
Olesia Barkovska et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 690- 694

690



ABSTRACT

The relevant problem of text analytics tools development is
real-time mode establishment via data processing operations
parallelizing. The use of the local parallel (LP) approach is
advantageous. The classification of search algorithms for text
blocks, which are candidate for local parallel (LP) approach
implementation, was presented. The advantages of LP
approach implementation were regarded. The variants of bit
and segmental word-patterns processing in text block search
tasks were proposed and exemplified. Perspectives and
certain threats to its implementation were studied in terms of
Boyer-Moore algorithm.

Key words: Boyer-Moore algorithm, local parallel data
processing, text analytics, text block search.

1. INTRODUCTION

Block search (of a word or phrase) in a text is a common task
of the algorithm theory, which combines intuitive statement
understandability and overall concept simplicity with
multivariance of solutions depending on the auxiliary

conditions [1, 2] with regard to particular features [3 - 5] of
the information to be processed.
Text block search algorithms have been studied in sufficient
detail [6], in particular, for sequential computer systems [7].
Parallel computer systems were until recently predominantly
multi-processor, cumbersome, expensive and
“special-purpose”. Therefore, they were developed mainly to
solve particular tasks and the problem of sorting and search
was regarded primarily in terms of common algorithm
parallelizing principles realization in respect to data bulk.
The situation changed “at the cusp of centuries” with the
emergence of multicore processors and mass use of network
computation structures [4, 5]: limited (relatively small) data
arrays processing with general-purpose computers prior use
has gained relevancy. It is quite clear that limited data arrays
and general-purpose computers of the early XXIst century are
almost like big data and back-end processors of the late XXth
century. Figure 1 shows basic sequential (elementwise) text
block search algorithms classification, which cannot be
considered complete. The given task class is effectively solved
by means of using algorithms, which realize the principle of
local parallel (LP) data processing [4]. On the basis of each of
the abovementioned algorithms, a corresponding LP version
may be developed.

Figure 1: Review of basic TBS algorithms

2. RESEARCH TASK RATIONALE

Limited data arrays (LDA) refer to what an individual
operates with while interacting with the environment.
Preferential LDA application field covers the

decision-making tasks in the determinated set of options. The
tasks of the given type cover, in particular, the major part of
the subject of man-machine interaction. One of the dominant
paradigms (not the only one [5]) in this field is the research
and reproduction of the structure and functions of the human
intellect [9]. At every certain moment of their practical

Local Concurrency in Text Block Search Tasks
Olesia Barkovska1, Oleg Mikhal2, Daria Pyvovarova3, Oleksii Liashenko 4, Vladyslav Diachenko 5,

Maxim Volk 6
1,2,3,4,5,6 Department of Electronic Computers

Kharkiv National University of Radio Electronics, NURE
Kharkiv, Ukraine

d_ce@nure.ua

Text Block Search
Algorithms (TBS)

Linear algorithm Boyer-Moore algorithm
(BM)

Knuth-Morris algorithm
(КМ)

Rabin–Karp algorithm
(RК)

 ISSN 2347 - 3983

Volume 8. No. 3, March 2020
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter13832020.pdf

https://doi.org/10.30534/ijeter/2020/13832020

Olesia Barkovska et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 690- 694

691

activity, an individual operates effectively with a limited
small number of notions [10, 11]. Excess LDA is a stress
situation, in which effective work may demand specific
training [3, 10] or may be supported, at the best, during a
limited time period. Effectiveness is determined by the correct
choice and the effective sequence of options consideration
while the effective choice effectuation eventually reduces
itself to the tasks of TBS type. In the given tasks, LP
algorithms provide for acceleration of processing with no
extra hardware resources application. Thus, LP processing is
feasible as a structural element in TBS implementation. This
stipulates the relevancy and practical value of the given
direction.

