
Amber Baig et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1102 – 1106

1102

ABSTRACT

This paper describes how bootstrapping was used to extend the
development of the Urdu Noisy Text dependency treebank. To
overcome the bottleneck of manually annotating corpus for a new
domain of user-generated text, MaltParser, an opensource,
data-driven dependency parser, is used to bootstrap the treebank in
semi-automatic manner for corpus annotation after being trained on
500 tweet Urdu Noisy Text Dependency Treebank. Total four
bootstrapping iterations were performed. At the end of each
iteration, 300 Urdu tweets were automatically tagged, and the
performance of parser model was evaluated against the development
set. 75 automatically tagged tweets were randomly selected out of
pre-tagged 300 tweets for manual correction, which were then added
in the training set for parser retraining. Finally, at the end of last
iteration, parser performance was evaluated against test set. The
final supervised bootstrapping model obtains a LA of 72.1%, UAS of
75.7% and LAS of 64.9%, which is a significant improvement over
baseline score of 69.8% LA, 74% UAS, and 62.9% LAS

Key words: bootstrapping, dependency parsing, data-driven
approaches, low-resourced languages, treebank, Urdu tweets

1. INTRODUCTION

The necessity of hand-annotated resources, particularly
treebanks, is widely recognized in computational linguistics.
Treebanking is an important stage in the development of
linguistic resources for a language [7], especially for
data-driven parsing and many advanced applications like
machine translation [17].

Because their creation is costly and time-consuming [5],
especially when the domain under consideration is
user-generated text found on social media websites such as
Twitter, developing these annotations at a reasonable cost is
still crucial for low-resource languages [20]. Millions of
tweets are posted every day, resulting in noisy and informal
content that can be a useful corpus for applications like
language technologies, data analysis, sentiment analysis,
event detection, and opinion mining [12], [19], [1], to name a
few.

For the past two decades, the issue of annotation costs and
ways to reduce reliance on annotated corpora remained a
recurrent theme in the NLP community [13]. Researchers
need reliable strategies for speeding up the annotation process
without biassing the gold standard [8]. Bootstrapping is a
novel approach that attempts to iteratively generating
treebanks in an efficient and cost-effective manner [23].
During bootstrapping process, a trained parser is used to
pre-parse raw text, which is then manually corrected by
human annotators [9]. To retrain the parser, this corrected
data is added to the training set. As a result, the size of the
annotated data grows quickly while parser performance
steadily improves.

The process of bootstrapping a dependency treebank of Urdu
tweets using a data-driven dependency parser is described in
this paper. Urdu is a widely spoken language in South Asia,
but it is still regarded as a language with limited resources in
terms of language technology [18]. Extending NLP tools and
resources to social media data can shed light on a variety of
scientific questions, including theoretical and contrastive
linguistics, linguistic typology, and NLP [11]. The rest of the
paper is arranged as follows: The tools and treebank used in
this study are described in Section 2. The bootstrapping
experiments and their learning setup are described in Section
3, and the results of the experiments are described in Section
4. The error analysis of the parser output is presented in
Section 5, and the conclusions are presented in Section 6.

2. MATERIALS AND TOOLS

2.1 Parser

MaltParser [16] is a transition-based data-driven dependency
parser, that is used for training a parsing model using a
treebank as input and parsing new data by means of this
trained model. To induce classifiers from training data,
MaltParser uses two different built-in learning libraries:
liblinear and libsvm. Liblinear library supports linear

Bootstrapping Dependency Treebank of Urdu Noisy Text

Amber Baig1, Mutee U Rahman2, Sehrish Abrejo3, Sirajuddin Qureshi4, Saima Tunio5, Shadia S. Baloch6
1Department of Computer Science, Isra University, Hyderabad, Pakistan, amberbaig@gmail.com

2Department of Computer Science, Isra University, Hyderabad, Pakistan, muteeurahman@gmail.com
3Department of Computer Science, Isra University, Hyderabad, Pakistan, sehrish-abrejo@hotmail.com

4Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China,
siraj.qureshi@gmail.com

5Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China,
saima.tunio@gmail.com

6Department of Computer Science, Isra University, Hyderabad, Pakistan, shadiasaadbaloch@gmail.com

 ISSN 2347 - 3983
Volume 9. No. 8, August 2021

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter12982021.pdf

https://doi.org/10.30534/ijeter/2021/12982021

Amber Baig et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1102 – 1106

1103

classification [24], and libsvm is for Support Vector
Machines [23].

