
Sangchul Han et al.,  International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  5864 – 5868 

5864 
 

 

 
ABSTRACT 
 
DVFS (dynamic voltage /frequency scaling) is a well-known 
and prevalent low power technique in processor components. 
This article proposes a DVFS scheme for multicore real-time 
systems. The proposed scheme divides the worst-case 
processor time of a real-time task into multiple sections and 
associates different speed with each section in increasing 
order. As a job executes and progresses, its speed increases 
according to the speed associated with the sections. If a job’s 
actual execution requirement is smaller than its worst-case 
execution requirement, the job starts and executes at a low 
speed. The amount of consumed energy is less than the worst 
case. We integrate and evaluate the scheme with a multicore 
real-time scheduling. The results show that our multi-speed 
scheme can save energy consumption by up to 6.99% 
compared with the individual speed scheme. And we also 
show that our scheme performs better as the number of 
sections increases. 
 
Key words : Multi-speed DVFS, Multicore, EDZL 
Scheduling, Real-Time Systems 
 
1. INTRODUCTION 
The limitation of battery capacity forces embedded system 
designers to devise low power techniques in hardware or 
software components[23]-[27].DVFS (dynamic 
voltage/frequency scaling) is a well-known and prevalent low 
power technique in processor components. By decreasing the 
frequency and supply voltage dynamically in processors, 
DVFS can reduce the power dissipation in processors. Many 
processor manufacturers incorporate DVFS technique into 
their products[3]-[5]. The challenge of adopting DVFS in 
embedded real-time systems is that decreasing the frequency 
and supply voltage causes processing cores to execute slow. It 
takes a longer time for a real-time task to fulfil its computation 
than no DVFS technique is adopted. If the core speed is 
excessively lowered, real-time tasks may not finish in time, 
resulting in deadline miss.   
 
There have been many studies on DVFS on multiprocessor (or 
multicore) real-time systems [1,6-16,22,26-27].  Among them, 
Han et. al [22] proposes the individual speed scheme that 
calculates an individual speed for periodic tasks in EDZL 

 
 

[17-21] scheduling on multicore platforms. The authors 
showed that tasks running at their individual speed can be 
safely scheduled to meet their deadline and consume much 
less energy. 
 
In this article, we propose a novel DVFS scheme where tasks 
have multiple steps of speed. From the individual speed for 
EDZL scheduling, we can calculate the processor time that 
can be safely allowed to a task without jeopardizing other 
tasks’ timing constraints. We can adjust the task’s execution 
speed to reduce energy consumption as long as it fulfils its 
execution within that processor time. Our scheme divides the 
processor time into multiple sections and associates different 
speed to each section in increasing order. A job starts 
execution at a speed lower than its individual speed. As the 
job progresses, its speed increases according to the speed 
associated with the sections. If the AET (actual execution time) 
of the job is far smaller than its WCET (worst-case execution 
time), the energy consumption is less than executing all the 
computation at the individual speed. We integrate and 
evaluate the proposed scheme with EDZL scheduling. The 
results show that our scheme can save energy consumption by 
up to 6.99% compared with the individual speed scheme. And 
we also show that our scheme performs better as the number 
of sections increases. 
 
2. SYSTEM MODEL 
 
Multicore platforms consist of m cores that have an individual 
clock. The core speed is defined asf / fmax  where f is the 
current frequency and fmax is the maximum frequency. T he 
minimum frequency is denoted by fmin and the minimum core 
speed is denoted by Smin. Obviously, the maximum core speed 
is 1. The execution amount of job is defined as ls where l is 
the used processor time and s is the core speed. If a job 
executes from t1 to t2atspeed0.7, the amount of execution is (t2 
- t1)  0.7.  
 
Assume P=V2f where P is the power dissipation of core and V 
is the supply voltage [2]. As usual, to adjust the speed of core, 
the voltage and frequency of core should be changed together. 
In addition, since V and s are nearly proportional to f, we can 
say that P is proportional to the cubic of s. Since the length of 
used processor time of job is inversely proportional to its 
speed for a fixed execution amount, the energy consumption 
of job is proportional to s2. 

