
Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6708


ABSTRACT

Cloud computing has evolved at an incredible speed, and, in
many organizations, it entwined with the sophisticated
technological landscape that supports critical daily
operations. The cloud computing environment gives rise to a
new type of risk, and the user faces many challenges in
protecting their existing IT environment. Security in Cloud
computing has become a matter of global interest, and it
involves securing information by detecting, preventing, and
responding to cyber-attacks. Several research efforts have
been made in different domains, each having specific features
and peculiarities to address various security breaches.
Security enhancement as part of prevention is essential in the
cloud environment, especially in the Operating System.
Security enhancement on the operating system can be done in
several ways, such as updating the operating system, updating
security, and Hardening. Hardening the operating system
requires a long set of processes and execution. Security
benchmarks can be a good fundamental for Hardening, which
can improve operating system security. The security
benchmark is well researched and tested. There are many
recommendations for security benchmark need to implement
to the operating system, to execute all security benchmark
manually will take time and much effort. To simplify and
accelerate the hardening process, this paper will propose a
framework to automate the Hardening for Linux OS, which
can support parallel execution in several servers.

Key words: Hardening, Linux, Container, Security
Benchmark

1. INTRODUCTION

Cloud computing has recently emerged as a new paradigm
for hosting and delivering utility-oriented IT services to users
over the Internet [1]. The main objective of cloud computing
technology is to ensure availability, high reliability, and
scalability of infrastructural facilities, which include

hardware, software, platforms, services, and software that
could be distributed to different computing locations.[2]
Cloud computing has several advantages. For instance, a
cloud server that makes it possible for a person or a company
to have a server without have any real physical server. It can
reduce the cost and easy to maintain.[3]. The rapid growth in
field of "cloud computing" also increases severe security
concerns. Security is needed not only for services provided
over cloud but also for the cloud resources. Providing services
over cloud implies providing secured services internally [4].
Almost every part of cloud computing has a security
vulnerability, and it can be a weak point or gateway for
attackers to interfere system or stole the data. Cloud
computing systems are often built from the existing single
machine OS, usually Linux [5]. The Linux operating system
was not able to shine in the desktop world. However, it is
currently the go-to operating system for the cloud, and upon
which the largest cloud infrastructures in the world have been
built on [6]. The reality is that Ubuntu Server is the most
widely-used Linux distribution for deploying cloud-based
applications. [7].

Security on Linux is a challenge for cloud computing users

because, at this time, most operating systems are not designed
to make security the main focus. The operating system only
focuses on features, usability, communication, and
functionality. The security of Linux depends on many
configuration files, both at the system level and application
level. Most important is security of the Linux system is never
static. Once you secure your Linux system, it does not
perpetually stay secure because operational and functional
changes had done through threats or new exploits are
available for packages or applications hence need of secure
system [8]. An effort to enhance the security of the Linux
operating system can be accomplished by Hardening.
Hardening the operating system is a process of security
improvement through various ways to make the operating
system more resistant to security threats. Besides that,
Hardening is a step that can increase the performance of the
server to the maximum level, close security holes, and close

Automated Security Enhancement Framework for Linux

Operating System

Bimandika Hasanah1, Abba Suganda Girsang2
1Computer Science Department, BINUS Graduate Program – Master of Computer Science, Bina Nusantara

University, Jakarta, Indonesia,11480, bimandika.hasanah@binus.ac.id
2Computer Science Department, BINUS Graduate Program – Master of Computer Science, Bina Nusantara

University, Jakarta, Indonesia,11480, agirsang@binus.edu

 ISSN 2347 - 3983
Volume 8. No. 10, October 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter148102020.pdf

https://doi.org/10.30534/ijeter/2020/148102020

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6709

access points that will make the server more challenging to
exploit.

The term "Hardening" refers to securing the system. Like any
other operating system, application-level security flaws leave
Linux vulnerable to a variety of malicious attacks. Over the
years, many tools and techniques have been developed to
"harden" Linux hosts in an attempt to mitigate the risk posed
by buggy software [9]. Hardening processes, like removal of
unnecessary usernames and logins, software, and services,
that results in a robust, well-managed, and provides
enterprise-grade security service for the virtual systems [10].
Security benchmarks are one of the best approaches that can
be used for Hardening. A security benchmark is a set of
(standard) recommendations against which the security
strength of different systems can be compared. The
recommendations are coupled with auditing activities
specifying how to collect data for evaluating the
recommendations. The result of a security benchmark
evaluation is a score that represents the security strength of a
specific product/service/deployment [11]. Another better
approach could be using industry-standard benchmarks for
secure configuration. The Center for Internet Security (CIS)
providing security benchmarks for various platforms. These
benchmarks are well researched and tested [12]. The Center
for Internet Security is a cross-industry organization that
promotes best practices for securing systems. They publish
the Critical Controls, a list of 20 key practices for running a
secure IT organization, and the CIS benchmarks, a set of
consensus-based security hardening guidelines for
Unix/Linux and Windows OS, mobile devices, network
devices, cloud platforms, and common software packages.
These guidelines are designed to meet the requirements of a
range of different regulations [13]. The CIS Benchmark was
developed through the voluntary efforts of contributors from
experts in the field of cybersecurity, technology vendors,
members of the public and private communities, and the CIS
Benchmark Development team. Each release of the latest
benchmark is based on the new vulnerability founded.