Different parsing algorithms are implemented in MaltParser
Version 1.9.1. It contains parsing algorithms mainly from
three different families such as Nivre, Covington, and Stack,
and includes Planar and 2-Planar.

2.2 Evaluation Metrics

MaltEval [14] is used to evaluate parser performance, with
Labelled Attachment Score (LAS), Unlabelled Attachment
Score (UAS), and Label Accuracy (LA) as evaluation metrics.
These three measures are essentially token-level accuracies,
which account for all test data tokens and give each token in
the evaluation equal weightage.

Equations (1), (2), and (3) show the formula for calculating
LAS, UAS, and LA:

&num ber of correct head dependency labelsLAS
total tokens


 (1)

number of correct head labelsUAS

total tokens


 (2)

num ber of correct labelsLA
total tokens


 (3)

2.3 UNTDT Treebank

UNTDT (Urdu Noisy Text Dependency Treebank) [4], a
manually annotated dependency treebank of 500 Urdu tweets
is used as a gold-standard corpus for parser training in this
study. The treebank is annotated at morphological and
syntactic levels by adopting Universal Dependencies [15]
framework to the particularities of social media text. Refer to
[4] for full review of the treebank. This treebank was
validated using 10-fold cross validation. Best average
accuracy score reported by authors was 74% UAS, 62.9%
LAS and 69.8% LA. This score is used as a baseline score in
present study.

3. BOOTSTRAPPING

The process of semi-automatically creating annotated
training data from large amounts of unannotated data is
known as bootstrapping [2]. The sentences are parsed using a
pre-trained parser. As a result, instead of annotating from
scratch, the annotator(s) can correct the parser output. After
that, the newly parsed data is added to the training data, and
the process is repeated until all the data has been parsed. In

some cases, bootstrapping eliminates the need for manual
annotation. The supervised bootstrapping approach, on the
other hand, necessitates manual correction to ensure that gold
standard trees are added to the Treebank at each iteration.

The following sections describe the entire bootstrapping
process:

3.1 Method

For bootstrapping, the method used by [6], [10] and [21] was
followed. The pseudocode for this approach is given in Fig 1.

The algorithm requires only a single dependency parser, A.
The parser A is first trained on the existing manually labeled
data, L to create a model MiA. The set of gold standard
POS-tagged sentences (U) is divided into 4 sets, each set
contains 300 sentences Ui. For each of the four iterations (i =
1...4), Ui is parsed to produce Pi

A. A subset Y is then selected
from Pi

A for manual correction to produce P’i
A gold. Every time,

manually corrected sentence set (P’i
A gold) is added in the

training set Li
A for making a large training set of Li+1

A.
Induction of a new parsing model (Mi+1

A) is performed by
training the parser with the new training set. This practice
was repeated and as a result, Treebank size grew, and the
parsing quality improved gradually.

 Figure 1: Supervised Bootstrapping Algorithm [10]

3.2 Experiments

From the pre-processed corpus of raw 4500 Urdu tweets
collected by [3], 1200 tweets were randomly selected for this
study. A model of of UDPipe [22], which is a neural network
based trainable pipeline system was trained on UNTDT for
performing tokenization, lemmatization, POS tagging and
morphological analysis for Urdu tweets. UDPipe model not
only performs above mentioned tasks, but also converts the

Amber Baig et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1102 – 1106

1104

tweets in CONLL-U format which is form of data required by
MaltParser for input. These tweets were than divided into 4
blocks of 300 tweets each to be utilized for bootstrapping the
parser.

