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ABSTRACT 
 
Simultaneous Clustering and Model Selection (SCAMS) is 
introduced to cluster multipaths from COST 2100 channel 
model (C2CM). SCAMS determines not only the number of 
clusters but also the membership of the clusters. The study is 
the first to report clustering of multipaths that consider 
simultaneously the number of clusters and the membership of 
the clusters. Cluster identification and cardinality 
classification are dependent on the values of ߣ and ߛ, the 
parameters that weigh the penalty terms to avoid the trivial 
solution (all 1 matrix) of the affinity matrix. The clustered 
multipaths are compared with the reference multipaths that 
can be found in IEEE DataPort. The accuracy of the 
clustering approach is examined using the Jaccard index (ߟ). 
The proposed clustering approach can achieve higher 
accuracy compared to popular multipath clustering 
approaches. 
 
Keywords: channel models, clustering methods, multipath 
channels, radiowave propagation 

 
1. INTRODUCTION 
 
Channel modeling is important in studying the efficiency of 
wireless communications system. Channel modeling 
simulates the propagation channel prior to the 
implementation of a wireless communications network. 
Clustering approaches determine the characteristics of a 
channel model. For this reason, it is important to develop an 
accurate clustering approach to assess precisely the 
performance of a wireless communications system. 
 
The European Cooperation in Science and Technology 
(COST) 2100 channel model can reproduce the properties of 
MIMO channels. C2CM have shown that multipath 
components with similar delay and angles are grouped into 
multipath clusters. A multipath component (MPC) is 
characterized in delay and angular domains by its delay, angle 
of departure (Azimuth of Departure (AoD), Elevation of 
Departure (EoD)), and angle of arrival (Azimuth of Arrival 
(AoA), Elevation of Arrival (EoA)). Multipaths generated by 
C2CM were applied to well-known clustering approaches in 
[1] to compare their accuracies using a single common C2CM 

dataset. The clustering approach in this study also uses the 
datasets generated by C2CM that are uploaded in IEEE 
DataPort [2] and detailed in [3]. This way, the accuracy of 
SCAMS [4] in clustering multipaths can be compared with 
the clustering approaches that also use C2CM datasets. 
 
Clustering is the process of classifying data where objects that 
are similar are grouped (cluster) together. The field of 
application is wide but not limited to white blood cell 
classification [5] and wireless sensor networks [6]. On the 
other hand, the clustering approaches in [7]–[10] are applied 
to multipath clustering and consider only the number of 
clusters without taking into account the cardinality of the 
clusters. The problem with this clustering procedure is that it 
is possible that the number of clusters is correct but not the 
membership of the clusters. The study in [1] showed that the 
widely-used clustering approaches group multipaths at most 
half of the time. The result reveals that the clustering accuracy 
can still be improved. This study seeks to improve low 
clustering accuracy. Also, the study reports for the first time 
the clustering of multipaths by determining simultaneously 
the number of clusters and the membership of the clusters. 
The main contributions of this paper are (1) SCAMS is 
introduced to cluster multipaths and can be used as an 
alternative in channel modeling as it gives both the number of 
clusters and the membership of the clusters; and (2) the 
clustering approach shows potential due to improved 
accuracy compared to the results obtained in [1]. 
 
The paper is organized in the following way. Section 2 
discusses the COST 2100 channel model. Section 3 describes 
the clustering approach. Section 4 shows the results of the 
clustering approach and compares with the reference 
multipaths. Section 5 concludes the work. 

 
2. COST 2100 CHANNEL MODEL 
 
A channel impulse response is a combination of MPCs from 
all the active multipath clusters. It is given as 
 
ℎ(ݐ, ߬,Ω୆ୗ,Ω୑ୗ) =
∑ 	௡∈ࣝ ∑ 	௣ ߬)ߜ௡,௣ߙ − ߬௡,௣)ߜ(Ω୆ୗ − Ω௡,௣

୆ୗ Ω୑ୗ)ߜ( − Ω௡,௣
୑ୗ) (1) 
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where ࣝ  is the set of visible cluster indexes, ߙ௡,௣  is the 
complex amplitude of the pth MPC in the nth cluster, Ω௡,௣

୆ୗ  is 
the direction of departure (AoD, EoD), and Ω௡,௣

୑ୗ  is the 
direction of arrival (AoA, EoA) of the MPC. C2CM is 
presented in [11] and discussed in detail in [12]. 
 
