
Mahesh V et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7596 - 7599

7596

An Efficiency Enhanced Scheme for WG Stream Cipher

 Mahesh V 1, Mohankumar N 2, Girish Shankar Mishra 3, Arun Kumar M 4, Rakesh Raveendran 5

1. Asst Professor, EECE, GITAM School of Technology, Bengaluru, India, mvarier@gitam.edu
2. Professor, EECE, GITAM School of Technology, Bengaluru, India, mnagaraj2@gitam.edu

3. Asst Professor, EECE, GITAM School of Technology, Bengaluru, India, gmishra@gitam.edu
4. Asst Professor, EECE, GITAM School of Technology, Bengaluru, India, amanohar@gitam.edu

5. Oracle India Pvt Ltd, Bangalore, rak007.008@gmail.com

ABSTRACT

Presented is a hardware implementation of WG (Welch-Gong)
stream Cipher, a crypto algorithm for communication and
wireless systems. The Montgomery multiplication algorithm
architecture is analyzed based on two approaches: folded and
pipelined. Montgomery approach reduces the slice LUT’s by
90% power by 10%. Results are evaluated on the basis of
utilization factors and performance parameters. Along with
key-stream generation, randomness properties are also
guaranteed in the finite field.

Keywords WG stream cipher, Montgomery multiplication
algorithm, Keystream, Finite field

1. INTRODUCTION

 WG cipher is a stream cipher, synchronous in nature with a
bit oriented production of key-streams. Binary sequences are
produced from the key-stream generator, which consist of
Linear feedback shift register (LFSR) and combiner functions.
In order to decrypt, an identical key stream is generated and
will be provided between transmitter and receiver. This key-
stream is XORed with cipher text and it recovers the plain
text. Bit by bit encryption and decryption is carried out in this
stream cipher.

 Stream cipher has applications in wireless and
communication systems like 3GPP, LTE, Bluetooth [1],
RFID[2] etc. It is resistant to many cryptanalytic attacks like
data trade off, time and memory. Concept of the secure
stream ciphers is materialized in the eSTREAM project [3]
and is implemented in the hardware profile as Word oriented
and Bit oriented. Word oriented stream ciphers like ZUC [4] ,
SNOW 3G [5] have limitations in providing certain key
stream properties like linear complexity, auto correlation etc.
which are critical in certain communication systems. While bit
oriented stream ciphers like A5[6] lack in features including
statistical properties, period and linear complexity etc.

2. METHODOLOGY

The WG (Welch-Gong) (29, 11) is implemented based on
transformations [7]. A Transformation block along with a
pseudo sequence random generator, which is an LFSR,
constitutes the main processing block. It consists of shifting,
inversion and multiplication operations. Normal basis
multiplication [8] is carried out in the transformation block to
generate the key stream.

Different combinations of key and initial vector (IV) are the
main inputs for this algorithm which ensures high security.

Notations used to define WG cipher operation are:

F2 : finite field with 0 and 1 in Galois field GF(2)

F2
29:field with 229 elements in Galois field and each vector

of length 29 bit.

The WG cipher can be used with different length of keys such
as 80, 96, 112 and 128. The IV can be of length 32 and 64.
Using the same number of bit length for key and IV gives
better security which is selected as 128 bit in the current work.

Main blocks of this algorithm are an 11 stage LFSR and a
Transformation Block. WG (29,11) shows that each stage of its
LFSR consists of 29 bit vector and a total of 11 stages. An
FSM and a 4 × 2 multiplexer are used for control operation.
Working of this cipher is divided into 3 stages:

a. Loading Phase
b. Initialization Phase
c. Running Phase

The 128 bit key and IV are loaded into the 11 stage LFSR.
We use the notation h(j) for the stages of LFSR where 1≤j≤11,
and the key is denoted as B1….b, 1≤b≤128 and IV is denoted as
IV1.....n, 1≤m≤128.
h1….16(1)=B1….16 h17….24(1)=IV1….8 h1….8(2)=B17…..24
h9….24(2)=IV9…24 h1….16(3)=B25….40 h17…24(3)=IV25…..32
h1….8 (4)=B41….48 h9….24(4)=IV33…48 h1….16(5)=B49…..64