For experiments, UNTDT is divided in training set of 300
tweets, development set and test set of 100 tweets each.
MaltParser is trained on 300 tweets test set using baseline
parser model settings. The algorithm shown in Fig V- 1 is
repeated for four iterations. At each iteration, 75 (Y)
randomly sampled tweets were manually corrected from a set
of 300 (X) raw tweets pre-parsed by the parser. The size of the
final training set is 600 trees (300 + (4*75)). All the manual
corrections were performed by single annotator. At the end of
each iteration, the accuracy of parser model is evaluated on
the development set and the next batch of 300 tweets is parsed
using the newly induced model. After the final iteration, the
accuracy of final induced model is tested with the test set. At
the end of this experiment, there are 800 (20, 951 tokens) gold
standard tweets in the treebank.

4. RESULTS

Figures 2, 3 and 4 show the results of supervised
bootstrapping experiments. Fig 2 shows the labelled accuracy,
Fig 3 shows unlabeled attachment score and Fig 4 depicts the
labeled attachment score over the four training iterations. The
highest scoring models occur on the fourth iteration, reaching
LA 72.1%, UAS 75.7% and LAS 64.9%. However, steadily
improvement of evaluation scores is observed during all the
iterations. All results are calculated on the development set.

Figure 2: Label Accuracy on Development Set

Figure 3: Unlabeled Attachment Score on Development Set

Figure 4: Labeled Attachment Score on Development Set

The reported accuracy of baseline model is LA of 69.8%, UAS
of 74% and LAS of 62.9% [4], whereas the final supervised
bootstrapping model obtains a LA of 72.1%, UAS of 75.7%
and LAS of 64.9%. Overall, the results showed that adding
automatically parsed manually corrected training data to the
baseline model is beneficial. This iterative parsing corpus
method allowed to benefit from the repetition of elements in
the data. As an outcome of exposure to repetitive syntactic
structures, at each iteration, the parser gradually became
better. Recurrently encountered and learned constructs were
annotated more accurately by the parser, leaving the manual
rectification of only formerly un-encountered, difficult, or
infrequent parses each time. At each iteration, the learning
procedure became speedier with the addition of freshly parsed
data to the training set.

5. ERROR ANALYSIS

An error analysis of bootstrapped parser’s output is performed
to understand difficulties a dependency parser faces while
annotating Urdu tweets. Since the description of UD relations
is beyond the scope of this paper, the readers are advised to
refer to [15] to accurately comprehend the error analysis.

In bootstrapped models, MaltParser often confused between
vocative and nsubj relation. Possible cause of this confusion
could be part-of-speech tag proper noun (PROPN) of both
vocatives and nominal subjects. Although, this confusion
seemed to be reduced to certain extant from third iteration,
but it was not resolved completely. There were few error cases
of goeswith labeled as compound, while in certain cases
vocatives were wrongly parsed as compound, list as discourse
or dislocated or vice versa.

Errors related to the verb's argument structure were amongst
the most frequent error types. The absence of post-positions,
ambiguous post-positions, coordination, etc. were noted as
some of the reasons for these errors. The other major source of
errors was non-projectivity. This was the main cause for
errors in relative clause constructions and tweets with clausal
complements. In general, MaltParser encountered problems
with different modifiers and clausal complements (advcl,
advmod, acl and xcomp). It is often challenging to distinguish
these types because the distinction depends only on the
complement verb or noun form. In case of adverbial clause

Amber Baig et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1102 – 1106

1105

modifiers (advcl) and adjectival modifiers (advmod), the
problems may be partially due to attachment problems and
partially due to the problems in differentiating between
complements and modifiers.

Another source of error is confusion between apposition
(appos) and nominal modifiers (nmod). The possible reasons
may be owing to semantic prerequisite of an apposition for
having its head word’s referent. Similarly, MaltParser often
made mistakes between indirect object (iobj) and oblique
(obl). Particularly, the confusion of subjects (nsubj) and
objects (obj), adverbial clause (advcl) and adverbial modifier
(advmod) was also present. The morphological and semantic
proximity of these relations is possibly the cause of errors.
In some cases, adverbial modifiers (advmod) were marked as
nominal modifiers (nmod) by MaltParser, whereas in some
instances, adjectival modifiers (amod) of nouns were
incorrectly marked as the clausal modifiers (acl).

