

Volume 8. No. 10, October 2020 International Journal of Emerging Trends in Engineering Research Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter1488102020.pdf https://doi.org/10.30534/ijeter/2020/1488102020

Optimal hourly scheduling of hydro thermal systems integrating with renewable energy systems using differential evolution

V.HARIKA¹, G.MADHAVI², B.SONIA³

¹P V P Siddhartha Institute of Technology, India, vemulapalliaharika2312@pvpsiddhartha.ac.in
² P V P Siddhartha Institute of Technology, India, gudavalli.madhavi@pvpsiddhartha.ac.in
³Vignan's Institute of Information technology, India, sonia.888b@gmail.com

ABSTRACT

Enormous wind liveliness and sun oriented power plants are broadly popularized and coordinated in existing electric power networks. The disproportion of wind speed over a brief era can incredibly influence transient age planning. Enormous extension sun based power plants are for the most part showcased and facilitated into existing electric power structures. Daylight based separation over a short period can essentially impact transient age. This paper watches out for this issue through an overhauled day ahead fleeting age booking of both warm and breeze imperative structures at different power invasion levels. Here one model of the breeze imperative power plant, sun based power plant is brought and facilitated into the made improvement model. The models acknowledge a static rate solar power cost. The perfect booking issue is lit up viably using differential turn of events. Diverse physical and operational objectives are fused. The results shows that breeze power assortment, and daylight based power are solidly impacting both warm and hydro power plants age arranging especially when need dispatch rules is normal.

Key words :Hydro thermal scheduling, wind energy, economic dispatch, differential evolution, wind penetration, solar energy

1. INTRODUCTION

Sustainable power sources (RES) are broadly popularized around the world. Numerous nations have set yearning intends to increment sunlight and wind based force entrance at an extensive level. The ideal is based on linear cost function model in which access wind powers are dissipated in bulk dummy resistors .In result, huge scope sun oriented force plants are associated and focused on existing force frameworks. A turning save from traditional warm force plants must be doled out to think about erratic sunlight based force varieties. Huge sun oriented confinement causes numerous effects on the long haul and momentary age booking which ought to be explored because of vulnerability related with sunlight based separation estimates. Here are the model is embraced to submit a sun based force plant. The model depends on a straight cost work model in which get to sunlight based forces are disseminated in mass sham resistors. The transient age booking (STGS) includes the explanation of an educated enhancement issue which requires productive streamlining agents. The cost of the fuel bends of warm plants are generally spoken to as nonlinear and non-raised with precluded working areas. Likewise, hydropower plants include a lot of physical and operational objectives including volumes and releases of fell supplies. Hence, regular inclination based techniques experience challenges because of the nonconvex plausible districts of the advancement issue. The dynamic programming approach is very ready to deal with such an issue without limitation prerequisites on cost work non-linearity or requirements [1]. Be that as it may, this methodology is very tedious which isn't fitting for brief timeframe planning issues of huge issues [2-3]. DE is one of the populace based metaheuristic stochastic developmental advancement procedures. Storn and Price previously awaited DE in 1995 [4] as a heuristic nonstop space capacities practically equivalent to other developmental calculations, the qualities are produced subjectively just because and further ages progress step by step through the relating of certain transformative administrators until a forestalling standard is obtained. DE is amazingly successful in taking care of enhancement issues that especially include non-smooth target capacities since it doesn't require subsidiary data. The DE calculation has been pragmatic to different fields of network advancement like ideal receptive force arranging in enormous scope appropriation frameworks [5], monetary dispatch issue [6], and so forth. Wang et al. introduced a method for tackling commercial dispatch with non-smooth and non-raised cost capacities utilizing crossbreed differential advancement [7]. Be that as it

may, the exhibition of DE in understanding momentary monetary age booking of aqueous frameworks (STEGH) has not so far been accounted for by any gathering. This paper presents an effective and solid DE-based streamlining strategy for settling STEGH frameworks with the joining of elective vitality plants. The ethicalness of the arranged strategy is tried on two test plans including hydro and warm units at a given radiation. 24-hour day by day sun-powered figure information is considered from [12]. The power balance condition is considered though the framework misfortunes are ignored. The target work has been tackled utilizing method differential advancement [8]. The huge breeze power infiltration cause numerous effects on long haul and momentary age booking which ought to be examined because of vulnerability related with wind speed estimates. Here are the model is received to submit a breeze power plant. The model depends on direct cost work model in which access wind powers are dispersed in mass pretend resistors [13].