 ISSN 2347 - 3983
Volume 8. No. 10, October 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter1478102020.pdf

https://doi.org/10.30534/ijeter/2020/1478102020

Mahesh V et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7596 - 7599

7597

h17…24(5)=IV49..56 h1…...8(6)=B65….72 h9….24(6)=IV57…..72
h1….16(7)=B73….88 h17…24(7)=IV73….80 h1….8(8)=B89…..96
h9….24(8)=IV81…96 h1….16(9)=B97….112 h17…24(9)=IV97…104
h1….8(10)=B113…120 h9….24(10)=IV105…120 h1…8(11)=B121…128
h17…24(11)=IV121…128
In LFSR, zeroes are padded to the remaining bits and loading
phase will take 11 clock cycles. The LFSR’s feedback
polynomial is:
 p(y) = y11 + y10 + y9 + y6 + y3 + y +
and the primitive polynomial q(y) will generate the F2

29
q(y) = y29 + y28 + y24 + y21 + y20 + y19 + y18 + y17 +y14 + y12 +

 y11 + y10 + y7 + y6 + y4 + y + 1 (2)

where β is the root of q(y) and so β464730077

h(1),h(2),h(3)……..h(11)F2
29 will be the LFSR’s internal state.

In initialization phase, key and bit IV are loaded into LFSR, for
22 clock cycles and the initial feedback is carried out . The
feedback is XORed with linear feedback and it is fed to the
11th stage of the LFSR so that the LFSR will get updated. A 4 ×
2 multiplexer is used to select the key initialization, loading of
initial vector and also for linear feedback. Select lines are
controlled by the FSM as in Figure 1.

The LFSR is clocked with the key initialization process and the
contents of LFSR will get updated. A total of 2 319-1
combinations will be there, following which the running phase
will start and bit by bit key-streams are generated. This is
XORed with the plain text to provide the cipher text
completing the crypto operation.

M
U

X

FSM

C(Z)

Ai+10 Ai+9

WGTrans

Initial

Vector 29

2

29

1

Output

Ai

Initial

Feedback

29

Linear

Feedback

29

Figure 1: .Block Diagram

In the transformation block F2
29F2 will take place and the

computations are done in normal basis [8] with exponentiation
by the right cyclic shift.

If y belongs to F2
 ଶ is obtained by shifting the bits of yݕ	 ,29

cyclically towards right by j times, and in normal basis inverts

the bits of the field element for addition with 1.The
transformation output is:

ݐݑݐݑ = 	⨁(⊳ ଵݍ) ⊕ ⊕ଶݍ) ଷݍ) ⊕ (3) 				(((((ܼ⊕ସݍ)
where

ଵݍ = (ܼ ≫ 9)⨂൫(ܼ ≫ 19)⨂ܼ൯

ଶݍ = ൫ܼ−1 ≫ 9൯⨂൫(ܼ ≫ 19)⨂ܼ൯

ଷݍ = ൫ܼିଵ⨂(ܫ ≫ 19)൯⨂(ܼ ≫ 10) (4)

4ݍ = (ܼ ≫ 10)⨂ܼ

 ܼ =⊳ (ݐݑ݊݅)

where: ⊗ is the normal basis multiplication,⊕ is XOR
(bitwise addition), >> right cyclic shift,⊳ complements all 29
bits, and ⨁ is addition of 29 bits of x over F2 (XOR) so that a
total of 11 clock cycles are taken in loading phase and 22 clock
cycles in key initialization phase. It is followed by running
phase where each key-stream is generated in single bits.Finite
State Machine (FSM) has a connected 2-bit binary and 11-bit
one-hot counter.

3. PROPOSED WORK

Inversion and multiplication in the WG transformation block
are the most expensive operations leading to large area
occupancy and speed. In this contest analysis using the
Montgomery Multiplication algorithm [9] inside the
transformation block is carried out and the result is
encouraging. The finite field arithmetic provides the solutions
in the field of cryptography, coding theory etc, where
multiplication is the most demanding operation. Main
advantage of the finite field arithmetic is the faster results with
no loss in accuracy. They are well used in hardware realization,
efficiently using VLSI gates. For multiplication, two
approaches were proposed [9]: Folded and pipelined one of
Montgomery multiplication algorithms. The standard basis is
more advantageous compared to the normal basis, because all
the polynomials do not have normal basis so that we can’t
generalize normal basis for every polynomial.