CIS Benchmark on several Linux OS is published around
220 security recommendations for securing the operating
system. To implement all security recommendation manually,
it will take times, effort, and has a high rate for error
execution. To simplify and accelerate the execution process of
Hardening, This paper will propose a framework that can
automate and implement Hardening for Linux OS. This
Framework supports parallel execution on several servers at
the same time. This Framework will adopt the CIS
Benchmark as the fundamental of security recommendation,
and also This Framework will take advantage of
configuration management and wrapped up with container
technology for automation and agility.

Not only the CIS Benchmark, but the Framework is also
possible to automate other security rules or security policies.

2. RELATED WORKS

A variety of research has been conducted to find the method
for hardening the operating system.

2.1 Linux Hardening

There is some research [9], [14] in Linux Hardening, and one
of the research [14] focuses on practical securing Linux
production systems. It discusses basic Linux security
requirements for systems that need to pass various audits in an
enterprise environment. This research also presents to detect
the system's vulnerabilities by scanning configuration files
and server files to determine the computer activities by
scanning the log files, thereby securing the system by
replacing the vulnerable attributes with secured attributes.
Application security is ensured by scrutinizing the signatures
of various applications and displaying all the functionalities
in GUI format, making it more user friendly. An essential step
in securing a Linux system is to determine the primary
function or role of the Linux server. Linux Administrator
should have a detailed knowledge of what is on the system.
Otherwise, it will difficult to understand what needs to be
secured, and hence securing the Linux system proactively will
not be that effective. Therefore, it is very critical to look at the
default list of software packages that do not comply with
security policy if the Linux server has fewer packages to
update and to maintain when security alerts and patches are
released.

An essential step in securing a Linux system is determining
the function or primary role of a Linux server. To ensure
complete security, the Linux operating system must be
secured from the following aspects:

• User Security
• Network Security
• Package Security

To ensure user safety, researchers do things like:

1. Vulnerability assessment which is an internal audit of
network and system security; results that indicate
confidentiality, integrity, network availability.

Table 1: Vulnerability Assestments

Vulnerability Attacks Counter
measure

No separate
partition for
/boot, /, /home,
/tmp, and
/var/tmp

System crash and
data loss

Create separate
partition for
/boot, /, /home,
/tmp, and
/var/tmp

Unnecessary
software's

Software
vulnerability
attack

Install
minimum
software's

maliciously System instability, Install Signed

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6710

altered package System crash, and
data loss, data still

Packages

No BIOS
password

Stealing/Changin
g Data Using a
Bootable Linux
CD

Give BIOS
password

Single User
Mode access

Access as root
user without
password

Password
protecting
BIOS

Access to the
GRUB Console

change its
configuration or
to gather
information using
the cat command.

Password
protecting
GRUB

Access to
Insecure
Operating
Systems

If it is a dual-boot
system, an
attacker can select
an operating
system at boot
time (for example,
DOS)

Password
protecting
GRUB

A weak
password, no
password or
default
password

Cracking of weak
passwords

1) Enforcing
Stronger
Passwords
2) Restricting
Use of Previous
Passwords
3) Locking User
Accounts After
Too Many Login
Failures

No password
Aging

Use of Cracked
password over a
long period of
time

Apply good
password Aging

root access to
individual users

1) Machine
Misconfiguration
2) Running
Insecure Services

1) Root
Disallowing
Access
2) Disallow
Remote Root
Login
3) Disabling
root access via
any console
device (TTY)

2. Password Security: passwords are the primary method used
by Linux companies to verify user identity. This is why
password security is essential for the protection of users,
workstations, and networks.

3. Monitoring logs: To determine the operational status of the
system and applications that are in progress, monitoring logs
play an important role.

For network security, this research focuses on several things,
including:

• Disabling unused services like some network protocols are
inherently less secure than others. Including services that:
Send usernames and passwords over an unencrypted network
- Many older protocols, such as Telnet and FTP, do not
encrypt authentication sessions and should be avoided
whenever possible.

• Using a Firewall is an important step to protect network
security. A firewall can be used to improve access control
between two or more networks. The Linux kernel uses the net
filter facility to filter packages, allowing some of them to be
received or bypassing the system while stopping other
packages.

