even extend that to hyperspheres, which are four-
dimensional, or to something more intuitive like the four 
dimensions of space-time to an infinite number of sizes. If 
there exists a homeomorphism between the objects, then 
they said to be homeomorphic.  

A Riemannian manifold has constructed from the 
three-layer topological structure. Notions of Topology, for 
example, Continuity and merging are characterized in the 
topological layer. Stretching out the notions of 
differentiability to the manifold is permitted in differential 
layer and the inflexible geometrical magnitudes, for 
example, space, edges and arch on the manifold are 
permitted in Riemannian manifold. A Riemannian manifold 
(ℳ, g) has furnished with a Riemannian metric g stretched 
out from differential manifold [24]. Neighbourhood inner 
products determine the Riemannian metric g on tangent 
vectors. i.e 

gx( . , . ) : Tx	ℳ × Tx	ℳ → R, x ∈ℳ 
The measure g of Riemannian manifold is bi-linear, 

symmetric, positive definite and is also C 		differentiable in 
x. 

푔 푢 , 푣 = 푔 (푢 ,푣 )	 

푔 (푢, 푣) = 푔 (푣, 푢) 
푔 (푢,푢) ≥ 0 

푔 (푢, 푢) ≥ 0 ⇔ 푢 = 0 
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The measure g is determined ∀	u, v ∈Tx	ℳ, based on 
bi-linearity of the inner product as in Eq. (14). 

 
푔 (푣,푢) = ∑ ∑ 푣 푢 푔 (휕푖,휕푗)  Eq. (14) 

 
The absolute meaning of gx in Eq. (14) have acquired 

by {gx(∂i, ∂j) : 1 ≤ i, j ≤ n}– the arrangement of internal 
items between the basic components {휕푖}  of Tx 	ℳ . 
Where 푔 (∂i, ∂j) is Gram matrix [G(x)]ij and is an 
asymmetric and positive clear grid that portrays the metric 
푔 [17]. Thus the lengths of tangent vectors v ∈Tx 	ℳ  is 
portrayed by 푔 (푣, 푢) and lengths of curves γ: [a, b] → ℳ 
is characterized by  

퐿(훾) = ∫ 푔 (훾̇(푡), 훾̇(푡))푑푡    Eq. (15) 
In Eq. (15), γ ̇ (t) is the speed vector of the curve γ at 

time t. The separation dg(x, y) is geodesic among two points 
x, y ∈ℳ is characterized from Eq. (15) by Eq. (16).  

 
푑 (푥, 푦) = inf ( , ) ∫ 푔 (훾̇(푡), 훾̇(푡))푑푡Eq. (16) 
 
The interfacing x and y points of curves have 

characterized by Γ(x,y). The geodesic curves depicted by 
geodesic distance dg and negligible curve accomplishing it. 
Geodesic space fulfils the typical necessities of space, with 
the topological structure. On the off chance that the 
manifold being referred to is obvious from the unique 
circumstance, we will expel the subscript and utilize d for 
the geodesic space. Specifically, smaller manifolds are 
geodesically complete if any geodesic curve c(t), t ∈ [a, b], 
can be stretched out to be characterized for all t ∈ R.It can 
be shown that the following are equivalent.  

• (ℳ, g) is geodesically complete 
• 푑  is a complete metric on ℳ 
• closed and bounded subsets of ℳ are compact. 
The Hopf-Rinow theorem [44] focusses that a geodesic 

can joint any two points if ℳ  is geodesically complete. 
Assuming that Riemannian manifolds (ℳ, g), (풩, h) and a 
isomorphism of smooth manifold samongst them f:	ℳ → 
풩. We characterize the pull-back and push-forward maps 
below. 

Definition 1. The push-forward map f*: Tx 	ℳ  → 
Tf(x)	풩, associated with the diffeomorphism f:	ℳ→ 풩 is 
the mapping that satisfies [19], [38]: 

v (r o f) = (f * v)r, ∀r ∈C 		 (풩,R). 
The push-forward has described from the coordinate-

free version of the Jacobian Matrix J or the total derivative 
operator associated with the local chart representation of f. 
In other words, if we define the coordinate version of f:	ℳ 
→ 풩 [39] 

푓 = ∅	표푓표ψ :푅 ⇢ 푅  
Where ∅	and	ψ  are local charts of N, 	ℳ  then push 

forward map is :                   

푓 ∗ 푢 = 퐽푢 =
휕푓횤̇

휕푥 푢 푒  

where J is the Jacobian of 푓 and 푓횤is the i-component 
function of 푓: Rm → Rn. Intuitively, as illustrated in Fig 2, 
the push-forward transforms velocity vectors of curves γ to 
velocity vectors of transformed curves f(γ). 

