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ABSTRACT 
 
This paper describes how bootstrapping was used to extend the 
development of the Urdu Noisy Text dependency treebank. To 
overcome the bottleneck of manually annotating corpus for a new 
domain of user-generated text, MaltParser, an opensource, 
data-driven dependency parser, is used to bootstrap the treebank in 
semi-automatic manner for corpus annotation after being trained on 
500 tweet Urdu Noisy Text Dependency Treebank. Total four 
bootstrapping iterations were performed. At the end of each 
iteration, 300 Urdu tweets were automatically tagged, and the 
performance of parser model was evaluated against the development 
set. 75 automatically tagged tweets were randomly selected out of 
pre-tagged 300 tweets for manual correction, which were then added 
in the training set for parser retraining. Finally, at the end of last 
iteration, parser performance was evaluated against test set. The 
final supervised bootstrapping model obtains a LA of 72.1%, UAS of 
75.7% and LAS of 64.9%, which is a significant improvement over 
baseline score of 69.8% LA, 74% UAS, and 62.9% LAS  
  
Key words: bootstrapping, dependency parsing, data-driven 
approaches, low-resourced languages, treebank, Urdu tweets 
 
1. INTRODUCTION 
 
The necessity of hand-annotated resources, particularly 
treebanks, is widely recognized in computational linguistics. 
Treebanking is an important stage in the development of 
linguistic resources for a language [7], especially for 
data-driven parsing and many advanced applications like 
machine translation [17].  
 
Because their creation is costly and time-consuming [5], 
especially when the domain under consideration is 
user-generated text found on social media websites such as 
Twitter, developing these annotations at a reasonable cost is 
still crucial for low-resource languages [20]. Millions of 
tweets are posted every day, resulting in noisy and informal 
content that can be a useful corpus for applications like 
language technologies, data analysis, sentiment analysis, 
event detection, and opinion mining [12], [19], [1], to name a 
few. 

 
For the past two decades, the issue of annotation costs and 
ways to reduce reliance on annotated corpora remained a 
recurrent theme in the NLP community [13]. Researchers 
need reliable strategies for speeding up the annotation process 
without biassing the gold standard [8]. Bootstrapping is a 
novel approach that attempts to iteratively generating 
treebanks in an efficient and cost-effective manner [23]. 
During bootstrapping process, a trained parser is used to 
pre-parse raw text, which is then manually corrected by 
human annotators [9]. To retrain the parser, this corrected 
data is added to the training set. As a result, the size of the 
annotated data grows quickly while parser performance 
steadily improves. 
 
The process of bootstrapping a dependency treebank of Urdu 
tweets using a data-driven dependency parser is described in 
this paper. Urdu is a widely spoken language in South Asia, 
but it is still regarded as a language with limited resources in 
terms of language technology [18]. Extending NLP tools and 
resources to social media data can shed light on a variety of 
scientific questions, including theoretical and contrastive 
linguistics, linguistic typology, and NLP [11]. The rest of the 
paper is arranged as follows: The tools and treebank used in 
this study are described in Section 2. The bootstrapping 
experiments and their learning setup are described in Section 
3, and the results of the experiments are described in Section 
4. The error analysis of the parser output is presented in 
Section 5, and the conclusions are presented in Section 6.   
 
2. MATERIALS AND TOOLS 

2.1 Parser 
 
MaltParser [16] is a transition-based data-driven dependency 
parser, that is used for training a parsing model using a 
treebank as input and parsing new data by means of this 
trained model. To induce classifiers from training data, 
MaltParser uses two different built-in learning libraries: 
liblinear and libsvm. Liblinear library supports linear 
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classification [24], and libsvm is for Support Vector 
Machines [23]. 
 
Different parsing algorithms are implemented in MaltParser 
Version 1.9.1. It contains parsing algorithms mainly from 
three different families such as Nivre, Covington, and Stack, 
and includes Planar and 2-Planar.  
 
2.2 Evaluation Metrics 
 
MaltEval [14] is used to evaluate parser performance, with 
Labelled Attachment Score (LAS), Unlabelled Attachment 
Score (UAS), and Label Accuracy (LA) as evaluation metrics. 
These three measures are essentially token-level accuracies, 
which account for all test data tokens and give each token in 
the evaluation equal weightage. 
 