• The use of TCP Wrapper which adds a layer of protection by
defining which hosts are allowed or are not allowed to
connect to "wrapped" network services. One of the wrapped
network services is the xinetd super server. This service is
called a super server because it controls connections to a
subset of network services and further improves access
control.

While in the security of the package, the researchers proposed
the use of RPM, which is an open packaging system, which
runs on Red Hat Enterprise Linux and also Linux & UNIX
systems. The utility only works with packages created to be
processed by rpm packages. RPM manages the installed
package database & their files. This software provides
functionality to retrieve the number of packages installed and
their verification reports generated. Software packages are
published through repositories. All famous repositories
support package signing.

The main contribution of this research is to designing and
building a secure file system and network that was developed
with the express goal of enhancing file data security and
network security in the Linux kernel. The main objective is to
detect the vulnerabilities in the system by scanning
configuration files and server files to determine the computer
activities by scanning the log files, thereby securing the
system by replacing the vulnerable attributes with secured
attributes. In network security, we provide security for web
server, ssh server, etc. application security is ensured by
scrutinizing the signature of various applications and
displaying all the functionalities in GUI format, making it
more user friendly.

 Another research [14] in linux hardening is aims to explore
and highlight the basic security configurations that must be

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6711

carried out to strengthen the security posture of a standard
Linux Operating System installation. This research project
explores the main weaknesses and default configurations that
never change when building a production Linux Server,
making the target server easy to hack through the internet. By
following some industry best practices and fiddling with
several security configurations, Linux Servers can be secured
appropriately. This research project explores and suggests
best practices for Hardening standard Linux services such as
Secure Shell (SSH), Apache Web Server, and configuring
host-based firewalls (IPTABLES) to block connections to
unwanted ports and block bad traffic. Various operating
systems can be used in a server system. However, this project
focus on the Linux Operating System, CentOS 5.9 Final was
chosen as the operating system for this project.

Some technical aspects carried out during the research are:

• Perform unwanted packages and services that are installed
on the server. When the installation type, for example,
"Desktop GUI" is selected, many applications and services are
installed on the server. The server must be installed with
special applications needed for the proper operation of the
services required from the server. So to keep the server simple
and reduce threats from vulnerabilities related to unused
applications, we must remove unwanted packages and
services.

• The second phase is to do hardening security, which is done
using operating system updates. The system must be updated
regularly. New patches must be applied, when launched. To
update a Linux system, the yum utility can be used.

• Establish security requirements and provide complex
passwords on the operating system to ensure that the user's
password is secure, security policies must be enforced by
management and also by the system administrator. By
configuring the server for stringent password requirements
that cannot be avoided. Password security includes password
aging requirements, which means forcing passwords to expire
every 90 days, password complexity.

• Secure SSH, Secure Shell protocols are the most common
remote administration and management tools used for Linux
and Unix-based operating systems. SSH provides security and
session encryption features between server and client, to use
security and encryption features it is necessary to configure
/etc/ssh/sshd_config, the configuration that is usually done to
increase ssh include, disable root login, restrictions on user
access and authentication using RSA key.

• Kernel Security Parameters, ensure kernel security
parameters are set correctly. Parameters such as
net.ipv4.tcp_syncookies will protect from SYN attacks which
are denial of service attacks, disable source routing, disable
ICMP redirect messages, enable IP Spoofing protection,
ignore ICMP message requests if possible, ignore broadcast

stroom requests in ICMP, protect against ping flooding,
activates bad error message protection and allows logging of
fake, source routed and redirected packets to analyze the
source of the attack. This kernel parameter can be applied by
adding appropriate keyword pairs and values to the
/etc/sysctl.conf file. To apply changes without restarting the
server, run the sysctl –p command.

• Login Alert, it is useful for knowing who is logged into the
server. If the attacker gets access to the server, they can clear
the log, and it might be difficult for administrators to know
that the server has been compromised. This is very useful if
you apply a script that will notify administrators about all
logins via email. Because the script is executed as soon as the
user is logged in, an email is sent, and thus the attacker may
not be able to cover the track. The administrator can
immediately find out that someone has accessed the server.
The script path must be set in /etc /profile.

• TCP Wrapper "TCP wrapper adds an additional layer of
protection by determining which hosts are allowed or not
connected to" wrapped "network services (Centos, TCP
Wrappers, and xinetd). The TCP wrapper provides an
additional layer of security for services using the libwrap
library. Services like SSH, portmaps, telnet can be protected
using TCP Wrappers. In addition to proper firewall
configuration, the use of TCP Wrappers can add a layer of
security. With TCP wrappers, we can determine which
networks or hosts are allowed to use certain services on the
server. This is done by rejecting all hosts in /etc/hosts.deny
and selectively allowing hosts and networks in the /etc/hosts.
Allow file.