Generation of C2CM MPCs and multipath clusters is 
discussed in [3] and the datasets are uploaded in [2]. The two 
indoor scenarios are used as reference data in this study. 

 
3. SIMULTANEOUS CLUSTERING AND MODEL 
SELECTION (SCAMS) 
 

 
Figure 1: SCAMS Processing Steps 

 
 

Algorithm 1: Alternating Direction Method of Multipliers 
 

,ࢃ	matrix	afϐinity	Negative	:ܜܝܘܖ۷ parameters	λ	and		
	γ
୧ୢୣୟ୪࡯:܍ܢܑܔ܉ܑܜܑܖ۷	 = ࡴ = ࢅ = ૙ே×ே ,μ = 10଺,ρ = 1.1,
		μ୫୧୬ = 10ିଵ଴	and	ε = 10ି଼.
ܗ܌	converged	not	܍ܔܑܐܟ		
୧ୢୣୟ୪࡯	update	and	others	the	Fix	૚	ܘ܍ܜ܁		 	as
୧ୢୣୟ୪࡯			 = argmin࡯౟ౚ౛౗ౢ‖࡯୧ୢୣୟ୪ − ࡴ + μ(ࢃ + ୊ଶ‖(ࢅ +
			2μλrank(࡯୧ୢୣୟ୪), s. t.		࡯୧ୢୣୟ୪ ∈ .ା܁
as	ࡴ	update	and	others	the	Fix	૛	ܘ܍ܜ܁		
′ࡴ			 = argminࡴ‖ࡴ− ୧ୢୣୟ୪࡯ − μࢅ‖୊ଶ + 2μγ‖ࡴ‖଴ + ,(ࡴ)݃
ࡴ			 = ′ࡴ − diag(ࡴ′) + .ࡵ
multipliers	the	Update	૜	ܘ܍ܜ܁		

܇			 = ܇ +
1
μ

୧ୢୣୟ୪࡯) − .(ࡴ

by	ߤ	parameter	the	Update	૝ܘ܍ܜ܁		

ߤ			 = max൬
μ
ρ ,μ୫୧୬൰ .

:conditions	convergence	the	Check	૞	ܘ܍ܜ܁		
୧ୢୣୟ୪࡯‖			 ஶ‖ࡴ− ≤ ε.
܍ܔܑܐܟ܌ܖ܍		

 

 
SCAMS, as illustrated in Figure 1, can solve both the problem 
on clustering and estimating the number of clusters. The 
clustering approach begins by formulating the affinity matrix 
 ୡୟ୪ୡ using the self-expression method [13] where a given࡯
dataset ࢄ can be represented as ࡯ࢄୡୟ୪ୡ. The solution of 
(2) corresponds to ࡯ୡୟ୪ୡ. 
 

min ‖࡯ୡୟ୪ୡ‖ଵ s.t. ࢄ = (ୡୟ୪ୡ࡯)ୡୟ୪ୡ, diag࡯ࢄ = ૙  (2) 
 
By introducing an ideal affinity matrix ࡯୧ୢୣୟ୪ and denoting 
ࢃ =  ୡୟ୪ୡ, the clustering problem can be expressed as࡯−

          

min 〈࡯,ࢃ୧ୢୣୟ୪〉,
s.t. ࢠ௞{0,1}ெ, ∑ ௞ࢠ = ெ௄ࢋ

௞ୀଵ ,
୧ୢୣୟ୪࡯ = ∑ ௞௄ࢠ

௞ୀଵ ∘ ௞ࢠ (୧ୢୣୟ୪࡯) , = ܭ
          (3) 

 
where 〈⋅,⋅〉 is the Frobenius inner product, ࢋெ is an all one 
vector of size M while ܭ is the number of clusters. (3) can be 
expressed as an augmented Lagrange function ख 
 

tr(ࢃT࡯୧ୢୣୟ୪) + (୧ୢୣୟ୪࡯)rankߣ + ଴‖ࡴ‖ߛ + (ࡴ)݃
+ tr(ࢅT(࡯୧ୢୣୟ୪ ࡴ− + diag(ࡴ)− ((ࡵ

+ ଵ
ଶఓ
୧ୢୣୟ୪࡯‖ ࡴ− + diag(ࡴ)− F‖ࡵ

ଶ, s.t. ࡯୧ୢୣୟ୪ ∈ ାࡿ
 (4) 