3. AIMS AND TASKS OF THE WORK

The aim of the given work is the study of LP data processing
principles as applied to TBS tasks. The specificity of the
known algorithms (Fig. 1) is the sequential (elementwise)
study of the material in implementation on general-purpose
computer systems. The LP approach enables to parallelize the
study within the framework of LDA. With regard to this, the
text block search principles are studied as implemented in LP
algorithms:
 traditional TBS algorithms classification is provided (with
account taken of peculiarities important for further LP
realization);
 the possibilities for LP approach application are analyzed
(with regard to the developments [4]);
 the options of bit and segmental LP lines (word patterns)
processing are outlined;
 the implementation options for LP algorithms of
fragmental search (by word patterns) are regarded, in
particular, based on Boyer-Moore algorithm.

4. TASK FULFILLMENT

Text analytics tools enable automatic choice, systematization
and analysis of alphanumeric data due to the application of
linguistic rules, statistical machine learning methods within
various areas of application [3, 9, 10, 11]. TBS is a particular
case of text analytics tasks, i.e. the search of information
(word patterns) in alphanumeric data storages (in texts). [1]
offers the method of parallelizing the algorithm of word
pattern search in the text for shared memory systems, which is
based on adaptive data input decomposition. However,
despite the obtained reduction of time for the set task
accomplishment, the real-time mode cannot yet be reached.
Reduction of time for word pattern search in the text is
possible with the account taken of the allowed relations of
between the processor capacity, word size of the
LP-representation and the possible maximum permissive
amount of alphabetic characters.
Local parallel (LP) arrangement of computations can be
outlined as follows [4]: assuming there are two n-component
vectors: A: {a1, a2,…, ai,…, an}; B: {b1, b2,…, bi,…, bn};
i  (1, 2,…, n); 0 ≤ ai ≤ amax; 0 ≤ bi ≤ bmax; amax, bmax are

integer; amax = bmax. Here, the prompts amax и bmax define that
the numbers’ magnitude (vector components) is limited (are
not arbitrary large). Component-based vector sum:
C: { c1, c2,…, ci,…, cn }; ci = ai + bi, is required to be found
by means of applying a computing medium with a general
purpose processor. Thus, this is not a question of
special-purpose multiprocessor systems.
In the traditional sequential variant, the number of operations
is proportional to n:
1. Initial installation: i=1;
2. Operand ai value retrieval;
3. Operand bi value retrieval
4. Summarization: ci = ai + bi;
5. Storage of the result ci in the holding register;
6. i = i + 1. with i>n, termination; otherwise, - point 2
In LP variant, the computation scheme is different:
1. Concatenation:

A:{a1, a2,…, an} → a# = (a1 a2… an);

B:{b1, b2, …, bn} → b# = (b1 b2… bn).
2. Concatenant a# retrieval;
3. Concatenant b# retrieval;
4. Concatenants summarization: c# = a# + b#;
5. Storage of the result c# in the holding register

6. Deconcatenation: c# = (c1 c2… cn) → C:{c1, c2,…,
cn}.
Concatination and deconcatination operations are performed
with positive integers in binary representation. These integers
reside in the neighbouring non-overlapping segments.
Therefore, figures a#, b# and c# are register forms (RF). In
processing, they reside in the central processing unit in
separate registers – lines of binary memory cells. In LP
representation, the concatenation result is a positive integer
interpreted as a composition of segments with regard to
concatenation length. Therefore, concatenation is the
operation of packing information representation in a# and b#.
in the form of segments. Further, are processed as a whole as
numerals. In deconcatenation, segments are extracted in
separate variables. Computing blocks of pp 2-5 in the
sequential and LP schemes coincide, however, in the
sequential scheme, the block is executed n-fold and in the LP
scheme it is executed one-shot. This stipulates the advantage
in effectiveness. Concatenation and deconcatenation are
connected with extra computing power consumption. On the
other hand, if something more complex (multi-stage) than in
p.2-5 is effectuated in the system with the results retrieved at
the end, extra time spending may be negligible as compared to
the overall computational cost. Therefore, the effectiveness of
the LP scheme increases pro rata to the number of
concatenants n.
The alphabet size (the number of characters) is another
important factor. The ultimate possible alphabet size for
segments packing in LP word coding in register
representation (RP) is defined by the ratio: N = 2n,in which :
N is the number of alphabetic characters; n is the word size in
bits. For several values of the M processor register capacity,
Table 1 presents the correlation of ultimate segment packing