2.2 Security Benchmark
A security benchmark is a set of (standard)

recommendations against which the security strength of
different systems can be compared. The recommendations are
coupled with auditing activities specifying how to collect data
for evaluating the recommendations. The result of a security
benchmark evaluation is a score that represents the security
strength of a specific product/service/deployment. A research
[11] also conducted to secure OpenStack by researching a
security benchmark for OpenStack. This research defines a
security benchmark for OpenStack, which is an example and
refinement of the CIS Benchmark based on OpenStack's
security guidelines in describing its evaluation using a
guaranteed platform called Moon Cloud.

The security benchmark for OpenStack first maps the three

profiles (Virtual, Cloud, End User) identified by the CIS
benchmark on OpenStack's core services to overcome its
uniqueness, including the concept of shared responsibility
and the cloud layer, as follows.

• Virtual: this profile relates to all physical nodes where the

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6712

OpenStack service is installed, explicitly handling hardware
configuration, Linux OS, system virtualization, and system
service configuration.

• Cloud: this profile is related to OpenStack services and

add-ons. This involves OpenStack core services, admin
operations, and defined configurations.

• Users: this profile is related to using OpenStack users. It

discusses how users can secure their OpenStack projects,
including VMs, virtual storage, and network configurations.

The Researcher then made a generic CIS benchmark

recommendation and added several new recommendations to
the OpenStack core services based on the three profiles
specified. Following the CIS approach, the recommendations
mostly cover confidentiality, integrity, and access control
attributes, while they can be expanded to assess any security
attribute. In this research, the evaluation process is
implemented, collecting evidence about the target system, for
example, by testing monitoring activities on certain services.
The evidence gathered makes it possible to verify whether the
recommendation is. The Researcher used Container
technology to evaluate and hardening Openstack with Python
programming language, which can be seen at this link:
https://github.com/SESARLab/openstack-security-benchmar
k. After Hardening, the Researcher uses a verification tool
called Mooncloud.

2.3 Approach to Container Technology

Container technology has many advantages in improving the
performance of an application. [15] Approaches to a system
that comes with challenges that must be addressed, such as
the higher complexity of development to continue production,
stringent requirements, automation from every aspect,
isolation of failures, testing challenges and so on. Fortunately,
Docker has been introduced with key features and tools that
can help overcome these challenges, some of the advantages
of using Docker include:

• Speed up automation
Docker Container is naturally very suitable for microservice
architecture because each can be used as a container for
granular application deployment containing services because
each launch and manufacture of a container can be done using
a design script and with some supporting tools Docker
container can accelerate the culture of automation in each
cycle for software development

• Speed up Independence
Each container is an isolated box that can contain run time for
certain services, with this advantage the developer team can
work independently to implement services with any

technology or language, process, tools they like and are
different in each container

• Speed up portability
Docker places applications and all dependencies on portable
containers between many platforms, including Linux and
cloud distributions, different stakeholders from applications
such as developers, testers, administrators and others can
quickly run the same application on VMs, local computers,
bare-metal servers or in the desired cloud computing.

• Speed up the use of resources
In the Docker each container consists of only the applications
and dependencies needed by the application, the container
runs as process isolation on the host operating system and
shares the kernel with other containers, so even though the
container is placed in a VM, in addition to utilizing resources
in the VM the containerization technique also makes more
portable and efficient, in bare metal, the lightweight nature of
containers helps to run more instances than VMs that use
higher resources

• Security
Many things offered by the Docker allow developers to do
flexibly, maximize code security at various levels. When
creating code, developers can freely use penetration, a test
tool to test stress in any part of the build cycle. Because the
source for building a docker image is explained explicitly and
descriptively in the Docker build, the distribution component
(docker file, docker-compose) developers can handle the
docker image distribution more efficiently. They can also
implement security policies as needed, also able to quickly
harden services which cannot be made by putting it in the
container docker, adding reliable security insurance to the
service.

With these advantages, Docker is becoming a fast-developing
technology and has been widely adopted by companies and
institutions to increase the speed of the development process
and resource efficiency.

Docker technology approach can be implemented in many
software both for applications, websites, big data, and even
security, one of the uses of the Docker as a platform used for
vulnerability assessment. A research [16] conducted to
develops a security testing framework using service-based
services cloud for web developers to do security scans for their
web applications without having any prior knowledge or prior
experience in using and configuring security testing tools.