Additional problematic category for MaltParser was conj.
With coordination, it is problematic for a parser to resolve the
sentence element to coordinate with, since it not only contains
one but many heads that can be used to syntactically replace
the entire construction. It is not a simple problem of assigning
the correct label, but a deeper problem that relates to the
whole construction. The number of children of a coordinating
conjunction can be more than 2. Consequently, these children
can be spread across the entire sentence, leading to long
distance dependencies. Likewise, there are no robust cues to
identify these children (e.g. commas are not always present).
Children can be sub-trees creating long distance
dependencies. Similarly, complex interactions of different
conjunctions leading to long distance dependencies were
additional source of error in bootstrapped models of
MaltParser.

5. CONCLUSION
Twitter dependency parsing is a domain of natural language
processing that is still in its early stages of development for
Urdu. As a result, there is a scarcity of manually annotated
corpus for statistical parsers. To overcome the manual
annotation bottleneck, this paper described a bootstrapping
process for developing a dependency treebank for Urdu Noisy
Text.

A trained parser is used to parse the subsequent set of tweets
for manual rectification using a simple bootstrapping
algorithm. As a result, the size of the treebank has increased
from 500 to 800 annotated tweets. These parsing experiments
resulted in a significant increase in accuracy over baseline,
with LA rising from 69.8 percent to 72.1 percent, UAS rising
from 74 percent to 75.7 percent, and LAS rising from 62.9
percent to 64.9 percent.

As future directions of this work, it would be beneficial to

investigate methods such as self-training, co-training, active
learning, or unsupervised approaches for increasing the
treebank size to improve the parsing results obtained in this
work.

ACKNOWLEDGEMENT

This paper is produced from PhD thesis of the first author
entitled “Dependency Treebanking and Parsing of Urdu
Noisy Text”, which is submitted at Isra University,
Hyderabad, Pakistan. All faculty members of Department of
Computer Science, Isra University are acknowledged for their
help and support throughout the course of this study.

REFERENCES
1. N. F. Abd Yusof, C. Lin, X. Han, and M. H. Barawi. Split

Over-Training for Unsupervised Purchase Intention
Identification, International Journal of Advanced
Trends in Computer Science and Engineering, Vol. 9,
pp. 3921-3928, 2020.

2. F. Albogamy, A. Ramsay, and H. Ahmed. Arabic tweets
treebanking and parsing: A bootstrapping approach,
in Proceedings of the Third Arabic Natural Language
Processing Workshop, 2017, pp. 94-99.

3. A. Baig, M. U. Rahman, H. Kazi, and A. Baloch.
Developing a POS Tagged Corpus of Urdu Tweets,
Computers, Vol. 9, p. 90, 2020.

4. A. Baig, M. U. Rahman, A. S. Shah, and S. Abbasi.
Universal Dependencies for Urdu Noisy Text,
International Journal of Advanced Trends in Computer
Science and Engineering, Vol. 10, pp. 1751-1757, 2021.

5. C. Callison-Burch. Fast, cheap, and creative:
Evaluating translation quality using Amazon’s
Mechanical Turk, in Proceedings of the 2009
conference on empirical methods in natural language
processing, 2009, pp. 286-295.

6. J. Judge, A. Cahill, and J. Van Genabith. Questionbank:
Creating a corpus of parse-annotated questions, in
Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, 2006, pp.
497-504.

7. P. Kolachina and A. Ranta. Bootstrapping UD
treebanks for delexicalized parsing, in Proceedings of
the 22nd Nordic Conference on Computational
Linguistics, 2019, pp. 15-24.