Equations (1), (2), and (3) show the formula for calculating 
LAS, UAS, and LA: 
 
 

&num ber of correct head dependency labelsLAS
total tokens


  (1) 

 
number of correct head labelsUAS

total tokens


      (2) 
 

num ber of correct labelsLA
total tokens


         (3) 

 
 
2.3 UNTDT Treebank 
 
UNTDT (Urdu Noisy Text Dependency Treebank) [4], a 
manually annotated dependency treebank of 500 Urdu tweets 
is used as a gold-standard corpus for parser training in this 
study. The treebank is annotated at morphological and 
syntactic levels by adopting Universal Dependencies [15] 
framework to the particularities of social media text. Refer to 
[4] for full review of the treebank. This treebank was 
validated using 10-fold cross validation. Best average 
accuracy score reported by authors was 74% UAS, 62.9% 
LAS and 69.8% LA. This score is used as a baseline score in 
present study.   
 
3.  BOOTSTRAPPING 
 
The process of semi-automatically creating annotated 
training data from large amounts of unannotated data is 
known as bootstrapping [2]. The sentences are parsed using a 
pre-trained parser. As a result, instead of annotating from 
scratch, the annotator(s) can correct the parser output. After 
that, the newly parsed data is added to the training data, and 
the process is repeated until all the data has been parsed. In 

some cases, bootstrapping eliminates the need for manual 
annotation. The supervised bootstrapping approach, on the 
other hand, necessitates manual correction to ensure that gold 
standard trees are added to the Treebank at each iteration. 
 
The following sections describe the entire bootstrapping 
process: 
 
3.1 Method 
 
For bootstrapping, the method used by [6], [10] and [21] was 
followed. The pseudocode for this approach is given in Fig 1.  
 
The algorithm requires only a single dependency parser, A. 
The parser A is first trained on the existing manually labeled 
data, L to create a model MiA. The set of gold standard 
POS-tagged sentences (U) is divided into 4 sets, each set 
contains 300 sentences Ui. For each of the four iterations (i = 
1...4), Ui is parsed to produce Pi

A. A subset Y is then selected 
from Pi

A for manual correction to produce P’i
A gold. Every time, 

manually corrected sentence set (P’i
A gold) is added in the 

training set Li
A for making a large training set of Li+1

A. 
Induction of a new parsing model (Mi+1

A) is performed by 
training the parser with the new training set. This practice 
was repeated and as a result, Treebank size grew, and the 
parsing quality improved gradually. 
 

 
 Figure 1: Supervised Bootstrapping Algorithm [10] 
 
3.2 Experiments 
 
From the pre-processed corpus of raw 4500 Urdu tweets 
collected by [3], 1200 tweets were randomly selected for this 
study. A model of of UDPipe [22], which is a neural network 
based trainable pipeline system was trained on UNTDT for 
performing tokenization, lemmatization, POS tagging and 
morphological analysis for Urdu tweets. UDPipe model not 
only performs above mentioned tasks, but also converts the 
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tweets in CONLL-U format which is form of data required by 
MaltParser for input. These tweets were than divided into 4 
blocks of 300 tweets each to be utilized for bootstrapping the 
parser. 
 
For experiments, UNTDT is divided in training set of 300 
tweets, development set and test set of 100 tweets each. 
MaltParser is trained on 300 tweets test set using baseline 
parser model settings. The algorithm shown in Fig V- 1 is 
repeated for four iterations. At each iteration, 75 (Y) 
randomly sampled tweets were manually corrected from a set 
of 300 (X) raw tweets pre-parsed by the parser. The size of the 
final training set is 600 trees (300 + (4*75)). All the manual 
corrections were performed by single annotator. At the end of 
each iteration, the accuracy of parser model is evaluated on 
the development set and the next batch of 300 tweets is parsed 
using the newly induced model. After the final iteration, the 
accuracy of final induced model is tested with the test set. At 
the end of this experiment, there are 800 (20, 951 tokens) gold 
standard tweets in the treebank. 

4. RESULTS 
 
Figures 2, 3 and 4 show the results of supervised 
bootstrapping experiments. Fig 2 shows the labelled accuracy, 
Fig 3 shows unlabeled attachment score and Fig 4 depicts the 
labeled attachment score over the four training iterations. The 
highest scoring models occur on the fourth iteration, reaching 
LA 72.1%, UAS 75.7% and LAS 64.9%. However, steadily 
improvement of evaluation scores is observed during all the 
iterations. All results are calculated on the development set.  
 