 
A Multi-Speed Dynamic Voltage/Frequency Scaling Scheme 

for Multicore Real-Time Systems 
Sangchul Han, Jinsoo Kim, Junghwan Kim* 

Dept. of Software Technology,Konkuk University, Korea 
*Corresponding author: jhkim@kku.ac.kr 

        ISSN  2347 - 3983 
Volume 8. No. 9, September 2020 

International Journal of Emerging Trends in Engineering Research 
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter157892020.pdf 

https://doi.org/10.30534/ijeter/2020/157892020 
  

 



Sangchul Han et al.,  International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  5864 – 5868 

5865 
 

 

A periodic taski is (ei, pi) where pi is a period and ei is the 
WCET supposing i executes at the maximum speed. A task 
periodically instantiates jobi,jat j∙pi (j=0,1,2,…) 
andi,jrequires the execution ofat mostei time unit. The job has 
to fulfil the execution by deadline di,j = pi(j+1).A task set is 
denoted by  = {1, 2, …, n}. The total utilization of taskset 
is U() =(ei/pi). 
 
3. MULTI-SPEED DVFS SCHME 

3.1 Individual Speed Technique 
Han et. al [22] proposed a DVFS technique called the 
individual speed scheme. Based on Lee's test [21], it computes 
an individual speed for each task. From the individual speed, 
we can calculate the processor time that can be safely allowed 
to a task without jeopardizing other tasks’ timing constraints. 
We can adjust the execution speed of the task to reduce energy 
consumption as far as it fulfils its execution within that 
processor time. Let Si be the individual speed of i. The 
amount of processor time that i can use is ei/Si in every 
period. 

3.2Multi-Speed DVFS Technique 
This section proposes the multi-speed DVFS technique. Our 
scheme divides the processor time allowed to i into multiple 
sections of the same length. Let N be the number of sections. 
The length of each section is ei/(SiN). The technique 
associates different speed with each section in increasing 
order. 
 
For tasks with individual speed higher than or equal to 0.5, the 
execution speed from 2Si-1 to 1.0 with a step of 
(2-2Si)/(N-1)is assigned to the sections. The speed assigned 
to the first section is lower than the individual speed Si by 
1-Si.Since the length of sections are all equal and the speed of 
sections are symmetric with respect to Si, the total execution 
amount of task in our scheme is equal to that in the individual 
speed scheme. Hence, jobs can fulfil its execution in the worst 
case.  
Jobs start execution at a speed lower than its individual speed. 
As jobs progress, its speed is raised according to the speed of 
the sections. If the AET of a job is far smaller than its WCET, 
since the job starts execution at a low speed, the energy 

consumption is less than executing all the computation at its 
individual speed. Figure 1 illustrates the multi-speed scheme 
when the number of sections is 4, i.e.,N=4. The individual 
speed of this task is 0.7. The speeds of the sections are 0.4, 0.6, 
0.8 and 1.0. Jobs of this task start execution at speed 0.4. The 
speed is raised to 0.6 when jobs has executed for totally ei/(4Si) 
time unit on cores. Suppose a job finishes in the second 
section. Since the speed of the first and second section is 
lower than the individual speed, the energy consumption is 
less than it would be with the individual speed. 
 
For tasks with individual speed lower than 0.5, the scheme 
does not apply multi-speed DVFS technique. Those tasks 
execute at their individual speed until they finish. In our 
scheme, the individual speed is the middle of the section 
speeds. If the individual speed is close to the minimum speed, 
there is little room in the space of speed for the head sections. 
For example, the minimum speed of Strong ARM SA-1100 
processor is 0.291. If the individual speed is 0.4, the 
difference between them is 0,109. The speed of jobs can be 
lowered just a little. 
 