8. T. Lingren, L. Deleger, K. Molnar, H. Zhai, J.
Meinzen-Derr, M. Kaiser, et al., Evaluating the impact
of pre-annotation on annotation speed and potential
bias: natural language processing gold standard
development for clinical named entity recognition in
clinical trial announcements, Journal of the American
Medical Informatics Association, vol. 21, pp. 406-413,
2014.

9. H. Loftsson. Correcting a PoS-tagged corpus using
three complementary methods, in Proceedings of the

Amber Baig et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1102 – 1106

1106

12th Conference of the European Chapter of the ACL
(EACL 2009), 2009, pp. 523-531.

10. T. Lynn, O. Cetinoglu, J. Foster, E. Uí Dhonnchadha, M.
Dras, and J. van Genabith. Irish treebanking and
parsing: A preliminary evaluation, in Proceedings of
the 8th International Conference on Language
Resources and Evaluation (LREC’12) 2012, pp.
1939-1946.

11. A. Miletic, M. Bras, M. Vergez-Couret, L. Esher, C.
Poujade, and J. Sibille. Building a Universal
Dependencies Treebank for Occitan, in Proceedings
of the 12th Language Resources and Evaluation
Conference, 2020, pp. 2932-2939.

12. R. U. Mustafa, M. S. Nawaz, M. I. U. Lali, T. Zia, and W.
Mehmood. Predicting the cricket match outcome
using crowd opinions on social networks: A
comparative study of machine learning methods,
Malaysian Journal of Computer Science, vol. 30, pp.
63-76, 2017.

13. G. Ngai and D. Yarowsky. Rule writing or annotation:
Cost-efficient resource usage for base noun phrase
chunking, presented at the 38th Annual Meeting of the
Association for Computational Linguistics, Hong Kong,
2001.

14. J. Nilsson and J. Nivre. MaltEval: An evaluation and
visualization tool for dependency parsing, in LREC,
2008.

15. J. Nivre, M.-C. De Marneffe, F. Ginter, Y. Goldberg, J.
Hajic, C. D. Manning, et al., Universal dependencies
v1: A multilingual treebank collection, in Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC'16), 2016, pp. 165
9-1666.

16. J. Nivre, J. Hall, and J. Nilsson. Maltparser: A
data-driven parser-generator for dependency
parsing, in LREC, 2006, pp. 2216-2219.

17. M. S. Rasooli, M. Kouhestani, and A. Moloodi.
Development of a Persian syntactic dependency
treebank, in Proceedings of the 2013 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, 2013, pp. 306-314.

18. A. A. Raza, A. Habib, J. Ashraf, and M. Javed. A review
on Urdu language parsing, Int. J. Adv. Comput. Sci.
Appl, vol. 8, pp. 93-97, 2017.

19. M. Sanguinetti, C. Bosco, A. Lavelli, A. Mazzei, O.
Antonelli, and F. Tamburini. PoSTWITA-UD: An
Italian Twitter treebank in universal dependencies,
in Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018),
2018.

20. D. Seddah, F. Essaidi, A. Fethi, M. Futeral, B. Muller, P.
J. O. Suárez, et al., Building a user-generated content
North-African Arabizi treebank: Tackling hell, in
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 2020, pp.
1139-1150.

21. M. Seraji, B. Megyesi, and J. Nivre. Bootstrapping a
Persian dependency treebank, Linguistic Issues in
Language Technology, vol. 7, pp. 1-10, 2012.

22. M. Straka and J. Straková. Tokenizing, pos tagging,
lemmatizing and parsing ud 2.0 with udpipe, in
Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies, 2017, pp. 88-99.

23. F. Zarei, A. Basirat, H. Faili, and M. Mirain. A
bootstrapping method for development of Treebank,
Journal of Experimental & Theoretical Artificial
Intelligence, vol. 29, pp. 19-42, 2017.

24. C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, ACM transactions on
intelligent systems and technology (TIST), vol. 2, pp.
1-27, 2011.

25. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. LIBLINEAR: A library for large linear
classification, the Journal of machine Learning
research, vol. 9, pp. 1871-1874, 2008.