Definition 2. Given (N, h) and a diffeomorphism f : ℳ 
→ 풩 we define a metric f * h on ℳ called the pull-back 
metric by the relation  (f * h) x (u, v) = h f(x) (f * u, f * v). 

Definition 3. An isometry is a diffeomorphism f: ℳ → 
풩 between two Riemannian manifolds (ℳ, g), (풩, h) for 
which 

gx(u, v) = (f * h) x (u, v) ∀x ∈	ℳ, ∀u, v ∈Tx	ℳ.  
Two Riemannian manifolds identified as identical from 

the above said isometries in terms of their Riemannian 
structure. Consequently, isometries assure all the geometric 
properties including the geodesic distance function dg(x, y) 
= dh(f(x), f(y)). Note that the above definition of an 
isometry is defined through the local metric in contrast to 
the global definition of isometry.   A Riemannian structure 
and smooth manifold may be defined over a topological 
manifold with a boundary as well. The definition is a 
certainly straightforward expansion using the notion of 
differentiability of maps between non-open sets in R  [40]. 

 

 
Figure 2: The map f: ℳ → 풩describes a push forward map f*: 
Tx	ℳ → Tf(x) 풩 that converts velocity vectors of arcs to velocity 
vectors of the converted arcs. 

3.1 Lie Group Algebra 

Let a group G which has furnished with a 
multiplication operation, i.e. G × G → G, yield a component 
which intersect any two components a and b in G to written 
a · b, of G   fulfils the given characteristics [32], [36]: 
(i) For every element a, b and c in G, (a · b) · c = a · (b · c) is 
associative. 
(ii) For every a in G, a · e = e · a = a. Where e-identity 
component.  
(iii) There is an inverse a-1 for every component a in G, for 
which a · a-1 = a-1 · a = e. 
(iv) For all a, b in G, if a · b = b · a, then G is said to be a 
commutative (or abelian) group.  
 

A subsection of Group G is F, if this subsection 
produces a group under Multiplication activity, then F said 
to be a subgroup of G [36], [37]. The group multiplication 
and opposite are harmonious activities in the Lie Group 
theory. A Lie group is a smooth activity that observe 
manifold and fulfils further circumstances that are 
differentiable on Gaussian space. Accordingly, the locality 
of any element can be reasonably represented by its 
Euclidean space [32]. Let •, ◦ be the multiplicative activities 
on be Lie samples GL, GL′ correspondingly. A Lie group is 
assumed to homomorphic (φ : GL → GL′) and a smooth 
transitionthat satisfies φ(a • b) = φ(a) ◦ φ(b) for everyone of 
a, b∈ GL. 

3.2 Matrix Group 

The Square Matrices are imperative cases to progress 
Lie Algebra. Let A be the regular of nxn matrices which 
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frames a Lie Group if A is invertible under matrix 
multiplication at that point mentioned to as a general linear 
group. The Matrix groups, by and large, got from Lie 
subgroups of the general linear groups. Let a square matrix 
A and exponential of A, indicated by exp(A). The 
arrangement mapping is smooth or any X and exp(X) [16], 
[46]. Let the matrix B, and Log on B is meant by log(B), is a 
matrix A to such an extent that exp(A) = B. Let the 
arrangement of every single real number R and its Lie 
Algebra R+. The Log-Euclidean notation is detailed as 
follows.   

exp: 푅 → 푅 ,   x → exp(x) The exponential of real 
numbers is a smooth bijection, and its inverse log is also 
smooth. 

This substantiate exponential bijection exp and its 
inverse log is a both diffeomorphism. we characterize  
⊗: R X	R → 	R , x⊗푦 = exp	(log(푥) + log(푦)Eq. (17) 
⊙: R	X	R → R , 휆⊙ 푥 = exp	(휆 log(푥)) = 	 푥     Eq. (18) 

The Eq. (18) articulates employing logarithm, the 
multiplications in the Lie group R are mapped to the 
additions in the logarithm area.  This is composed to as 
"Log-Euclidean". 