2. PROBLEM FORMULATION

The complete working expense of the aqueous sun based vitality frameworks for a 24-hour time arrangement is communicated as follows:

$$Cost_{total} = \sum_{hour=1}^{T} \left(\sum_{x=1}^{N_{thermal}} Cost_{ms}^{hour} + \sum_{y=1}^{N_{solar}} Cost_{nsol}^{hour} \right)$$
(1)

where *Cost_{total}* cumulative cost of thermal and solar power generation

Cost_{ms} cumulative cost of thermal power plant ms

Cost_{nsol} cumulative cost function of solar power plant nsol

T total time period

hourrepresents no.of hours, N_Pnumber of power plants

thermal, solar subscripts refer to thermal and solar power plants

In this wind turbine model, a typical 850 kW wind turbine capacity wind turbine is used to build the wind power plant [14]. According, the penetration-n level, the required number of wind turbines is calculated. The power curve of wind turbine is as shown in figure 1:

The figure above illustrates the power curves at different sound levels for the V52-850 kW turbine, which is equipped with OptiSpeed[®].

The wind energy power plant is stated as follows: $Cost_{wind} = K_{wind} P_{iwind}$ (2) Where K_{wind} represents the cost of wind energy paid per kW, P_{iwind} refers to the output power of a wind farm. Due to uncertainness of the wind speed, P_{iwind} is function in both the wind speed and the turbine characteristics. If a wind power plant enjoyed priority dispatch criteria, the factor K_{wind} is assigned zero values. Subsequently, the wind power is communicated as follows:

$$P_{iwind} = \begin{cases} 0 & v_{in} \ge vel \quad or \quad v_{out} \le vel \\ P_{iwind}^r \left(\frac{vel - v_{in}}{v_r - v_{in}} \right) & v_{in} \le vel \le v_r \\ P_{iwind}^r & v_r \le vel \le v_{out} \end{cases}$$

$$(3)$$

where

vel represents the wind speed, *r*refers the rated values of the turbine, in refers to the cut-in speed, and out refers to cut-out speed of the wind turbine (vi) Wind speed limit

 $Windv_{in} \leq Windv \leq Windv_{out}$

Where Windv is nominal wind speed $Windv_{in}$ start up wind speed, $Windv_{out}$ maximum wind speed

2.1. Cost functions:

The cost capacity of steam plants is communicated as a quadratic misfortune work with an extra two terms speaks to the non – convexity of the capacity as follows.

V.HARIKA et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7600 - 7608

$$Cost_{ms} = a_{ms} + b_{ms}P_{ms} + c_{ms}P_{ms}^{2} + \left| e_{ms}\sin(f_{ms}(P_{ms}^{\min} - P_{ms})) + (4)\right|$$

Where for the m^{th} thermal plant *a*,*b*,*c*,*e*, and *f* are the fuel cost coefficients

The cost function of the solar power plant is expressed as

$$Cost_{isol} = Pow_{PVC} * Kiso$$
 (5)

Here the K_{iso} is taken as the cost constant and it is taken as 3.5. The power output [9] from PV cell is expressed by

$$Pow_{PVC} = P_{solr}\left(\frac{G_{ht}^2}{G_{std}R_C}\right), \text{ for } 0 < G < R_C$$
(6)

$$Pow_{PVC} = P_{solr}\left(\frac{G_{ht}}{G_{std}}\right), \text{for } G > R_C$$
(7)

Where Pow_{PVC} = power output from the solar cell

 G_{ht} = forecast solar radiation at hour 't'

Gstd = sun powered radiation in the standard condition set as 1000 W/m2

 R_{C} = a certain radiation point set to 150 W/m2

 P_{solr} = rated equivalent power output of the PV generator

Here P_{solr} is taken as 150MW for both the test cases. The temperature of the PV cell is omitted. Power charge/discharge to/from the battery at hour t is omitted.