Modular arithmetic is carried out in GF(2K) fields with the
main obstacle that division need a remainder, which is time
consuming. The Montgomery multiplication algorithm is
performed by bypassing this division so that multiplication in
GF(2k) is a modular operation and it is,

 d(y) = p(y)o(y)mod g(y) (5)

so that in this algorithm, instead of o(x)o(x)mod g(x),
p(y)o(y)r-1(y)mod g(y) and r(y) is pre-computed. The algorithm
is as follows:

Mahesh V et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7596 - 7599

7598

Input p(y),o(y), g (y)
Output g(y) = p(y)o(y)y-k mod d (y)
1. d(y) = 0
2. For j=0 to k-1 do begin
3. d(y) =d(y) + pj o(y)
4. d(y) = d(y) + d0 g(y)
5. c(x) = c(x) /x
End
6. Return c(x)

Therefore multiplier element of this architecture is given as in
Figure 2:

Figure 2: Multiplier Element

In the folded architecture, one input and one output registers
are used to store C(x) which is an intermediate result. After
completing k-loop cycles, output register stores the result. By
using the folded architecture we could achieve very small chip
covering area in VLSI implementation. Pipelined approach of
this multiplier increases throughput compared to the folded
architecture with an increase in the chip covering area.
Arrangements of these architectures are shown in the Figures
3(a) & 3(b).

Figure 3(a): Folded approach[9]

Figure 3(b): Pipelined Approach[9]

Mahesh V et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7596 - 7599

7599

 4. ANALYSIS AND COMPARISON OF RESULTS

 Virtex 6 –XC6VLX130T device with the package FF1156 was
used for the implementation of the current architecture. A
detailed comparison is made on the basis of device utilization
and power consumption as summarized in table 1.

Table 1: Comparison Table

Architecture
Slice

LUT’S
Slice

registers

LUT-
FF

pairs
Power
(W)

Throughput
(Mbps)

WG Basic
implementation 4169 446 370 2.985 200

Folded
architecture 417 255 254 2.705 227

Pipelined
architecture 422 350 350 2.719 267

Slice LUT’s in the basic implementation is higher and can be
reduced in folded and pipelined approaches. Accordingly
power is reduced from 2.985W to 2.705W which is around
10%. Throughput is increased from 200Mbps to 267Mbps,
which is 33%.

5. CONCLUSION

The normal basis multiplication in the WG Stream cipher is
replaced by Montgomery multiplication algorithm. Three
different architectures are compared on the basis of device
utilization and power. The results shows that the Montgomery
approach is able to reduce the slice LUT’s by 90% as
compared to the basic implementation and also the power is
reduced by 10% in the proposed architecture by preserving the
cryptographic properties.

 REFERENCES
[1] Bluetooth Special Interest Group. (2010, Jun.).

Adopted Bluetooth Core Specifications, Core
Version 4.0, Kirkland, WA, USA [Online].
Available: https://www.bluetooth.org/

[2] Y. Luo, Q. Chai, G. Gong, and X. Lai, “A
lightweight stream cipher WG-7 for RFID
encryption and authentication,” in Proc. IEEE
Global Telecommunication. Conf., Dec. 2010, pp.
1–6

[3] eSTREAM—The ECRYPT Stream Cipher Project
[Online].Available: http://www.ecrypt.eu.org/stream/

[4] P. Kitsos, N. Sklavos, and A. Skodras,
“ An FPGA Implementation of the ZUC

Stream Cipher,” in Digital System

Design (DSD), 2011,14th Euromicro Conference

on, pp. 814–817,IEEE, 2011
[5] Specification of the 3GPP Confidentiality and

Integrity Algorithms, UAEA2 & UIA2. Document 2:
SNOW 3G Specification, ETSI/SAGE Specification,
Version: 1.1Date: 6th September 2006

[6] M. Briceno, I. Goldberg, and D. Wagner, A
Pedagogical Implementation of A5,
http://www.scard.org, May 1999.

[7] Hayssam El-Razouk, Arash Reyhani-Masoleh, “New
Implementations of WG Stream Cipher” IEEE
Trans on VLSI Systems,VOL. 22, No.9,
SEPTEMBER 2014, London

[8] H. Fan, D. Liu and Y. Dai, Two Software Normal
Basis Multiplication Algorithms for GF(2n),
Tsinghua Science and Technology, vol. 11, No.3

[9] A.P.Fournaris and O.Koupofavlov “GF(2k)
Multipliers based on Montgomery
Multiplication Algorithm” International symposium
on Circuits & Systems, May 2004.