 
where ݃  is the indicator function of the convex set 
[0,1]୑×୑, which returns 0 if it is in the set, ∞ otherwise, ࡴ 
Algorithm 2: AssoConstrained Boolean Matrix Factorization 
଴ܭ,୧ୢୣୟ୪࡯	:ܜܝܘܖ۷
:܍ܢܑܔ܉ܑܜܑܖ۷	 Construct	the	Boolean	matrix	࡯୧ୢୣୟ୪࡮	from
୧ୢୣୟ୪࡯	 	with	rounding	threshold	࡮ݐ = ࡮ࢆ,0.5 ← [ ],
	݁ = ∞, ୲୦୰ୣୱ୦ݎ = 0.1.
ߥ	ܚܗ܎	 = 0.1,0.2, … ܗ܌	1,
		Construct	࡮ࡰ	with

,݅)࡮ࡰ			 ݆) =
ൻ࡯୧ୢୣୟ୪࡮(݅, : ,݆)࡮୧ୢୣୟ୪࡯,( : )ൿ
ൻ࡯୧ୢୣୟ୪࡮(݆, : ,݆)࡮୧ୢୣୟ୪࡯,( : )ൿ

> .ߥ

݇	ܚܗ܎		 = 1,2, … ܗ܌	଴ܭ,
			݅ = argmin௜ห࡯୧ୢୣୟ୪࡮ ⊕ :)࡮ࡰ࡮ࢆ]) , ݅)] ∘ :)࡮ࡰ࡮ࢆ] , ݅)]୘)ห.
࡮ࢆ			 ← :)࡮ࡰ࡮ࢆ] , ݅)].
			Delete	all	݆ − th	columns	with	

			
:)࡮ࡰ⟩ , :)࡮ࡰ,(݅ , ݆)⟩
:)࡮ࡰ‖ , :)࡮ࡰ‖‖(݅ , ݆)‖ > ୲୦୰ୣୱ୦ݎ 	from	࡮ࡰ

.min	ܚܗ	empty	is	࡮ࡰ	܎ܑ			 ห࡯୧ୢୣୟ୪࡮ ⊕ ൫࡮ࢆ ∘ ,౐൯ห࡮ࢆ
				s. t.࡮ࢆ౐ ∘ ࡮ࢆ = ௄×௄ࡵ 	is	not	reduced	in	this	loop
ܓ܉܍ܚ܊				
܎ܑ	܌ܖ܍			
୧ୢୣୟ୪࡯ฮ܎ܑ			 − ౐ฮ୊࡮ࢆ࡮ࢆ

ଶ
< ݁

∗࡮ࢆ				 = .࡮ࢆ
				݁ = ฮ࡯୧ୢୣୟ୪ − ౐ฮ୊࡮ࢆ࡮ࢆ

ଶ
.

܎ܑ	܌ܖ܍			
ܚܗ܎	܌ܖ܍		
ܚܗ܎	܌ܖ܍	
∗࡮ࢆ	ܖܚܝܜ܍ܚ

 

 
is an intermediate variable introduced to make the problem 
tractable, ࢅ is the Lagrange parameter, ߤ > 0 is a penalty 
parameter, ∥⋅∥଴ is the ℓ଴ norm which counts the number of 
nonzero elements, ߣ and ߛ are the parameters to weigh the 
respective penalty terms, and ܁ା is the positive semi-definite 
cone. The function can be minimized with respect to ࡯୧ୢୣୟ୪ 
and ࡴ alternatingly, by fixing the other variable, and then 
updating ࢅ. Algorithm 1 shows the overall framework of the 
Alternating Direction Method of Multipliers (ADMM) [14] 
and is used to solve for ࡯୧ୢୣୟ୪  which can be factorized as 
 is an indicator matrix whose rows indicate to ࢆ ୘ whereࢆࢆ
which cluster a point belongs. ࢆ  can be solved by the 
AssoConstrained Boolean Matrix Factorization (AssoCBMF) 
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shown in Algorithm 2 where superscript ࡮ is a “Boolean” 
matrix containing only 0’s and 1’s, | ⋅ |  is the norm of a 
Boolean matrix and defined as the number of 1’s in it, ⊕ is 
the Exclusive-OR operation applied element-wise and 
defined as the normal addition but with 1 + 1 = ,݅)ࡰ ,0 ݆) is 
the association accuracy for rule ࡯୧ୢୣୟ୪࡮(݆, : ) ⇒ ,݅)࡮ܩ : ) , 
and ݎ୲୦୰ୣୱ୦  is a threshold. The AssoCBMF algorithm [4] 
gives the number of clusters and the membership of the 
clusters. 
   