4. EXPERIMENTS 
 
We conduct simulation to evaluate the multi-speed DVFS 
scheme. Groups of tasksets are created for each m = 2, 4,8 
and16. As we vary the total utilization from 0.25m to 0.90m 
with a step of 0.2, we create 100 tasksets for each utilization. 
Each taskset is composed of a random number of tasks. When 
generating a task, we randomly select pi from  (10,1000] and ui 
from (0.1,1],and calculate ei=pi × ui. We test the tasksets using 
Lee’s test [21] and drop unschedulable tasksets. The actual 
execution time of jobs is randomly selected from [1, ei]. 
 
The processor characteristics in our experiments are shown in 
Table 1. Every time a job starts a section, the amount of 
processor time that is used in this section is calculated and the 
amount of energy consumption is also calculated using the 
processor characteristics corresponding to the section speed. 
The energy consumption is E=Pl where l is the length of 
execution and P is the power in Table 1. While a job executes, 
the energy consumed during its execution is summed up.  

Table 1: Characteristics of StrongARM SA-1100  
power(%) speed volt.(V) freq.(MHz) 

100 1.000 1.50 206 
78.9 0.947 1.42 195 
63.2 0.874 1.30 180 
50.0 0.801 1.20 165 
39.9 0.728 1.15 150 
33.6 0.655 1.10 135 
33.3 0.583 1.08 120 
19.8 0.510 0.95 105 
15.0 0.437 0.90 90 
11.8 0.364 0.82 75 
9.44 0.291 0.80 60 

Figure 1: Example for multi-speed scheme when N=4 



Sangchul Han et al.,  International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  5864 – 5868 

5866 
 

 

The energy consumption of a taskset is the sum of the energy 
consumed by all jobs belonging to the taskset for a 
hyper-period. We compute the ratio of the energy 
consumption with a DVFS scheme to the energy consumption 
with no DVFS scheme for each taskset. Then we average the 
ratio over total utilizations. 

The average energy consumption ratio is shown in Figure2, 3, 
4, and5. In the figures, individual denotes the individual speed 
scheme [22] and N-step denotes the proposed scheme with the 
number of sections of N(=2, 3, 4, 5 and 6).In case N=2, our 
scheme consumes less energy than individual only for large 
total utilizations. If the total utilization is not high, many tasks 
have a small execution requirement. For such tasks, the 
difference between the AET and the WCET is small, resulting 
in small energy saving gain from a low execution speed. 
When such a job enters the second section, the execution 
speed jumps up to the maximum speed, resulting in much 
energy consumption. We can find out from the figures that the 
energy consumption reduces as the number of sections 
increases. This means that moderate speed increase is more 
effective in energy saving. Our scheme performs better as the 
number of sections increases. It can save energy consumption 
by up to 6.99% compared with the individual speed scheme 
when m=2 and N=6. 
 

 
Figure 2: Average energy consumption ratio on 2 cores 

 
 

 
Figure 3: Average energy consumption ratio on 4 cores 

Figure 4:Average energy consumption ratio on 8 cores 
 

Figure 5:Average energy consumption ratio on 16 cores 
 
Figure 6, 7, 8 and 9 demonstrate the relative performance of 
our multi-speed scheme compared with the individual speed 
scheme. The figures show the average energy consumption 
ratio normalized to the individual speed scheme. With a small 
number of sections, our scheme underperforms the individual 
speed scheme significantly. For example, the difference is 
6.49%. when m=2 and N=2. However, as the number of 
sections increases, the performance of our scheme improves. 
When m=2 and N=6, our scheme outperforms the individual 
speed scheme by 5.44%.  
 
5. CONCLUSION 
 
This article proposes a multi-speed dynamic 
voltage/frequency scaling scheme for EDZL scheduling 
algorithm. Our scheme divides the allowed processor time of 
tasks into several sections and assigns an execution speed to 
the sections in increasing order. Since the assigned speeds are 
symmetric with respect to the individual speed, we can safely 
adjust a job’s speed without jeopardizing the timing 
constraints. By starting a job at a speed lower than its 
individual speed, we can expect energy saving if the actual 
execution requirement is much less than the worst case. The 
simulation results show that our scheme underperforms the 
individual speed scheme when the number of sections is small. 
However, as the number of sections increases, that is, the 



Sangchul Han et al.,  International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  5864 – 5868 

5867 
 

 

execution speed is adjusted more moderately, the 
performance of our scheme improves. It can save more energy 
than the individual speed scheme by at most about 7%.  
 