4. LOG-EUCLIDEAN MULTIVARIATE GAUSSIAN 
DESCRIPTORS 

Let us consider M a given input image, and first, the 
characteristics of M are obtained by utilizing an importance 
point detector like SIFT. The process of obtaining SIFT 
characteristics is described in section II. Let X= be the basic 
features obtained for an image in the database by utilizing 
SIFT algorithm [11], [34] i.e. 

X =

⎣
⎢
⎢
⎢
⎡
푎 푎 푎 … … .푎 	 푎 	
푎 푎 푎 … … . 푎 	 푎 	
… … … … … … … … … … … … . .
… … … … … … … … … … … … . .
푎 푎 푎 … … .푎 	 푎 	 ⎦

⎥
⎥
⎥
⎤
	,			μ =

⎣
⎢
⎢
⎢
⎡
휇
휇
.
.
휇 ⎦
⎥
⎥
⎥
⎤
 

 
The SIFT features are effective in a wide-range of 

systems. Still, these features exhibit low order statistics as 
they only derived based on histogram frequencies and as a 
result there lacks high discriminative properties of images. 
Besides, distinct histograms typically suffer from the 
quantization issue [8], [41]. Multivariate Gaussian (μ, ∑) is 
prominent approach for effectively discriminate image 
characteristics in d-dimensional space N(d) [8], [16].  Image 
retrieval framework has shown in figure 3.  The 
characteristics for all images are attained by utilizing our 
described method and are placed in the feature database.  
For a user input image, the characteristics are attained and 
then these characteristics have contrasted with all the image 
characteristics placed in the feature database. The obtained 
outcomes are indexed and then given to the end user. The 
distribution of Multivariate Gaussian [16] of a regular d-
dimensional vectors X is obtained by Eq. (13) i.e. 

variable Gaussian (μ , ∑) may be represent image 
options in d-dimensional house N(d) [8], [16].  Image 
retrieval framework has shown in figure 3.  For all pictures 
within the image database, the features are extracted by 
victimization our planned approach and are keep within the 
Feature database.  For a given question image, the options 
are extracted and so these features have compared with all 
the image options keep within the feature database. The 
retrieval results are indexed and so show to the user. The 

distribution of variable Gaussian [16] of a collection of d-
dimensional vectors X is calculated by Eq. (13) i.e. 

 
푓(푋|휇 ,퐾) = (2π) / (푑푒푡퐾) / 푒 ( ) ( )/ Eq. (19) 

 
Where 휇is the mean vector, det is the basis,  and  K is 

the covariance space with real symmetric affirmative semi-
definite matrices [17] defined as follows: 

휇 =
1
푁 푎  

K =

⎣
⎢
⎢
⎢
⎡
푆 푆 푆 … … .푆 	 푆 	
푆 푆 푆 … … . 푆 	 푆 	

… … … … … … … … … … … … . .
… … … … … … … … … … … … . .
푆 푆 푆 … … .푆 	 푆 	 ⎦

⎥
⎥
⎥
⎤

 

Where 푆 = ∑ 푎 − 휇̅  

푆 =
1

푁 − 1 푎 푎 	–푛휇̅ 휇̅  

 
Figure 3: Image retrieval framework 

 
The way toward mapping Riemannian complex to 

Euclidean space has portrayed as follows: 
To start with, the covariance matrix projected on vector 

space tangent to the Riemannian manifold. 
푡 = 푙표푔 (퐾) = 푄 log	(푄 	 퐾푄 )푄     Eq. (20) 
In Eq. (20) log(Q) is Manifold particular logarithm 

operator and the log is Matrix logarithm operator.    
 At that point, the orthogonal directions of the 

anticipated vectors are extracted as in Eq. (21).  
vec (t ) = vec Q t Q                  Eq. (21) 
While the vector operator on the tangent space at the 

character of a symmetric matrix Y is characterized as: 
vec (Y) = 푦 , √2	푦 , √2푦 , 푦 , √2푦 , … . . 푦 ,   Eq. 

(22) 
Replace with tK in Eq. 22, the projection of K on the 

hyperplane tangent to Q progresses toward K. 