4. RESULTS 
 
The datasets in [2] which are used as reference data in 

 
(a) Jaccard index of clusters with mean of 0.6034 

 
 

 
(b) Jaccard index of members with mean of 0.7305 

 
Figure 2: Jaccard index as a function of ߣ and ߛ of Indoor 

B1 where red colors are indices higher than the mean 
 
 
 

 
(a) Jaccard index of clusters with mean of 0.6487 

 

 
(b) Jaccard index of members with mean of 0.7352 

 
Figure 3: Jaccard index as a function of ߣ and ߛ of Indoor 
B2 where red colors are indices higher than the mean 

 
 

 
Figure 4: Relative frequency of Jaccard indices for Indoor B1 
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Figure 5: Relative frequency of Jaccard indices for Indoor B2 
  

 
Figure 6: Jaccard index of the number of clusters vs ߣ and ߛ 

for Indoor B1 
 

 
Figure 7: Jaccard index of membership of clusters vs ߣ and 

 for Indoor B1 ߛ
 
multipath clustering are the following: 
 

1. Indoor, B1, line-of-sight, single link 
2. Indoor, B2, line-of-sight, single link 

 
There are thirty datasets for each channel scenario with 
a different number of multipaths and different clusters. The 
whitened data of columns 1 to 7 in [2] are normalized [0,1] 
using 
 

 ܺ୬୭୰୫ୟ୪୧୸ୣୢ = (௑౭౞౟౪౛౤౛ౚି௑ౣ౟౤)
(௑ౣ౗౮ି௑ౣ౟౤)        (5) 

 
where ܺ୬୭୰୫ୟ୪୧୸ୣୢ is the normalized value of the whitened 
data, ܺ୵୦୧୲ୣ୬ୣୢ  is the whitened data in columns 1 to 7, ܺ୫ୟ୶ 
is the maximum data of each column, and ܺ୫୧୬  is the 
minimum data of each column. The data are normalized to 
make sure that the affinities are positive values [0,1] which 
greatly affect the clustering results. Jaccard index (ߟ) is used 
to compare the similarity between the computed data and the 
reference data. The similarity measure is defined as 
 

 
Figure 8: Jaccard index of the number clusters vs ߣ and ߛ 

for Indoor B2 
 

 
Figure 9: Jaccard index of membership of clusters vs ߣ and 

 for Indoor B2 ߛ
 

ߟ = |஼౨౛౜∩஼ౙ౗ౢౙ|
|஼౨౛౜∪஼ౙ౗ౢౙ|

= ெభభ
ெభభାெభబାெబభ

								 ∈ [0,1] (6) 
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where | ⋅ | refers to cardinality, ܯଵଵ is the total number of 
multipath clusters for the accuracy on the number clusters or 
tota l number of mul tipaths for  the accuracy on the 
membership of the clusters in ܥ୰ୣ୤ that are the same as in 
 ଵ଴ is the total number of multipath clusters for theܯ ,ୡୟ୪ୡܥ
accuracy on the number of clusters or total number of 
multipaths for the accuracy on the membership of the clusters 
in ܥ୰ୣ୤ that are not in ܥୡୟ୪ୡ, and ܯ଴ଵ is the total number of 
multipath clusters for the accuracy on the number clusters or 
total number of multipaths for the accuracy on the 
membership of the clusters in ܥୡୟ୪ୡ that are not in ܥ୰ୣ୤. 
 