 
Figure 2: Label Accuracy on Development Set 

 

 
Figure 3: Unlabeled Attachment Score on   Development Set 

 
 

 
Figure 4: Labeled Attachment Score on Development Set 

 
The reported accuracy of baseline model is LA of 69.8%, UAS 
of 74% and LAS of 62.9% [4], whereas the final supervised 
bootstrapping model obtains a LA of 72.1%, UAS of 75.7% 
and LAS of 64.9%. Overall, the results showed that adding 
automatically parsed manually corrected training data to the 
baseline model is beneficial. This iterative parsing corpus 
method allowed to benefit from the repetition of elements in 
the data. As an outcome of exposure to repetitive syntactic 
structures, at each iteration, the parser gradually became 
better. Recurrently encountered and learned constructs were 
annotated more accurately by the parser, leaving the manual 
rectification of only formerly un-encountered, difficult, or 
infrequent parses each time. At each iteration, the learning 
procedure became speedier with the addition of freshly parsed 
data to the training set.  

5. ERROR ANALYSIS 
 
An error analysis of bootstrapped parser’s output is performed 
to understand difficulties a dependency parser faces while 
annotating Urdu tweets. Since the description of UD relations 
is beyond the scope of this paper, the readers are advised to 
refer to [15] to accurately comprehend the error analysis.  
 
In bootstrapped models, MaltParser often confused between 
vocative and nsubj relation. Possible cause of this confusion 
could be part-of-speech tag proper noun (PROPN) of both 
vocatives and nominal subjects. Although, this confusion 
seemed to be reduced to certain extant from third iteration, 
but it was not resolved completely. There were few error cases 
of goeswith labeled as compound, while in certain cases 
vocatives were wrongly parsed as compound, list as discourse 
or dislocated or vice versa.  
 
Errors related to the verb's argument structure were amongst 
the most frequent error types. The absence of post-positions, 
ambiguous post-positions, coordination, etc. were noted as 
some of the reasons for these errors. The other major source of 
errors was non-projectivity. This was the main cause for 
errors in relative clause constructions and tweets with clausal 
complements. In general, MaltParser encountered problems 
with different modifiers and clausal complements (advcl, 
advmod, acl and xcomp). It is often challenging to distinguish 
these types because the distinction depends only on the 
complement verb or noun form. In case of adverbial clause 
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modifiers (advcl) and adjectival modifiers (advmod), the 
problems may be partially due to attachment problems and 
partially due to the problems in differentiating between 
complements and modifiers. 
 
Another source of error is confusion between apposition 
(appos) and nominal modifiers (nmod). The possible reasons 
may be owing to semantic prerequisite of an apposition for 
having its head word’s referent. Similarly, MaltParser often 
made mistakes between indirect object (iobj) and oblique 
(obl). Particularly, the confusion of subjects (nsubj) and 
objects (obj), adverbial clause (advcl) and adverbial modifier 
(advmod) was also present. The morphological and semantic 
proximity of these relations is possibly the cause of errors. 
In some cases, adverbial modifiers (advmod) were marked as 
nominal modifiers (nmod) by MaltParser, whereas in some 
instances, adjectival modifiers (amod) of nouns were 
incorrectly marked as the clausal modifiers (acl). 
 
Additional problematic category for MaltParser was conj. 
With coordination, it is problematic for a parser to resolve the 
sentence element to coordinate with, since it not only contains 
one but many heads that can be used to syntactically replace 
the entire construction. It is not a simple problem of assigning 
the correct label, but a deeper problem that relates to the 
whole construction. The number of children of a coordinating 
conjunction can be more than 2. Consequently, these children 
can be spread across the entire sentence, leading to long 
distance dependencies. Likewise, there are no robust cues to 
identify these children (e.g. commas are not always present). 
Children can be sub-trees creating long distance 
dependencies.  Similarly, complex interactions of different 
conjunctions leading to long distance dependencies were 
additional source of error in bootstrapped models of 
MaltParser. 

5. CONCLUSION 
Twitter dependency parsing is a domain of natural language 
processing that is still in its early stages of development for 
Urdu. As a result, there is a scarcity of manually annotated 
corpus for statistical parsers. To overcome the manual 
annotation bottleneck, this paper described a bootstrapping 
process for developing a dependency treebank for Urdu Noisy 
Text. 
 
A trained parser is used to parse the subsequent set of tweets 
for manual rectification using a simple bootstrapping 
algorithm. As a result, the size of the treebank has increased 
from 500 to 800 annotated tweets. These parsing experiments 
resulted in a significant increase in accuracy over baseline, 
with LA rising from 69.8 percent to 72.1 percent, UAS rising 
from 74 percent to 75.7 percent, and LAS rising from 62.9 
percent to 64.9 percent.  
 
As future directions of this work, it would be beneficial to 

investigate methods such as self-training, co-training, active 
learning, or unsupervised approaches for increasing the 
treebank size to improve the parsing results obtained in this 
work. 
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