K = vec log Q KQ    Eq. (23) 

The projection point Q could impact the execution 
(mutilation) of the projection since it is irregular in nature. 
The Identity matrix is utilized, which essentially interprets 
standard matrix logarithm. So forward a (d2 + d)/2-
dimensional element vector is acquired since K is the 
symmetric framework. The covariance matrix which is 
gotten from SIFT descriptors is anticipated on a Euclidean 
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space and linked to the mean vector to acquire the final 
descriptor. The exploratory outcomes demonstrate that the 
resultant descriptor esteems low, while few are high. The 
power standardization techniques can be adjusted to disperse 
the values more equally. 

5. RESULTS AND ANALYSIS 

We complete tests on the Coral (Wang) Database and 
Caltech - 101database [30] to make an investigation of 
parameters engaged with LEMVG. The Coral (Wang) image 
Database contains 10,000 pictures altogether and isolated 
into ten classes. We take after the standard measure Average 
Precision (AP) over various classes of the photographs [31].  

Caltech-101 has around 9K images conveyed in 101 
categories, comprising of multiple poses, sizes and at 
different lighting conditions. The depiction of the Caltech-
101 database is appeared in fig-4 [30]. The target of Log 
Euclidean Multivariate Gaussian Descriptors (LEMVG) is to 
depict local features of the pictures efficiently. The often 
utilized basic features, for example, intensity, colour, 
location, first and second derivatives are figured out at 
various scales. We applied distinctive operators to represent 
basic features extracted in diverse directions and at multiple 
scales. Table -1 presents the image retrieval results obtained 
from numerous combinations of operators over WANG 
Database, and Table -2 gives the image retrieval results 
obtained from a various variety of operators over Caltech- 
101 Database as shown in Fig-4.  

In the Table-1&2, 1st row presents image retrieval 
results which compute covariance descriptors [9] based on 
combination essential features intensity, location [18]. In the 
Table-1&2, 2nd row shows results based on features 
calculated by using orientation histogram of edges (OHE) 
[24], [31]. OHE usually collects the zero-order statistics of 
the image. In Table -1&2, 3rd row presents results based on 
the basic features computed by the first-order derivative 
operator of Gaussian (FDOG). Finally, in Table -1&2, 4th 
row shows results based on the basic features computed by 
evaluating additional colour, Gabor filters. 
 

 
Figure 4: Snapshot of Caltech 101 Image Database 

 
The Experimental results demonstrated that LEMVG 

Descriptor achieves the best performance over WANG 
database with a mix of first and second derivatives. 
Similarly, LEMVG best performance over the Caltech-101 
database by utilizing Covariance Descriptors. The retrieval 
result @2 and @3 of table-1&2 proved that the OHE and 
Gabor Filter marginally enhance performance over WANG 
database. 

The Gabor filters are of generally high dimension yet 
neglect to bring better results. This might be because texture 
data of little patches extricated by Gabor filters isn't 
sufficiently particular and is consequently not competing for 
image retrieval task. Graph-1 introduces the examination of 
Retrieval results which are acquired utilizing LEMVG 
technique over WANG and Caltech-101 databases.  In the 
Graph-1 AP precision of 10 images taken into consideration 
at 10% the recall is 80 and at 20% the recall is 76 etc,.  The 
AP on WANG and Caltech-101 databases at 100% Recall is 
25 and 19 respectively. We demonstrate that LEMVG has 
fundamentally the same as performance over both databases, 
by and large, the results on Wang database outperformed 
more than 2.4% for numerous scale. 

 
Table 1: The Experimental results of LEMVG obtained using 

different operator on WANG Database 
No Raw Features Dimension LEMVG 

(AP,%) 
@1 Covariance Descriptors 

(Intencity, Location) 
7 53.71 

@2 Orientation Histogram of 
Edges(8 bins) 

9 41.72 

@3 First-order 
The derivative operator 

of Gaussian (FDOG) 

12 51.48 

@4 Gabor filters 15 50.13 

 
 

Table 2:  The Experimental results of LEMVG obtained using 
different operator on the Caltech-101 database 

No Raw Features Dime
nsion  

LEMVG(
AP,%) 

@1 Covariance Descriptors 
(Intensity, Location) 

7 52.44 

@2 Orientation Histogram of 
Edges (8 bins) 