The objective function is to reduce subject to a variety of constraints as follows:

(1) Active power balance

$$\sum_{l=1}^{N_s} P_{sit} + \sum_{m=1}^{N_h} P_{hjt} + \sum_{n=1}^{N_{sol}} Pow_{PVCkt} + \sum_{w=1}^{N_w} P_{wmt} - P_{Dt} - P_{Lt}$$
(8)

Where P_{hjt} is the power generation of m^{th} hydro generating unit at time interval t,

 Pow_{PVCkl} is the solar power generation of n^{th} power plant at time interval t,

where P_{wmt} is the power generation of w^{th} wind power generating unit at time interval t,

 P_{Dt} is power demand at time t and P_{Lt} is total transmission loss at a particular time interval.

In this work, the power misfortune isn't reflected in straightforwardness. Be that as it may, it might be dictated by utilizing the B-misfortune framework straightforwardly. The hydropower age is an element of water release extent and repository stacking volume, which can be depicted by the accompanying condition as follows:

$$P_{hjt} = C_{1j} Vol_{hjt}^2 + C_{2j} Q_{hjt}^2 + C_{3j} Vol_{hjt} Q_{hjt} + C_{4j} Vol_{hjt} + C_{5j} Q_{hjt} + C_{6j}$$
(9)

Where C_{1j} , C_{2j} , C_{3j} , C_{4j} , C_{5j} and C_{6j} are power generation coefficients of j^{th} hydro generating unit,

Vhjt is the capacity volume of jth repository at time t and Qhjt is water release pace of jth store at time span t.

(2) Power generation limit

$$P_{si}^{\min} \le P_{sit} \le P_{si}^{\max}$$

 $P_{hj}^{\min} \le P_{hjt} \le P_{hj}^{\max}$

Where P_{si}^{min} and P_{si}^{max} are the lowest and highest power generation by i^{th} thermal generating unit,

 P_{hj}^{min} and P_{hj}^{min} are the lowest and highest power generation by jth hydro generating unit respectively.

(3) Water dynamic balance

$$Vol_{hjt} = Vol_{hj,t-1} + I_{hjt} - Q_{hjt} - S_{hjt} + \sum_{m=1}^{R_{uj}} \left(Q_{hm,t-\tau_{mj}} + S_{hm,t-\tau_{mj}} \right)$$
(10)

Where I_{hji} is natural inflow of j^{th} hydro reservoir at time interval t,

 S_{hjt} is the spillage discharge rate of j^{th} hydro generating unit at time interval t,

= φ_{τ_m} is the water transport delay from reservoir *m* to *j* and R_{uj} is the number of upstream hydro generating plants immediately above the *j*th reservoir.

(4) Reservoir storage volume limit

$$V_{hj}^{\min} \leq Vol_{hjt} \leq V_{hj}^{\max}$$

Where V_{hj}^{min} , V_{hj}^{max} are the lowest and highest storage volume of j^{th} reservoir.

(5) Water discharge rate limit

$$Q_{hj}^{\min} \leq Q_{hjt} \leq Q_{hjt}^{\max}$$

Where Q_{hj}^{min} and Q_{hj}^{max} are the lowest and highest water discharge rate of j^{th} reservoir respectively.