Olesia Barkovska et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 690- 694

692

RP and the processor word size. The number of bits necessary
to represent numbers, which corresponds to the number of the
position of ultimate word pattern shift in the BM algorithm
[7] is given after the slash.
Some of the values in Table 1 can be smaller than “the
available” ones with account taken of the fact that
implementation of LP-algorithms requires the use of
additional uppermost bits as “technological bits”. The table
distinguishes acceptable (feasible for use) options. As a
whole, the table presents ultimate n word lengths (in bit
representation), which can be input in the register of M
processor capacity.

Table 1: Correlation of RP segment number with n word
size and M processor capacity

M n
3 4 5 6 7 8 9

16 5 / 3 3 / 2 3 / 2 2 / 1 2 / 1 1 / 1 1 / 1
32 10 / 4 7 / 3 6 / 3 5 / 3 4 / 2 3 / 2 3 / 2
64 21 / 5 15 / 4 12 / 4 10 / 4 9 / 4 7 / 3 7 / 3
128 42 / 6 31 / 5 25 / 5 21 / 5 18 / 5 15 / 4 14 / 4
256 85 / 7 63 / 6 51 / 6 42 / 6 36 / 6 31 / 5 28 / 5

In order to analyze and demonstrate the principles of
LP-variant construction for a BM algorithm, the option of a
32-bit processor with 4-bit word size the was selected. The
given choice is explained by compact and well-observed
expressions in the demonstration of algorithms. As shown in
Table 1, this corresponds to the 16-character alphabet.
Practical application of the given option is evidently limited
to a certain extent. However, the purpose of the proposed
illustration is the demonstration of the operation principle
and not the direct practical use.
The LP variant has minimum two extra opportunities to
improve the algorithm of character search in a line related to
bit-by-bit and segmental comparison. Bit-by-bit comparison
enables to reveal the irrelevance of bit lines representation
and segmental comparison helps to find irrelevance of
separate segments i.e. symbols in LP representation. The
corresponding algorithms for MB bit-by-bit comparison
pattern and MS segmental comparison pattern are to be
studied further.
The compared pattern and the line fragment must be
primarily converted into LP representations. This demands
the symbol codes to be stored in neighbouring
non-overlapping segments. The sequence of segments stored
in each RP must further be interpreted as numbers in bit
representation.
The situation can be exemplified. Given the presence of a
7-character alphabet

 (a, b, c, d, e, f, g). (1)

We are confined to the 7-character alphabet for the purpose of
conciseness and visual clarity because only 3 bits are required
to code these symbols:

a b c d е f g
001 010 011 100 101 110 111

(2)

Code 000 is not used as the alphabet character because it is
used to represent disalignment of the segment meaning. In
RP, the 7-character alphabet may contain 10 3-bit segments
for a 32-bit processor.
Let us assume that there is a text block, pattern =
(bcdabcbcbccfeggeadda) written in 7-character alphabet (1).
There are no blank spaces because the space character (1) is
not planned. Let us assume that there is a word pattern str =
(bcbcbccfeg) to be searched in the text. It can easily be seen
that str resides in the line pattern with the shift of 5, but we are
not yet interested in search but the demonstration of bit-to-to
and segmental comparisons.
With the account taken of (2), the word pattern str is coded in
RP:

(010)(011)(010)(011)(010)(011) (011)(110)(101)(111)


(3)

Parentheses punctuator in (3) is only used in order to
demonstrate segmentation in RP. In the processor register this
is a prime number. The subscript hereinafter represents the
numerical system processor word.