Based on the literature review above, the following is
summarized in the following table 2

 Table 2: Summary of Literature review
Author Publication Method
Arora et al.,
2014

Linux Hardening Explore the basic
Linux security

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6713

requirements for
systems that need
to pass
various audits in
the corporate

Nepal, 2014 Linux Server &
Hardening Security

Explore and
highlight basic
Security
configurations that
are must be done to
strengthen the
security posture of
a standard Linux
Operating System
Installation

Anisetti et al.
2017

A Security
benchmark for
Openstack

Creating a
platform called
moon cloud Using
security
benchmarking and
inspired by the CIS
Benchmark as a
parameter in
OpenStack and
leverage a docker
for the evaluation

Jaramillo et
al.
2016

Leveraging
microservices
architecture by using
Docker
Technology

Suggest the use of
Docker container
technology for
software
development
because it has
many advantages

Pathirathna et
al.
2018

Security Testing
as a Service with
Docker
Containerization

Develop a
vulnerability
scanning system
using Docker
Container
technology

2.4 Research Methodologies

This research is continuing several previous research such as
Linux Hardening [9], Linux Server & Security Hardening
[14], and Server Hardening: Securing Unix-like workstations
[17] by proposing the new methods that are expected to have
several advantages including:

• Optimization of execution time

• Support for parallel execution on several or even hundreds
of servers both virtual machines and physical machines
simultaneously

• Support Automation in the hardening process

This research will focus on improving the speed during the
hardening process and also improving security on the Linux
Operating System by proposing framework architecture. The
Framework will use configuration management with a docker
container baseline. The time of execution will be measured in
second units.

This research will compare speed between the proposed
Framework and old method that used to harden the Linux
operating system. For the assessment of vulnerability will be
using OpenVAS, Because the ability to detect vulnerabilities
for various operating systems and applications makes it a
popular tool among pentesters [18], Open Vulnerability
Assessment System is not only a tool but a complete
framework consisting of several services and tools, offering
comprehensive and robust vulnerability scanning and
vulnerability management solutions [19], we can be used
OpenVAS to measure security and scan for vulnerabilities in
the operating system before and after hardening process.

3. THEORY AND METHOD

3.1 Vulnerability

Sigmoidal vulnerability growth trends tend to follow the
popularity of operating systems. Once the popularity reaches
an inflection point, decreasing rate of adoption makes the
given operating system less lucrative for exploitation
development, which leads to fewer and fewer vulnerabilities
[20], Significant growth of the number of vulnerabilities
found in modern operating systems shows severe challenges
and risks that users must face.

Vulnerability is a security flaw in a computing system, which
can be consequently attacked and exploited by an attacker.
There are various ways in which vulnerabilities can be
exploited. Attackers can get commands executed in the
normal way, or overcome restrictions in order to gain
forbidden access to data, or trigger denial of service and
system service termination [21]. Every software has its
vulnerabilities, and vulnerabilities occur when developers
make mistakes on the logic of the coding or use imperfect
validation so that the software created has an unknown
weakness. Several institutions focus on finding vulnerabilities
in software, operating system, and device that provide
datasets which can be checked by the wider community and
can be used to make improvements to the vulnerabilities
found. There is a number on each vulnerability founded and
data set can be seen transparently, it is managed by several
institutions such as CVE (Common Vulnerability and
Exposure), NVD (National Vulnerability Database), VNDB
(Visual Novel Database) and several Linux operating systems
that manage findings own vulnerability also provides
recommendations such as RHSA (Red Hat Security
Advisory), SUSE-RU (Recommendation Update).

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6714

3.2 Hardening

Hardening in the operating system is a process of increasing
defense and security in the operating system. Hardening is
used to anticipate attacks to the operating system by
configuring, update and create rules and policies to help
securely govern the system, and removing unnecessary
software and services, will make the server has minimum
exposure then decrease a potential security risk.

Several methods can be applied to enhance security through
Hardening, one of which is by manually configuring Linux
using terminals, this method is very time-consuming because
many configurations need to be changed. Another method
that is widely used is to use a shell script to automate system
hardening on Linux, by using configuration management this
method is beneficial for improving security. However, some
things are not optimal in this method is the level of difficulty
in making scripts that will be very difficult for beginners to
understand Linux.

Configuration management can be an alternative to
hardening the system to simplify and accelerate the process.
Scripts in the management configuration will be accessed
using the internet and obtain transparent access also, keep
updated; the Framework will be an ecosystem that supports
increased security on Linux operating systems.

3.3 Container
Many techniques, methods, and technology have been
developed to improve the scalability and elasticity of
application deployments and operations in cloud computing.
One of them is container-based virtualization.
Container-based virtualization can provide higher density
virtual environments and better performance than
hypervisor-based virtualization [22]. Containers are an
encapsulation of an application with its dependencies. At first
glance, they appear to be just a lightweight form of virtual
machines (VMs)—like a VM, and a container holds an
isolated instance of an operating system (OS), which we can
use to run applications [23]. In container virtualization,
instead of having an entire Operating System guest OS,
containers isolate the guest but do not virtualize the hardware.
For running container one needs a patched kernel and user
tools, the kernel provides process isolation and performs
resource management. Thus all containers are running under
the same kernel, but they still have their file system,
processes, memory, etc. [24].