The requirement of the function of the problem described is as follows,

$$M \operatorname{in} C \operatorname{ost}_{\operatorname{total}} = \sum_{\operatorname{hour}=1}^{T} \left(\sum_{x=1}^{N_{\operatorname{thermal}}} C \operatorname{ost}_{ms}^{\operatorname{hour}} + \sum_{y=1}^{N_{\operatorname{totar}}} C \operatorname{ost}_{\operatorname{nsol}}^{\operatorname{hour}} \right)$$

3. DIFFERENTIAL EVOLUTION

Differential Evolution technique used here is described by the following steps.

3.1. Initialization

The streamlining movement in DE is yielded out with the accompanying four activities: initialization, mutation, crossover, and selection. The calculation starts with the formation of a populace vector P of size NPOP gathered of people that develop over a generation. Every individual Xi is a vector that encases the same number of components as the issue choice variable. Npop is the population size that is picked as the control parameter. In this manner,

$$P^{(G)} = \left[X_{i}^{(G)}, \dots, X_{N_{POP}}^{(G)} \right]$$
(11)

$$X_{i}^{(G)} = [X_{1,i}^{(G)}, \dots, X_{D,i}^{(G)}]^{T}, \quad i = 1, \dots, N_{POP} \quad (12)$$

The preliminary population is chosen randomly in order to conceal the whole searching region evenly. Unvarying probability dissemination for all unsystematic variables is assumed in the following as

$$X_{j,i}^{(0)} = X_j^{\min} + \sigma_j \left(X_j^{\max} - X_j^{\min} \right)$$
(13)

where i = 1, N_{POP} and j = 1, D.

Here *D* is the number of resolution or control variables, X_j^{min} and X_j^{max} are the inferior and superior limits of the j^{th} decision variables and $\sigma \epsilon[0, 1]$ is an evenly disseminated unsystematic number produced a new for each value of *j*. $X_{j,i}^{(0)}$ is the j^{th} parameter of the i^{th} individual of the preliminary population.

3.2. Mutation operation

Vector difference is the crucial ingredient in the mutation operation. The mutation operator creates mutant vectors (V_i) by disturbing a randomly selected vector (X_k) with the dissimilarity of two other randomly selected vectors $(X_k \text{and } X_m)$ according to:

$$V_i^{(G)} = X_k^{(G)} + f_m (X_l^{(G)} - X_m^{(G)})$$
(14)

Where X_k , X_i and X_m are randomly chosen vectors $\epsilon [1, ..., N_{POP}]$ and $k \neq l \neq m \neq i$. further, the indices are mutually distinct including the running index *i*. The mutation factor f_m that lies within the vicinity of [0, 2] is a bound used to control the perturbation size in the mutation operator and to duck exploration sluggishness.

3.3. Crossover operation

So as to include further decent variety in the looking through the procedure, hybrid activity is performed. The hybrid activity creates preliminary vectors (Ui) by teaming up the parameter of the freak vectors with the objective vectors. For every freak vector, a file qc[1,..., NPOP] is picked haphazardly utilizing a uniform appropriation and preliminary vectors are created by:

$$U_{j,i}^{(G)} \begin{cases} V_{j,i}^{(G)} & \text{if } \eta_j \leq C_R & \text{or } j = q \\ X_{j,i}^{(G)} & \text{otherwise} \end{cases}$$
(15)

Where $i = 1 \dots$ NPOP and $j = 1 \dots D$; ηj is a consistently dispersed irregular number inside [0,1] produced another for each estimation of j. The hybrid factor CR ϵ [0, 1] is a client picked parameter that controls the decent variety of the population. Xj,i(G), Vi(G) and Uj,i(G) are the jth parameter of the ith target vector, freak vector and preliminary vector at G generation, separately.