9 44.55 

@3 First-order 
The derivative operator of 
Gaussian (FDOG) 

12 47.93 

@4 Gabor filters 15 49.83 

 
Further, we did examinations to check our mapping 

strategies that effectively utilize the geometrical structure of 
Euclidean space. The performance of direct mapping 
systems as in eq-19, indirect mapping as in eq-20 and eq-21, 
are assessed over patch size 12X12. The retrieval results are 
introduced in Fig-5. The outcomes demonstrated that 
indirect mapping procedure accomplishes better AP over 
direct mapping. Out of all direct and indirect mapping 
outperforms the benchmark method. 
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Graph 1: Average Precision of LEMVG Method at a different 

level of recall over Wang and Caltech-101 databases 
 
The fixed size has an influence on some set of 

neighborhood key points and local geographies of an image. 
We chose the training sample step to 2 to examine the 
influence of patch size, and the results are presented in 
Table-3. The performance raises consistently as the patch 
size declines gradually from 24×24 to 12×12. This exhibits 
that neighborhood characteristics at finer scales are more 
particular and discriminative. Yet, a too-small patch size 
(8×8 or littler) prompts a deficient number of samples for 
Gaussian estimation. By blend of four measures of patches, 
LEMVG accomplishes AP 53.75%.  

 

 
Figure 5: Comparison of Different mapping methods on WANG 

Database. 
 
The Retrieval outcomes are distinguished with outcomes 

obtained by SIFT and Linear Discriminant Analysis (LDA) 
which is expansion of Fisher's Discriminant Exploration 
over WANG and Caltech-101 databases [33], [16]. LDA is a 
Machine learning approach which productively separates 
picture descriptors. The Descriptors utilizing LEMVG and 
LDA are registered with 12x12 patch size [43], [44]. Table-
5 shows the retrieval results Average Precision over 
Caltech-101 and WANG database, which speaks to their 
performance against different baseline descriptors. 
 
 

Table 3:  Effect of Patch Size on LEMVG 
Patch Size 8X8 12X12 16X16 24X24 

WANG 51.32 53.75 51.35 49.30 
Caltech-101 49.35 51.45 49.10 47.04 

 
 
 

Table 4: Retrieval correctness Precision of SIFT, HoG, LEMVG at 
different levels of recall 

REC
ALL 

LDA SIFT LEM
VG 

10% 67.85 65.66 75.54 
20% 63.54 62.64 70.34 
30% 57.75 56.67 67.32 
40% 53.45 55.35 63.54 
50% 50.32 48.94 54.23 
60% 47.45 46.24 50.32 
70% 45.56 43.45 47.54 
80% 42.12 38.43 42.54 
90% 33.12 31.43 39.54 
100% 28.12 27.44 35.5 
AP 48.92 47.68 54.64 

 
From 101 classes of Caltech-101 image store, ten 

pictures arbitrarily browsed from every type and are utilized 
as a query. For each query, typical precision and retrieval at 
each degree of the recall is generated. The image retrieval 
result Average Precision of various methods at each degree 
of recall is given in table-4. In the table-4 precision of LDA, 
SIFT and LEMVG of Barrel-0004 at 10% the recall is 66.75, 
65.56and 75.54 respectively. With Log Euclidean 
Multivariate Gaussian, we further more realize enhanced 
precision of 6.56% by and large.  

6. CONCLUSION 

We have proposed a Log Euclidean Multivariate Descriptors 
to depict neighborhood, higher-level discriminative features 
of images. We have developed a Log-Euclidean 
measurement to transform the Gaussians with Euclidean 
space instead of Riemannian ones. Not at all like histogram-
based descriptors, for instance, SIFT or HoG, the proposed 
descriptors are steady and models higher-order features of 
pictures which are remarkably beneficial in Image Retrieval 
task. We unveiled that the space of Gaussians can be 
outfitted with a Lie group structure and that it is 
proportionate to a subgroup of the upper triangular 
subgroup. These conclusion gives insights into the 
numerical and geometrical structure of Gaussians. 
Observational assessment proved the productivity of the 
subsequent algorithms on both syntactic and real-world 
problems in image retrieval. With the accomplishment of 
covariance descriptors, we are additionally intrigued to 
apply LEMVG descriptors to other vision tasks, for 
example, object tracking in videos and visual tracking. 
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