Docker is one of the popular Container-based virtualizations
for deploying and managing applications. Docker provides
convenient tools to combine files in images and run
containers from images on end hosts. Each end host runs a
daemon process that accepts and processes user commands

[25]. Docker also enables a secure packaging and deployment
of applications, supporting the DevOps model of speeding up
the development life-cycle through rapid change, from
prototype to production [26].

The Docker solution is consist of the following components,
such as Docker engine and Docker Hub.

The Docker engine is for enabling the realization of
purpose-specific as well as generic Docker containers. The
Docker Hub is a fast-growing repository of the Docker images
that can be combined in different ways for producing publicly
findable, network-accessible, and widely usable containers
[27]. Using Docker in the software development process is
very beneficial because it can solve problems encountered in
previous methods such as library dependencies, inaccurate
documentation, dispel code rot on image versions, adoption
and reuse [28], Docker can also be installed on personal
computers for large business projects because it is a modern
alternative container in the development of software in the
microarchitecture services[15].

4. IMPLEMENTATION
4.1 Framework Architecture

The framework stacks are consist of several components,
Such as, security benchmark which used as source policy
hardening, Researchers and contributors whose role is to
translate documents into code, source code management used
to store code. Image repository containers used to store
containers images from this Framework, the container host
can use a various device such as a bare-metal physical server,
virtual machine on cloud computing or private notebook as
long as the device can be installed the Docker software and
has a sufficient resource of CPU, memory, storage, and
network. Each component of the Framework is integrated
with other components and has a dependency with another,
Framework Architecture and workflow described in Figure 1.

Figure 1: Proposed Framework Architecture and Workflow

The workflow starts by downloading the security benchmark
and do convert it into code. After the coding process is
complete, the code will be uploaded to the management
source code, Management source code not only for store the
code but also to add new features to the proposed Framework

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6715

also to make the Framework accessible and used by everyone,
apart from that everyone also can contribute to the
development of this Framework and can also report bugs, add
new ideas on approval of Researcher or contributor.

The Framework uses the CentOS as a baseline and installed
configuration management for the execution of the Hardening
process on the Linux OS. There is an automation function on
the container which aims to update the code when first
launched.

Currently, Framework supports four Linux Operating System
and Deep inside Framework container, The hardening
function divided into six functions as described in Figure 2.

Figure 2: Software Architecture

The six hardening function is instantiation and refinement of
the CIS Security benchmark with several additional functions
to make the system vulnerable, The. Theil of each function
are:

• The file system configuration function is used to protect the
server from excess resources on disk and forcing the usability
of mounting options on every mounted partition to prevent
and minimize data loss if the Linux server crashed. This
function also configure sticky bit on world-writable
directories prevents users from deleting or renaming files in
the directory that do not belong to users, setting software
update by ensuring patch management system is configured
and maintained, configure integrity checking tools to
detecting unauthorized changes of configuration files by
alerting when the files are changed, and the last function is for
enforcing the Mandatory Access Control (MAC) to provides
an additional layer of access restrictions to processes on top of
the base Discretionary Access Controls.

• Service functions primarily for disabling unnecessary
services to protect the system against as yet unreported
vulnerabilities. Prevent the exploitation of the discovered
vulnerability in the future, and if the service disables, it
cannot be exploited.

• Network Configuration function is to enhance the network
security on the system by configuring through kernel
parameters, access-list control, and firewall settings.

• Logging and Auditing function is used to automatically
monitor logs for intrusion attempts and other suspicious
system behavior, by configuring Linux logging software and
audit software, because It is essential that all logs can be
monitored regularly and correlated to determine trends. A
seemingly innocuous entry in one log could be more
significant when compared to an entry in another log.

• Access, Authentication, and Authorization primarily to
control operating system determines how the operating
system implements accesses to resources by satisfying the
security objectives of integrity, availability, and secrecy and
for secure the mechanism determining access levels or user
privileges related to system resources including files, services,
computer programs, data and application features.

• System Maintenance functions intended as maintenance
and is intended to be checked on a frequent basis to ensure
system stability.

4.2 Proposed Framework Execution

The initiation of the hardening process is started with
launching the container from the Container Host. If the
framework image does not exist in the local server, then
Docker will download the framework image from the Docker
Hub, and the container can be formed and run. The hardening
process will under the SSH (Secure Shell) protocol. Remote
initiation is from Container Framework to the Linux Server
by running the command

#docker run -it -d --name=linux_harden - -net=host
bimandika/linux_harden

All command flag in the above can be adjusted as needed. The
most important thing the --net parameter, which purposes
connecting the container network segment with the target
server network segment. In this case target server has the
same segment with container-host, so the --net variable is the
container-host network. For other networks, topology can
refer to docker networking documentation. The other
requirement to be fulfilled is granting authorization access to
the Framework on the target server by SSH (Secure Shell).
Framework public RSA-key must be planted on the target
server. Then target server IP or domain needs to register on
/home/hosts file inside the Framework. The framework will
read this inventory file before execution hardening. When all
requirements are met, to execution hardening the target
server can be done by simply use this command

#harden [OS]

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6716

[OS] is a variety of current supported Linux operating system
by the Framework currently only support Ubuntu 18.04,
CentOS 7, Debian 10, and Fedora 32.