3.4. Selection operation

Better posterity is produced through choice activity. The wellness capacity of a posterity is assessed by contrasted and its parent. The parent position is reallocated by its posterity if the wellness of the posterity is progressed than that of its parent, while the parent is held for the people to come if the wellness of the posterity isn't superior to that of its parent. Therefore, in the event that f signifies the cost (wellness) work under enhancement issue (minimization), at that point

$$X_{i}^{(G+1)} = \begin{cases} U_{i}^{(G)} & \text{if } f(U_{i}^{(G)}) \le f(X_{i}^{(G)}) \\ X_{i}^{(G)} & \text{otherwise} \end{cases}$$
(16)

The advancement procedure is rehashed for a few ages. This permits people to show signs of improvement wellness while investigating the arrangement space for ideal qualities. The mutation, crossover, and selection are rehashed iteratively until a client determined halting V.HARIKA et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7600 - 7608

measure, ordinarily; the most extreme number of generations permitted is met. Keeping all these in thought the DE strategy has been applied to explain the present moment aqueous planning issue.

4. RESULTS AND DISCUSSION

In this paper, cascaded hydrothermal with two two multi-reservoirs systems were considered. The system is embraced of an equivalent thermal unit and four cascaded hydro units.

Figure 2: cascaded reservoir system of 4 hydro systems

The cascaded system used in this test case is represented by figure-1.

Test system 1 consists of 4 hydro one thermal systems. The forecast solar radiation data [14] are shown in appendix table A.1 the input characteristics of hydro and thermal system taken from [12]; load demand for 24 hours is given in appendix table A.2. Wind velocity for the test system is produced randomly and the output power is taken from the wind turbine model v52-850KW [14]. The output power is calculated at different wind penetration levels.

The proposed test system consists of 1thermal, 4hydro, and 1solar and 1wind system with different penetration levels and is simulated on MATLAB R2013a with i3core processor and the results are taken after performing 10 operations to get accurate results.

The corresponding scheduled powers of hydrothermal system along with the solar and wind powers at different peneteration levels are tabulated below.

	Table-1:4 Hydro, 1 Thermal, 1Solar, 1 Wind systems with wind penetration 0 %							
Hour	Phy1(MW)	Phy2(MW)	Phy3(MW)	Phy4(MW)	Pvc(MW)	Pwin(MW)	Ps(MW)	
1	52.9533	50.164	52.1096	200.0937	0	0	1014.7	
2	53.6471	67.1024	14.1832	187.7553	0	0	1067.3	
3	86.3239	71.4837	31.2332	209.6181	0	0	961.3	
4	98.2535	71.7334	0	176.6229	0	0	943.4	
5	64.8513	85.8826	38.4438	178.6595	0	0	922.2	
6	96.5851	82.8516	38	228.9299	0	0	963.6	
7	96.4712	55.994	28.7369	217.3719	12.321	0	1239.1	
8	66.321	56.476	38	255.9135	46.65	0	1536.6	
9	65.3396	76.93	37.8511	284.0687	56.25	0	1719.6	
10	52.0295	87.9303	0	266.6322	75.45	0	1838	
11	55.4285	80.2031	32.5772	249.37	92.55	0	1719.9	
12	92.2373	99.6143	7.8606	276.4883	102.9	0	1730.9	
13	52.9597	96.9819	42.5356	249.37	105.45	0	1682.7	
14	71.9019	78.9852	43.5836	249.37	110.4	0	1645.8	
15	56.1923	64.1227	45.928	249.231	87.9	0	1626.6	
16	102.2746	65.375	54.2931	249.37	63.75	0	1534.9	
17	78.8535	62.4943	38.6164	249.37	43.65	0	1657	
18	54.8696	91.8755	49.6729	286.8671	7.396	0	1649.3	
19	73.6739	68.6066	30.0808	246.6455	0	0	1821	
20	95.2819	79.7782	23.9613	272.1718	0	0	1808.8	
21	97.1746	56.1549	10.03	246.5948	0	0	1830	
22	83.5243	51.1748	37.5981	265.1404	0	0	1682.6	
23	72.7299	65.952	55.3638	232.3898	0	0	1423.6	
24	69.3385	42.6761	53.255	229.5512	0	0	1195.2	