SCAMS gives the correct number of clusters by using the 
calculated value of 0 < ߣ from [13] and choosing the correct 
value of ߛ in the range (0, 1). Using a value of ߛ that is less 
than the correct value leads to a lesser number of clusters than 
the correct number of clusters while a higher value of ߛ 
results to a higher number of clusters than the correct number 
of clusters. An incorrect combination of ߣ  and ߛ  tend to 
give the trivial solution. Figure 2a shows the Jaccard index of 
the clusters in Indoor B1 versus the corresponding values of 
 The minimum index is 0.1176 while the maximum .ߛ and ߣ
index is 1. Figure 2b presents the Jaccard index of the 
members per cluster in Indoor B1. The minimum index is 
0.3649 while the maximum index is 1. Figure 3a 
demonstrates the Jaccard index of the clusters in Indoor B2. 
The minimum index is 0 while the maximum index is 1. 
Figure 3b illustrates the Jaccard index of the members per 
cluster of Indoor B2. The minimum index is 0.3684 while the 
maximum index is 1. Indoor B1 has 50% of the indices above 
the mean (red dots) for the number of clusters while 47% for 
the membership of the clusters. Indoor B2 has 57% of the 
indices above the mean (red dots) for the number of clusters 
while 53% for the membership of the clusters. SCAMS 
exhibits promising results and gives higher accuracy 
compared to the results obtained in [1]. 
 
The relative frequency of the Jaccard indices on the number 
of clusters and the membership of the clusters for Indoor B1 is 
shown in Figure 4. For the number of clusters, 23% of the 
indices occurred at 0.6 and 0.7 while 72% are indices at least 
0.6. For the membership of the clusters, 30 % of the indices 
occurred at 0.8 while 77% are indices at least 0.7. Figure 5 
shows the relative frequency of the Jaccard indices for Indoor 
B2. For the number of clusters, 27% of the indices is 1 while 
half of the indices are at least 0.7. For the membership of the 
clusters, 37% of the indices is 1 while 67% of the indices is at 
least 0.8. SCAMS registered an index of 1 for both Indoor B1 
and Indoor B2 with a mean of 25.5%. A Jaccard index of 1 
means that the multipaths are clustered accurately. 
 
Figure 6 displays a surface fit of the Jaccard index of the 
number of clusters of Indoor B1 as a function of ߣ and ߛ. 
The mathematical model generated is   
 

ߟ = 6.257− ߣ1.168 − ߛ19.49 − ଶߣ0.3914

ߛߣ2.898+ + ଶߛ22.51 + ߛଶߣ1.548
ଶߛߣ7.177− − ଷߛ1.755

.     (7) 

 

For the membership of clusters for Indoor B1, the surface fit 
is shown in Figure 7. The mathematical model generated is 
 

ߟ = 3.092 + ߣ0.7946 − ߛ12.53 − ଶߣ0.6683

ߛߣ0.1517+ + ଶߛ18.13 + ߛଶߣ1.662
ଶߛߣ5.792− − ଷߛ1.881

.   (8) 

 
Figure 8 illustrates the surface fit for the number of clusters 
for Indoor B2. The mathematical model generated is 
 

ߟ = −9.901 + ߣ15.44 − ߛ1.683 − ଶߣ4.157

   − ߛߣ23.34 + ଶߛ44.88 + ߛଶߣ5.635
ଶߛߣ3.807+ − ଷߛ32.72

.    (9) 

 
For the membership of clusters for Indoor B2, Figure 9 
presents the surface fit. The mathematical model generated is 
 

ߟ = −6.148 + ߣ8.602 + ߛ2.98 − ଶߣ2.173

   − ߛߣ13.33 + ଶߛ19.9 + ߛଶߣ2.661
ଶߛߣ4.131+ − ଷߛ17.97

.    (10) 

 
The coefficients of (7)–(10) have 95% confidence bounds. 
The value of the Jaccard index can be determined using the 
mathematical model by specifying first the values of ߣ and 
 .ߛ
 
5. CONCLUSION 
 
This paper presents for the first time the results of SCAMS 
when applied to cluster multipaths. SCAMS determines 
simultaneously the number of clusters and the membership of 
the clusters which are dependent on the values of ߣ and ߛ. 
C2CM Indoor B1 and Indoor B2 LOS single link from the 
IEEE DataPort were used as reference data. The whitened 
data were first normalized to make the values of the affinities 
positive and to give better clustering results. Results show 
that SCAMS gives better clustering accuracy than the 
approaches in [1]. Thus, SCAMS can be used as an 
alternative clustering approach in COST 2100 channel 
modeling. 
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