After the hardening process finish, the container can be
destroyed to save the storage space of the container host.

4.2 Proposed Framework Evaluation

To verify that design and implementation meet the goals, an
experiment was conducted to evaluate Framework. First,
Comparing the execution time of frameworks and old
methodologies for Hardening on several operating systems
and Do the simultaneous execution of Hardening up to 100
Target servers to verify the design goal of parallel execution.
Then for security verification, we evaluate target server
vulnerability before and after Hardening.

The time consumption of hardening execution is described in
Table 3.

 Table 3: Comparison of Execution Time

Operating
System

Single Server Execution Time
Time-consuming
Percentage Old Method (s)

Proposed
Method (s)

Ubuntu
18.04 838 293 35%

CentOS 7 557 286 51%

Debian 10 616 195 32%

Fedora 32 370 155 42%

 Figure 4: Chart Comparison Execution Time of Single Server

The evaluation process using the same specification of the
target server with the same operating system in the same
environment. The unit used in this evaluation is second. The
execution time needed to harden the Framework is less than
55% on all operating systems, with the average 40%
time-consuming. In comparison, the overall Framework has
an average of 60% of time optimization than the old method.

While for hardening 100 Server the forecast of time execution
can be shown in figure 5

Table 4: Comparison of Parallel Execution time

Number of Servers Execution Time (s)

10 Server 510

20 Server 609

50 Server 1.313

100 Server 2.834

 Figure 5: Chart Comparison of Parallel Execution Time

On the parallel execution framework consuming minimum 34
Second per server and maximum 51 second per server and has
a better performance than execution on single server. Then in
the table below described vulnerability assessment results
using OpenVAS before and after the hardening execution

 Table 5: Known Vulnerability on Operating System

Operating
System

Vulnerability

Before Hardening After Hardening

High Mediu
m

Lo
w

Hig
h

Mediu
m Low

Ubuntu
18.04 70 84 11 0 1 0

CentOS 7 105 105 8 0 2 0

Debian 10 0 1 1 0 1 0

Fedora 32 2 21 2 0 9 0

Hardening can reduce more than 80% of a known
vulnerability, and it enhances the security of the operating
system. Less vulnerability means less gateway or weak point
that can be used by the attacker to interfere with the system.

5. CONCLUSION AND FUTURE WORK

Cloud Computing will never be utterly secure, especially in
Operating System, because the application and system make
changes though threats or exploit new applications or
packages installed. Hardening can reduce the incorrect values
that increase the risk. Therefore, this research describes how

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6717

to quickly strengthen Linux servers' security by taking
advantage of several technologies. Vulnerability

A few enhancements to make this framework work better,
compatibility to another operating system, and other security
policy will make this framework have a broader scope for
driving other operating systems more secure.

REFERENCES

1 K. Sharma, Emerging Cloud Computing

Paradigm: Vision, Research Challenges and
Development Trends, Int. J. Res. Eng. Technol., vol.
03, no. 05, pp. 892–899, 2014, doi:
10.15623/ijret.2014.0305162.

2 J. K. R. Sastry and B. Trinathbasu, Extended
openstack architecture for enforcing
comprehensive security within cloud computing
system, Int. J. Emerg. Trends Eng. Res., vol. 8, no. 7,
pp. 3271–3279, 2020, doi:
10.30534/ijeter/2020/64872020.

3 B. W. K. Malubaya and G. Wang, Real-time parking
information system with cloud computing open
architecture approach, Int. J. Emerg. Trends Eng.
Res., vol. 8, no. 1, pp. 18–22, 2020, doi:
10.30534/ijeter/2020/04812020.

4 H. Pooja and S. Rani, Avoiding the Security Attacks
by Hardening the Cloud, International Journal of
Emerging Technology and Advanced Engineering w
website: www.ijetae.com (ISSN 2250-2459,ISO
9001:2008Certified Journal, Volume 4, Issue 4, April
2014). 2014.

5 Z. N. Chen et al., Evolution of Cloud Operating
System: From Technology to Ecosystem, J.
Comput. Sci. Technol., vol. 32, no. 2, pp. 224–241,
2017, doi: 10.1007/s11390-017-1717-z.

6 H. M. Musse and L. A. Alamro, Cloud computing:
Architecture and operating system, Proceedings -
2016 Global Summit on Computer and Information
Technology, GSCIT 2016. pp. 3–8, 2017, doi:
10.1109/GSCIT.2016.7.