	Table 2: 4 Hydro, 1 Thermal, 1Solar, 1 Wind systems with wind penetration 2.5 %								
Hour	Phy1(MW)	Phy2(MW)	Phy3(MW)	Phy4(MW)	Pvc(MW)	Pwin(MW)	Ps(MW)		
1	53.4212	50.164	52.0952	198.7662	0	58	906.5		
2	68.3859	70.0373	0	218.9883	0	50.6656	942.8		
3	98.7349	60.9092	39.9659	172.2515	0	43.1781	906.5		
4	96.6354	83.1231	27.3728	192.3269	0	58	833.2		
5	87.3358	55.504	0	177.2884	0	58	795.3		
6	62.4781	82.4158	34.3623	222.1269	0	58	869.8		
7	87.1175	55.994	38.6244	225.889	12.321	58	1090.9		
8	55.1194	59.3836	0	233.0932	46.65	58	1423.6		
9	94.0306	88.1437	0	268.7424	56.25	49.5949	1645.8		
10	54.995	91.2398	26.3318	294.5375	75.45	58	1689		
11	103.0547	79.6972	38.0062	249.37	92.55	58	1577.6		
12	105.263	91.0075	4.9886	303.0527	102.9	58	1608.7		
13	87.3563	82.7181	0	288.726	105.45	58	1572		
14	68.7143	59.504	0	249.37	110.4	58	1608.7		
15	86.0761	80.0422	38.5455	289.5295	87.9	48.356	1461.2		
16	102.6594	84.4578	44.7608	294.2717	63.75	58	1421.6		
17	104.7796	58.0744	44.2813	249.2981	43.65	58	1550.1		
18	91.6252	76.1342	49.5912	247.9277	7.396	58	1533.5		
19	69.2505	54.3779	29.0569	279.6795	0	51.0745	1719.1		
20	55.1018	53.4779	45.6849	237.1106	0	58	1719.7		
21	54.8512	47.5152	53.1794	234.6716	0	58	1719.3		
22	57.3298	82.2221	53.1572	238.1856	0	44.2657	1534.7		
23	54.9394	54.6897	55.964	267.3362	0	58	1313.1		
24	83.8546	74.729	58.6431	231.4048	0	49.8234	1091.2		

V.HARIKA et al.,	International Jo	ournal of Emerging	Trends in En	gineering Re	esearch, 8(10),	October 2020,	7600 -	7608
,		00		0 0	/ / //			

Table 3: 4 Hydro, 1 Thermal, 1 Solar, 1 Wind systems with wind penetration 5 %							
Hour	Phy1(MW)	Phy2(MW)	Phy3(MW)	Phy4(MW)	Pvc(MW)	Pwin(MW)	Ps(MW)
1	51.8008	50.0787	52.0952	200.0937	0	109.4464	906.5
2	52.6287	59.3593	0	226.284	0	108.9224	942.8
3	53.1293	77.917	0	210.6114	0	111.8207	906.5
4	66.7893	88.039	16.3235	188.9432	0	96.7449	833.2
5	97.3728	58.2741	8.0334	215.0479	0	116	795.3
6	87.2823	92.6722	38	206.249	0	116	869.8
7	85.4146	92.0718	36.1208	217.1389	12.321	116	1090.9
8	62.7155	84.8678	38.4642	229.8484	46.65	113.8721	1423.6
9	85.6016	64.0247	27.0412	245.3299	56.25	116	1645.8
10	91.4248	66.9689	31.7461	249.37	75.45	116	1689
11	74.0428	72.1313	39.6549	258.0252	92.55	116	1577.6
12	86.858	89.5383	41.7832	264.1751	102.9	116	1608.7
13	88.6002	63.5023	42.0512	242.3508	105.45	116	1572
14	65.9233	58.9619	0	240.0489	110.4	116	1608.7
15	78.6553	66.0289	54.1357	266.0518	87.9	116	1461.2
16	90.249	57.2314	53.7848	267.4304	63.75	116	1421.6
17	62.2314	57.6869	53.158	247.2122	43.65	116	1550.1
18	70.4317	73.0961	51.0539	288.5692	7.396	116	1533.5
19	54.9673	75.1796	23.3997	256.4442	0	110.8839	1719.1
20	58.7511	77.358	50.7086	257.5238	0	116	1719.7
21	83.6028	70.7449	12.574	237.8019	0	116	1719.3
22	91.1191	55.2871	59.969	262.9577	0	116	1534.7
23	85.4782	47.1038	48.5331	239.7691	0	116	1313.1
24	70.8856	42.7	46.8582	231.2369	0	107.0868	1091.2