 (010011010011010011011110101111)2 =

(323827631)10.
(4)

Bit-to-bit comparison of RP str (4) and RP of the segment (the
first 10 characters) in the line pattern with zero shift is
required

 (010011100001010011010011010011)2 =
(327496915)10

(5)

For this purpose, two invariables are defined:
B1 = (010101010101010101010101010101)2 =
(357913941)10;
B2 = (101010101010101010101010101010)2 =
(715827882)10,
which can enable fulfillment of a series of logical operations.
In B1 ones take odd-numbered positions and in B2 they take
even-numbered positions.
Verification:
B1 + B2 = (357913941)10 + (715827882)10 =
= (1073741823)10 = (111111111111111111111111111111)2
With the help of B1 and B2, str (4) and pattern (5) are
decatinated into odd-numbered (str1 and pattern1) and
even-numbered (str2 and pattern2) binary positions:
00010001010001010001010100000101)2 = (289740037)10 ;
pattern1 =pattern AND B1 =
(00010001000001010001010001010001)2 =(285545553)10;
str2 = str AND B2 = (0010000010000010001010101010)2 =
(34087594)10 ;
pattern2 = pattern AND B2 =
(0010100000000010000010000010)2 = (41951362)10.

Olesia Barkovska et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 690- 694

693

Verification:
str1 + str2 = (289740037)10 + (34087594)10 = (323827631)10
= str, (see (4))
pattern1 + pattern2 = (327496915)10 = pattern, (see (5))
Arithmetic summarization is conducted for (str1+ pattern1)
and (str2 +pattern2). Bit-by-bit pairs (1, 0), (0, 1) и (0, 0)
remain unchanged, and in pairs (1, 1) one shifts to a senior
bit. These shifted ones are reduced by B2 for (str1+ pattern1)
and B1 for (str2 +pattern2). Then we obtain bit-by-bit
comparison pattern:
MB = (B2 AND (str1+ pattern1)) + (B1 AND (str2
+pattern2)) =
= (000000110010000000001101111100)2.
In this pattern, ones represent non-overlapping bits (bit-by-bit
combinations (1, 0) и (0, 1)).
Bit-by-bit comparison is not of interest in the case under study
alone, but as a component of segmental comparison.
Segments (i.e. character codes in RP (4) и (5)) do not overlap
if there are ones in the corresponding positions in MB
patterns.
In order to build MS segmental comparison pattern, we input
4 invariables: F1 and F2 in order to separate odd and even
segments; L1 and L2 in order to set additional
(“technological”) ones. In F1, the ones reside in odd segments
and in F2 they reside in even segments:
F1 = (000111000111000111000111000111)2 =
(119304647)10
F2 = (111000111000111000111000111000)2 =
(954437176)10
Verification:
F1 + F2 = B1 + B2 = (1073741823)10 =
(111111111111111111111111111111)2
In L1 and L2, the ones reside in the leftmost positions (in
senior bits) in relation to the groups of ones in F2 and F1
correspondingly:
L1 = (1000001000001000001000001000000)2 =
(1090785344)10
L2 = (1000001000001000001000001000)2 = (136348168)10
F1 and F2 enable to decantinate MB into odd MB1 and even
MB2 parts.
We further subtract MB2 from L1 and MB1 from L2. If a
certain pattern contains a ”one” (which defines the
disalignment of the corresponding characters in str and
pattern), the “technological” one in the corresponding senior
bit is used in subtraction. In order to determine the remaining
(non-impaired) ones, we apply a logical operation and a
combination of the odd MB1 and the even MB2 parts. In the
obtained statement ММ = L1 AND (L1-MB2) + L2 AND
(L2-MB1), ones reside in front (on the left, in the senior bit)
with regard to the related segments. These ones mark (tag) the
related segments. In order to obtain the MS disalignment
pattern, it is necessary to fill the segments of the overlap and
then to invert the bits. This can be done in the following way:
MS = (F1 + F2) – (ММ – (MM -> 3))
Here, “-> n” refers to the right register shift (towards junior
bits) by n positions, which is the basic operation of the
processor.