 
 

 

REFERENCES 
1. V. Nelis, J. Goossens, R. Devillers, and N. Navet, 

Power-aware real-time scheduling upon identical 
multiprocessor platforms, in Proc. IEEE International 
conference on sensor networks, ubiquitous and 
trustworthy computing (SUTC’08), pp. 209–216, 2008. 

2. A. Chandrakasan, S. Sheng, and R. Brodersen. 
Low-Power CMOS Digital Design, IEEE Journal of 
Solid-State Circuit, vol. 27, no. 4, pp. 473–484, 1992. 

3. Intel Product Specifications. Retrieved November 29, 
2018, from: https://ark.intel.com/. 

4. J. Khan, S. Bilavarn, and C. Belleudy. Energy Analysis 
of a DVFS based power strategy on ARM platforms, 
in Proc. IEEE Faible Tension Faible Consommation 
(FTFC), Paris, France, pp. 1–4, 2012. 

5. AMD Products. Retrieved November 29, 2018, from: 
http://www.amd.com/en-us/products. 

6. H. Aydin, and Q. Yang, Q. Energy-aware partitioning 
for multiprocessor real-time systems,in Proc. 17th 
International Symposium on Parallel and Distributed 
Processing (IPDPS’03), Nice, France, 2013. 

7. J.J.Chen, and T.W. Kuo. Multiprocessor 
energy-efficient scheduling for real-time tasks with 
different power characteristics, in Proc. the 2005 
International Conference on Parallel Processing 
(ICPP’05), Oslo, Norway, pp. 13–20, 2005. 

8. C.Y. Yang, J.J. Chen, and T.W Kuo. An approximation 
algorithm for energy-efficient scheduling on a chip 
multiprocessor. in Proc. Conference on Design, 
Automation and Test in Europe (DATE’05), Munich, 
Germany, pp. 468–473, 2005 

9. J.J. Chen, and C.F. Kuo. Energy-efficient scheduling 
for real-time systems on dynamic voltage scaling 
(DVS) platforms, in Proc. 13th IEEE International 
Conference on Embedded and Real-Time Computing 
Systems and Applications (RTCSA’07), Daegu, Korea, pp. 
28–38, 2007. 

10. C.L. Liu, and J.W. Layland. Scheduling Algorithms for 
Multiprogramming in a HardReal-Time 
Environment, Journal of the ACM. vol. 20, no. 1, pp. 
46–61, 1973. 

11. N.C. Audsley, A. Burns, M.F. Richardson, and A.J. 
Wellings. Hard real-Time scheduling: the 
deadline-monotonic approach, in Proc. IFAC/IFIP 
Workshop on Real Time Programming, Atlanta, USA, pp. 
127-132, 1991. 

12. K. Funaoka, A. Takeda, S. Kato, and N. Yamasaki. 
Dynamic Voltage and Frequency Scaling for Optimal 
Real-Time Scheduling on Multiprocessors, in Proc. 
3rd IEEE International Symposium on Industrial 

Figure 7: Relative performance of our scheme on 4 cores 

Figure 9. Relative performance of our scheme on 16 cores 

Figure 6: Relative performance of our scheme on 2 cores 

Figure 8: Relative performance of our scheme on 8 cores 



Sangchul Han et al.,  International Journal of Emerging Trends in Engineering Research, 8(9), September 2020,  5864 – 5868 

5868 
 

 

Embedded Systems (SIES’08), Le Grande Motte, France, 
pp. 27–33, 2008. 