	Table 4: 4 Hydro, 1 Thermal, 1Solar, 1 Wind systems with wind penetration 7.5 %							
Hour	Phy1(MW)	Phy2(MW)	Phy3(MW)	Phy4(MW)	Pvc(MW)	Pwin(MW)	Ps(MW)	
1	52.9593	50.0499	52.6458	200.0937	0	174	840.3	
2	67.9415	51.1851	22.349	187.7553	0	155.1174	905.7	
3	54.0618	55.6988	0	173.7333	0	174	902.5	
4	98.5311	69.7452	38.4961	177.4733	0	174	731.8	
5	90.1074	55.4058	32.9569	175.4997	0	172.4667	763.6	
6	97.8057	55.8974	38.6536	195.9811	0	174	847.7	
7	78.6597	85.3938	38	241.5039	12.321	174	1020.1	
8	72.4304	90.0648	36.1301	272.0503	46.65	167.2309	1315.4	
9	92.0957	86.9988	0	246.981	56.25	174	1583.7	
10	88.1769	79.9878	5.8404	249.37	75.45	174	1647.2	
11	93.0801	90.6779	0	293.7786	92.55	160.1436	1499.8	
12	87.7684	60.4904	38.2294	255.1509	102.9	156.3219	1609.1	
13	66.2791	66.3581	0	288.1557	105.45	174	1529.8	
14	73.2838	60.6428	41.3081	249.37	110.4	150.631	1514.4	
15	72.8764	89.8158	35.3644	249.37	87.9	174	1420.7	
16	78.6264	69.103	40.3814	249.37	63.75	174	1394.8	
17	54.6684	78.3124	55.4256	272.9138	43.65	165.4609	1459.6	
18	99.6987	93.3158	55.7964	248.2007	7.396	174	1461.6	
19	54.9204	55.7338	54.1948	277.1427	0	174	1624	
20	69.9585	89.965	55.3377	244.4818	0	174	1646.3	
21	91.618	68.8509	44.0746	252.5326	0	174	1608.9	
22	72.4924	68.5095	42.2768	240.5151	0	160.448	1535.8	
23	86.5611	63.0448	52.4786	234.4474	0	174	1239.5	
24	55.02	61.4988	20.2523	229.4439	0	174	1049.8	

The total cost of generation when 1hydro, 4thermal, 1solar and 1 wind system is considered at different penetration level is tabulated in the table. By observing the cost of generation we can conclude that when there is no wind then the cost of generation is 914341.6588\$ and when the penetration level increases from 0% to 7.5% then the cost of generation is decreasing which will be equal to 809822.4564\$.

Table 5 : cost at different penetartions					
wind penetration (%)	Cost(\$)				
0	914341.6588				
2.5	875040.9795				
5	842410.6764				
7.5	809822.4564				

The corresponding cost curve and bar graph are shown in the figures.

CONCLUSION:

With the enormous accessibility of sustainable wellsprings of vitality the working expense of the aqueous framework can be diminished and we can be less subject to nonrenewable wellsprings of vitality. In this paper we can discover ideal hourly scheduling of sun oriented, wind, hydro and thermal frameworks by utilizing differential advancement calculation. In this paper we can likewise presume that with various wind penetration levels the ideal expense of activity is shifted. Higher the infiltration level lesser the activity cost.