Verification may be conducted by the direct comparison of str
(bcbcbccfeg) and the pattern pattern (bcdabcbcbc). The set of
overlapping characters (bc--bc----) corresponds to the
obtained value of MS =
(111111000000111111000000000000)2.
Several peculiarities of LP approach application in TBS tasks
algorithmization are worth noting.
A TBS task as a whole allows parallelizing. Moreover,
parallelizing of comparison procedures application is
practically the only permissible and acceptable resource of
real-time mode provision in TBS tasks in connection with big
data arrays. The difficulty lies in the fact that almost every
single classical algorithm (fig. 1) was developed within the
paradigm of character-by-character comparison. The word
pattern is compared with the line block character by
character. When disalignment of a symbol is found,
comparison stops and the word pattern shifts to the new block.
The given paradigm is stipulated (actually imposed) by the
symbol representation (storage and processing) of meaningful
information in a computer. Therefore, a symbol in classical
TBS algorithms is the touchstone and the stumbling stone of
the comparison procedure. Thus, within the framework of
classical TBS algorithms, parallelizing may be effectuated by
means of breaking the searched text into blocks and parallel
launch of a separate part of the TBS algorithm for every text
block on a separate processor. Thus, classical parallel (wide
parallel) processing is meant.
In LP representation, the information is stored and processed
not symbol by symbol, but in the form of LP multi-segment
(multi-character) “integrations”. PR are compared with each
other and, in this way, not separate symbols may overlap, but
“integrations” of several symbols. Which symbol exactly did
not coincide? Register shift procedure may be applied in order
to define this. But then we start symbol manipulation and do
not benefit from the application of LP. The requirement to the
real LP realization of the TBS algorithm is to avoid symbol
manipulation.
In BM algorithm, a displacement vector exists (is formed in
compliance with certain rules) along with the word pattern. In
comparison, the disalignment character position is found, the
corresponding displacement component is taken and the word
patters shifts along the text line with regard to the content
ofthis component.
In the abovementioned segmental comparison algorithm, MS
disalignment pattern is formed. It contains information about
the location of the disaligned symbol. The key requirement to
LP variant (analog) of the BM algorithm is not to convert this
information into a numeral, but to directly form the necessary
shift. Implementability of this procedure is defined by the fact
that the numeral is an anthropomorphic (humanlike, made by
the man or for the man) object. Conversion of certain acts
with certain objects into certain numerals (i.e. representation
by certain numerals) and further execution of these acts in
compliance with these numerals (i.e. in compliance with the
previously made representations) are a purely humanlike
approach and a peculiarity of a certain stage of human
intellect development. As a side note, the human intellect

Olesia Barkovska et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 690- 694

694

along with BT media created functional-style programming,
in which a series of intermediate symbols is absent. Thus, in
Haskell programming language, the notions of a variable, a
cycle (an, correspondingly, a cycle variable) are absent and
the function of clipping (lambda function) may be used
indirectly. The given backward-looking reference to
approaches on the basis of functional-style programming may
be regarded as a weighty argument in support of prospective
viability and feasibility of search of PL variants (analogs) for
BM algorithm as well as other (Fig.1) TBS algorithms.

5. CONCLUSION

Having analyzed LP information processing principles as
applied to TBS tasks, the findings below were obtained:
1. Text block search algorithms classification was presented,
the operation algorithm of which shows the possibility of their
adaptation for LP implementation. The classification enables
to distinguish common structural elements for program
execution in the LP variant.
2. Comparative analysis was conducted for the advantages of
LP approach application in TBS tasks, which enables to select
the optimal alphabet size for text information representation
by means of adjusting them to certain processor capacities.
3. Bit-by-bit and segmental LP word pattern processing
options, which are the key procedures in text block search
tasks, were proposed and exemplified. The given numerical
values are applicable as test cases for program
implementation.
4. Opportunities and difficulties of text block search
algorithms LP realization were analyzed through the example
of Boyer-Moore algorithm, which formed the grounds for the
formulation of requirements and criteria for newly developed
LP algorithms.