13. V. Nelis, J. Goossens, R. Devillers, and N. Navet. 
Power-Aware Real-Time Scheduling upon Identical 
Multiprocessor Platforms, in Proc. IEEE International 
Conference on Sensor Networks, Ubiquitous and 
Trustworthy Computing (SUTC’08), Taichung, Taiwan, 
pp. 209–216, 2008. 

14. X. Piao, H. Kim, Y. Cho, S. Han, M. Park, and M. Park. 
Power-Aware EDZL Scheduling upon Identical 
Multiprocessor Platforms, in. Proc. International 
Conference on Reliable and Autonomous Computational 
Science (RACS 2010), Atlanta, USA, pp. 61–80, 2010. 

15. S. Funk, V. Berten, C. Ho, and J. Goossens. A global 
optimal scheduling algorithm for multiprocessor 
low-power platforms, in Proc. 20th International 
Conference on Real-Time and Network Systems, Pont à 
Mousson, France,pp.  71–80, 2012. 

16. S. Han, M. Park, X. Piao, and M. Park. A dual speed 
scheme for dynamic voltage scaling on real-time 
multiprocessor systems, The Journal of 
Supercomputing,vol. 71, no. 2, pp. 574–590, 2015. 

17. S. Cho, S.K. Lee, A. Han, and K.J. Lin. Efficient 
Real-Time Scheduling Algorithms for Multiprocessor 
Systems,IEICE Trans on Communications, vol. E85-B, 
no. 12, pp. 2859–2867, 2002. 

18. M. Park, S. Han, H. Kim, S. Cho, and Y. Cho. 
Comparison of Deadline-based Scheduling 
Algorithms for Periodic Real-Time Tasks on 
Multiprocessor,IEICE Trans on Information and 
Systems,vol. E88-D, no. 3, pp. 658–661, 2005. 

19. M. Cirinei, and T.P. Baker. EDZL Scheduling 
Analysis,in Proc. 19th Euromicro Conference on 
Real-Time Systems (ECRTS’07), Pisa, Italy, pp. 9–18, 
2007. 

20. T.P. Baker, M. Cirinei, and M. Bertogna. EDZL 
scheduling analysis, Real-Time Systems,vol. 40, no. 3, 
pp. 264–289, 2008. 

21. J. Lee, and I. Shin. EDZL Schedulability Analysis in 
Real-Time Multicore Scheduling, IEEE Transactions 
on Software Engineering, vol. 39, no. 7, pp. 910–916, 
2013. 

22. S. Han, M. Park, and W. Paik.Dynamic 
Voltage/Frequency Scaling for EDZL Scheduling in 
Multicore Real-Time Systems, Journal of Engineering 
and Applied Sciences, vol. 14, no. 21, pp. 8039-8046, 
2019. 

23. M S. Kumar, F. Noorbasha, S. Inthiyaz, M. Jameela, A. 
Sandhya, Md. Imran, and S. K. Tulasi. Low Power 
Carry Look-Ahead Adder using Transmission Gate 
Multiplexer, International Journal of Emerging Trends 
in Engineering Research, vol. 8, no. 1, 2020. 

24. B. Lakshmi, and B. Navyasri. Energy Efficient Routing 
Mechanism for Harsh Environment in Wireless 
Sensor Networks, International Journal of Emerging 
Trends in Engineering Research, vol. 7, no. 9, 2019. 

25. P.S. Akram, G.V. Ganesh, A. S. Kumar, K.S. Chand, and 
M.R. Varma. Non-Volatile 7T1R SRAM cell design for 
low voltage applications, International Journal of 

Emerging Trends in Engineering Research, vol. 7, no. 11, 
2019. 

26. S. Han. Energy-aware EDZL Scheduling of Periodic 
Tasks on Multicore Systems, International Journal of 
Emerging Trends in Engineering Research, vol. 8, no. 4, 
2020. 

27. S. Han. A Simple and Aggressive Dynamic 
Voltage/Frequency Scaling Technique for EDZL 
Scheduling on Multiprocessors, International Journal 
of Emerging Trends in Engineering Research, vol. 8, no. 
8, 2020. 

 
 


