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On the applicability of HAM to seek periodic solution for truly 
nonlinear oscillator 

 

ABSTRACT 
 

Homotopy perturbation method (HPM) is claimed 
to be a simple analytic approximation method suitable for 
solving nonlinear differential equations. It assures solution 
series convergence by transferring the nonlinear problem 
into a number of linear sub-problems. A differential 
equation which is really nonlinear oscillator is considered 
for obtaining periodic solution using the HPM. To examine 
the adequacy of HPM, the phase diagram made from the 
approximate solution is studied with respect to the actual 
phase diagram.  
 

Key words: Amplitude; Equation of motion; Frequency 
parameter; Homotopy perturbation method; Phase diagram. 
 
1. INTRODUCTION 

 

Perturbation and asymptotic approximations are 
generally applicable for weakly nonlinear ODEs (ordinary 
differential equations) and PDEs (partial differential 
equations) having small/large physical parameters. Khatami 
et al. [1] have successfully applied the DTM (differential 
transform method) and obtained solutions for nonlinear 
Duffing oscillators. The modified DTM provides 
inconsistency in the periodic solutions of the nonlinear 
Duffing oscillators having asymmetric oscillations [2-4].  

Many nonlinear differential equations are solved applying 
the Homotopy Perturbation method (HPM) and the 
traditional Adomian decomposition method [5-27]. HPM is 
claimed to be a simple analytic approximation method 
suitable for nonlinear problems. It transfers into a number of 
linear sub-problems and assures the solution series 
convergence. The objective of this research article is to 
study the competence of the HPM for a truly nonlinear 
oscillator possessing actual solution. 
 

2. MOTION EQUATION 

A DE of order two with nonlinearity of motion for 
undamped free vibrations is of the form 

  02

2

 yf
dt

yd
     (1) 

The cubic polynomial restoring force function,  yf  is  

  32 yyyyf      (2) 
The Duffing equation is a well-known eg. of system which 
is nonlinear [28-33]. The non-linear vibration characteristics 
are studied on laminated beams and plates [34-38].  
The truly nonlinear oscillator having the power-law type 
restoring force function considered here is [39-41]  
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0,1 
dt
dyy at 0t     (4) 

For the restoring force function,   3yyf  in 
equation (3), the frequency is expected to increase with 
increasing amplitude [42]. This hardening nonlinearity is 
depicted by rubber pads in the mounting of machinery under 
compression. Displacement’s cube  in the restoring force 
function can also be depicted by the motion of a ball-
bearing oscillating in a U-shaped vertically standing glass 
tube. Whineray [43] has demonstrated experimentally by 
constructing a cubic-law air track oscillator. Actual solution 
is carried out for equation (3) and the improved MDTM is 
incapable to provide accurate results [4]. A trail has 
beencarried out here to verify the competence of homotopy 
perturbation method (HPM) by solving equations (3) and 
(4). Applying the HPM [44, 45] to equations (3) and (4), the 
first-order approximation obtained is 
     ttty 598.2cos0322.0866.0cos    (5) 

By using the constraints in  (4) and taking anti derivatives of 

(3) it is evident that    )1)(1(
2
1 222 yyy   (6) 

Figure 1. describes the comparative study of phase diagrams 
generated from equations (5) and (6).  
 

 
Figure 1. Phase diagrams generation from equations (5) and 

(6) 
The actual solution for  (3) and (4) is obtained in Jacobi 
elliptic cosine function terms of ( cn ) as [4] 











2
1,)( tcnty

  
                                                       (7)

  
The angular frequency,  0.8472, and it is 0.866 by the 
1st approximation of HPM (see equation (5)). Though, slight 
difference is noticed in the values of angular frequency and 
amplitude, the trend in the phase diagram from the HPM 
solution is seen like the actual phase diagram.  

)(ty in equation (3) satisfies the initial conditions (4) is 
assumed in the form 

  )3cos(1)cos()( 11 tAtAty     (8) 
By applying the HARMONIC BALANCE METHOD 
applications and basic trigonometry principles in order to 
retain only constant terms and terms of )cos( t  and 

)3cos( t two equations are obtained. These equations give

9571.01 A and 8488.0 . The solution of equations 
(3) and (4) obtained from equation (8) is )5464.2cos(0429.0)8488.0(cos9571.0)( ttty 
     (9) 
Figure-2 shows the excellent matching of the PHASE 
DIAGRAMS created from equations (6) and (9). From 
Figures 1 and 2, the use of the HBM with higher order 
harmonics provides results close to the exact, whereas little 
discrepancy is noticed in the results of the problem using 
HPM. 

 
Figure 2. Comparative study of the PHASE DIAGRAMS 

generated from equations (6) and (9). 

 

3. CONCLUSION 

The homotopy perturbation method (HPM) 
provides approximate solution for the problem of truly 
nonlinear oscillations comparable with exact solution. In the 
above conversation we have established that the restoring 
force function in the truly nonlinear oscillations 
displacement cube. Usage of the method of harmonic 
balance with higher order harmonics presents realistic 
results. This innovative research study demonstrates the 
drawbacks in the usage of MDTM to get the periodic 
solution of a simple truly nonlinear oscillator differential 
equation having exact solution.   
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