REFERENCES

1. Barkovska O.Ju., Pyvovarova D.I., Serdechnyj V.S.,

Ljashova A.O. Pryskorenyj alghorytm poshuku
sliv-obraziv u teksti z adaptyvnoju dekompozycijeju
vykhidnykh danykh (Advanced Algorithm of Word
Patterns Search in Texts with Adaptive Output
Decomposition). // Systemy upravlinnja, navighaciji ta
zv'jazku. – Poltava: PNTU, 2019. – Issue №. 4(56). –
pp.28-34
https://doi.org/10.26906/SUNZ.2019.4.028

2. D. Minnie and S. Srinivasan, "Intelligent Search
Engine algorithms on indexing and searching of text
documents using text representation," 2011
International Conference on Recent Trends in
Information Systems, Kolkata, 2011, pp. 121-125. doi:
10.1109/ReTIS.2011.6146852.

3. Diachenko, V., Liashenko, O., Ibrahim, B.F.,
Mikhal, O., Koltun, Y. "Kohonen network with
parallel training: Operation structure and
algorithm" International Journal of Advanced Trends
in Computer Science and Engineering, 8(1), pp. 35-38

4. Mikhal O.F. Modelirovanie raspredelennykh
informatsionno-upravlyayushchikh sistem sredstvami
lokalno-parallelnykh algoritmov obrabotki
nechetkoy informatsii (Modelling of Distributed
Information Management Systems by Means of Local
Parallel Fuzzy Information Processing Algorithms) //
Problemy bioniki. Vseukrainskiy mezhvedomstvennyy
nauchno-tekhnicheskiy sbornik. Kharkov: KhNURE.
2001. Issue №54. pp. 28-34.

5. P. K. Chong, E. K. Karuppiah and K. K. Yong, "A
Multi-GPU Framework for In-Memory Text Data
Analytics," 2013 27th International Conference on
Advanced Information Networking and Applications
Workshops, Barcelona, 2013, pp. 1411-1416. doi:
10.1109/WAINA.2013.238

6. Data Science & Big Data Analytics: Discovering,
Analyzing, Visualizing and Presenting Data/ EMC
Education Services. David Dietrich, Barry Heller, Beibei
Yang. Published by John Wiley & Sons. Inc. USA, 2015.
435 p.

7. E. A. Calvillo, A. Padilla, J. Muñoz, J. Ponce and J. T.
Fernandez, "Searching research papers using
clustering and text mining," CONIELECOMP 2013,
23rd International Conference on Electronics,
Communications and Computing, Cholula, 2013, pp.
78-81. doi: 10.1109/CONIELECOMP.2013.6525763

8. Christopher D. Manning, Prabhakar Raghavan, Heinrich
Schütze. Introduction to Information Retrieval:
Translated from English.– M.: JSC «I.D. Williams»,
2011. – 528 p.

9. L. Diesendruck, L. Marini, R. Kooper, M. Kejriwal and
K. McHenry, "Abstract: Digitization and Search: A
Non-Traditional Use of HPC," 2012 SC Companion:
High Performance Computing, Networking Storage and
Analysis, Salt Lake City, UT, 2012, pp. 1460-1461. doi:
10.1109/SC.Companion.2012.259

10. Barkovska O., Serdechnyi V. Control Model of Data
Stream Transmitted over a Network Based on
Proxying Technology. Informatics Control
Measurement in Economy and Environment Protection.
– 2018. – Volume 8, No. 1. – P. 8-11.

11. Smelyakov, K., Sandrkin, D., Ruban, I., Martovytskyi,
V., & Romanenkov, Y. (2018, October). Search by
image. New search engine service model. In 2018
International Scientific-Practical Conference Problems
of Infocommunications. Science and Technology (PIC
S&T) (pp. 181-186). IEEE.
https://doi.org/10.1109/INFOCOMMST.2018.8632117