7 D. A. Tevault, Mastering Linux Security and
Hardening Secure your Linux server and protect it
from intruders, malware attacks, and other external
threats. Packt Publishing Ltd, 2018, [Online].
Available: www.packtpub.com.

8 A. T.Deshmukh and P. N . Mahalle, Enhancing
Security in Linux OS, Int. J. Comput. Appl., vol.
117, no. 12, pp. 34–37, 2015, doi:
10.5120/20609-3239.

9 N. Arora, T. Bhosale, V. Sharma, and J. Supe, Linux
Hardening, Int. J. Recent Innov. Trends Comput.
Commun., vol. 2, no. May, pp. 1019–1022, 2014.

10 R. L. Paikrao and V. H. Patil, Security as a Service
Model for Virtualization Vulnerabilities in Cloud
Computing, 2018 International Conference On

Advances in Communication and Computing
Technology, ICACCT 2018. pp. 559–562, 2018, doi:
10.1109/ICACCT.2018.8529573.

11 M. Anisetti, C. A. Ardagna, E. Damiani, and F.
Gaudenzi, A Security Benchmark for OpenStack,
IEEE International Conference on Cloud Computing,
CLOUD, vol. 2017-June. pp. 294–301, 2017, doi:
10.1109/CLOUD.2017.45.

12 S. Rahalkar, Network vulnerability assessment :
identify security loopholes in your network’s
infrastructure. Packt Publishing Ltd, 2018, doi:
August 31, 2018.

13 L. Bell, M. Brunton-Spall, R. Smith, and J. Bird,
Agile Application Security: Enabling Security in a
Continuous Delivery Pipeline. “ O’Reilly Media,
Inc.,” 2017.

14 A. K. Nepal, Linux Server & Hardening Security,
no. August, pp. 0–65, 2014, doi:
10.13140/2.1.5079.2329.

15 D. Jaramillo, D. V Nguyen, and R. Smart,
Leveraging microservices architecture by using
Docker technology, SoutheastCon 2016. pp. 1–5,
2016.

16 P. P. W. Pathirathna, V. A. I. Ayesha, W. A. T.
Imihira, W. M. J. C. Wasala, N. Kodagoda, and E. A.
T. D. Edirisinghe, Security testing as a service with
docker containerization, International Conference
on Software, Knowledge Information, Industrial
Management and Applications, SKIMA, vol.
2017-Decem. pp. 1–7, 2018, doi:
10.1109/SKIMA.2017.8294109.

17 Y. Bhardwaj, Server Hardening: Securing
Unix-like workstations, Int. J. Comput. Sci. Eng.,
vol. 3, no. 3, pp. 24–32, 2015.

18 M. U. Aksu, E. Altuncu, and K. Bicakci, A First
Look at the Usability of OpenVAS Vulnerability
Scanner, Workshop on Usable Security (USEC)
2019. 2019, doi: 10.14722/usec.2019.23026.

19 S. Rahalkar, OpenVAS, in Quick Start Guide to
Penetration Testing, Springer, 2019, pp. 47–71.

20 O. Alhazmi, Y. Malaiya, and I. Ray, Security
vulnerabilities in software systems: A quantitative
perspective, IFIP Annual Conference on Data and
Applications Security and Privacy. pp. 281–294,
2005.

21 A. Gorbenko, A. Romanovsky, O. Tarasyuk, and O.
Biloborodov, From Analyzing Operating System
Vulnerabilities to Designing Multiversion
Intrusion-Tolerant Architectures, IEEE Trans.
Reliab., vol. 69, no. 1, pp. 22–39, 2020, doi:
10.1109/TR.2019.2897248.

22 T. Bui, Analysis of Docker Security, arXiv Prepr.
arXiv1501.02967, 2015, [Online]. Available:
http://arxiv.org/abs/1501.02967.

23 A. Mouat, Using Docker: Developing and Deploying
Software with Containers, O’Reilly. “ O’Reilly
Media, Inc.,” 2016.

Bimandika Hasanah et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6708 – 6718

6718

24 S. Navin and W. Bibin, Docker Hands on: Deploy,
Administer Docker Platform. Amazon Digital
Services, 2015.

25 A. Anwar et al., Improving Docker Registry Design
based on Production Workload Analysis,
Proceedings of the 16th USENIX Conference on File
and Storage Technologies, FAST 2018. pp. 265–278,
2018.

26 D. Merkel, Docker: lightweight Linux containers
for consistent development and deployment, Linux
J., vol. 2014, no. 239, p. 2, 2014, doi:
10.1097/01.NND.0000320699.47006.a3.

27 A. Thakur, Docker, Creating Structured Containers.
Packt Publishing Ltd, 2016.

28 C. Boettiger, An introduction to Docker for
reproducible research, Oper. Syst. Rev., vol. 49, no.
1, pp. 71–79, 2015, doi: 10.1145/2723872.2723882.