REFERENCES:

- A. J. Wood and B. F. Wollenberg, Power Generation Operation and Control, New York, NY: John Wiley & Sons, Inc., 1996, pp. 39,517.
- [2] F. Y.K. Takigawa, E. L. da Silva, E. C. Finardi, R. N. Rodrigues, "Solving the hydrothermal scheduling problem considering network constraints", Electric Power Systems Research, vol. 88, pp. 89–97, 2012
- [3] R. Baos, F. Manzano-Agugliaro, F.G. Montoya, C. Gil, A. Alcayde, and J.Gméz, Optimization methods applied to renewable and sustainable energy: A review", Renewable and Sustainable Energy Reviews, vol. 15, no. 4, pp.1753-1766
- [4] R. Storn, K. Price, Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012,Berkeley, USA: International Computer Science Institute, 1995
- [5] C.-F. Changa, J.-J.Wong, J.-P.Chiou, C.-T.Su, Robust searching hybrid differential evolution method for optimal reactive power planning in large-scale distribution systems, Electr. Power Syst. Res. 77 (2007) 430–437.
- [6] J.P. Chiou, Variable scalinghybriddifferential evolution for large-scale economic dispatch problems, Electr. Power Syst. Res. 77 (2007) 212–218.
- [7] S.K.Wang, J.P. Chiou, C.W. Liu, Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm, IET Gener. Transm.Distrib. 1 (5) (2007) 793–803.
- [8] K. K. Mandal and N. Chakraborty, "Differential evolution technique based short-term economic generation scheduling of hydrothermal systems," *Elect. Power Syst. Res.*, vol. 78, no. 11, pp. 1972–1979, Nov.2008.
- [9] Mousumi Basu1"Dynamic economic dispatch with demand- side management incorporating renewable energy sources and pumped hydroelectric energy storage", Electrical Engineering© Springer-Verlag GmbH Germany, part of Springer Nature 2019.
- [10] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, "Fast evolutionary programming techniques for short-term hydrothermal scheduling,"*IEEE Trans. Power Syst.*, vol. 18, no. 1, pp. 214–219, Feb. 2003
- [11] M. Basu "An interactive fuzzy satisfying method based on evolutionary programming technique for multi objective short-term hydrothermal scheduling", Electric Power Systems Research, vol. 69, no. 2–3, pp. 277–285, May 2004.
- [12] Liang R, Liao J (2007) A fuzzy-optimization approach for generation scheduling with wind and solar energy systems.IEEE Trans PWRS22 (4):1665–1674.
- [13] J. Hetzer, D. C. Yu, and K. Bhattarai, "An Economic Dispatch Model Incorporating Wind Power", IEEE Transactions on Energy Conversion, Vol.23, No. 2, pp. 603-611, June 2008
- [14] Wind turbine data, V52-850 kW, avilable at" http://www.vestas.com

[15]B.Mohan, M.V.Ramesh, Melimi Ravi Kumar, T.Srinivasa Rao, P.Muthukumar, "**Dual Axis Solar Tracking System with LDR**", International journal of Emerging Trends in Engineering Research(IJETER), Volume8. No.8, August 2020

[16] Eunsung Oh" **Rolling Based Energy Storage System Operation Strategies Considering wind power forecast Uncertainty**", International journal of

Emerging Trends in Engineering research (IJETER), volume 7, No.11 November 2019, ISSN 2347-3983,

pages 708-714.

https://doi.org/10.30534/ijeter/2019/497112019.

[17] G.MADHAVI, V.HARIKA, "**Optimal Hourly** Scheduling Of Hydro Thermal Systems Integrating With Solar Power Systems Using Differential Evolution", International Journal of Scientific & Technology Research Volume 9, Issue 06, June 2020, PP: 886-892, ISSN 2277-8616.