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ABSTRACT 
 
This article describes an introduction to star sensors as one of 
the spacecraft orientation tools and an analysis of 
mathematical and software modeling of the star sensor. And 
also in this article mathematical calculations and modeling of 
the star sensor are presented. All calculations are based on 
existing systems and a star sensor, in addition, a brief software 
presentation of the system, algorithms of the software product 
are presented. 
 
Key words: (SC) spacecraft, star sensor, mathematical 
modeling of the star sensor, orientation of the star sensor, 
motion coordinates of the star sensor 
 
1.INTRODUCTION 
 
After the conquest of outer space by the first man, humanity 
began active space exploration, thus there were problems with 
the orientation and stabilization of the spacecraft (SC). 
Orientation AS necessary for proper movement in orbit and 
the most efficient reception and transmission of information. 
Currently, there are two orientation systems: active and 
passive. The passive system includes gravitational, 
aerodynamic, and electromagnetic orientations. All of them 
do not require spacecraft power and are the most economical, 
but less accurate sensors. The active system includes 
gyroscopes, jet nozzles, flywheels, star and solar sensors, and 
so on. their operation requires the energy of the spacecraft, 
thus they are less economical, but more accurate. Among all 
orientation sensors, the star sensor is one of the most accurate 
and sophisticated instruments on the spacecraft. 
Now the use of the star sensor in the modern space industry 
has become an integral part of the development of spacecraft. 
Mathematical and software modeling is used for 
development, as it will be possible to test the system for 
failures and failures, improve the system and minimize 
failures on a real device. 
In the first half of the thesis, mathematical calculations and 
modeling of the star sensor will be presented. All calculations 
will be based on existing systems and the star sensor. In the 
second half, a brief program presentation of the system and 
algorithms of the software product will be presented. 
The purpose of the article is to research and develop a 
mathematical and software simulation of a star sensor. Start of 
development of a domestic analog of this software product. 

 
Relevance of the article. Software development for the star 
sensor is a very expensive sensor element and development in 
Kazakhstan can reduce the cost of manufacturing spacecraft 
and further enter the market as a competitive manufacturer. 
After the beginning of the space age, engineers faced many 
new challenges and problems during the flight of the 
spacecraft. This number included the problem of chaotic 
movement around its axis. It is the orientation around its axis 
that directly affects the efficiency and accuracy of orbit 
movement and maneuver execution. This problem has been 
solved by a variety of orientation sensors, and the newest is 
the star sensor. The first use of this sensor occurs in the second 
half of the 80 - ies of the last century. 
This new development was actively used in the United States 
(JPL), the Institute for Space Research of the USSR Academy 
of Sciences, France (SODERN), the German Democratic 
Republic (Karl Zeiss Jena) and Italy (Galileo). 
The Astro star sensor and orientation system were installed at 
Mir station, and after working there successfully for 11 years, 
it was also used to sink the station into the ocean. 
At the moment, there are more than ten foreign manufacturers 
of star sensors and software for them: Jena-Optronik, 
SODERN, Ball Aerospace, Goodrich, Galileo Avionica, 
Terma, etc. [1, 6,7,8]. 
Unfortunately, the Republic of Kazakhstan does not have 
domestic manufacturers of star sensors. 
Star tracker (in foreign sources, " astrosensor ") is a device for 
determining the orientation of the spacecraft using the starry 
sky. The orientation of the star sensor in outer space occurs 
through a lens and detector that record images of the starry 
sky and compare them with stars from the star catalog. 
Usually a star sensor is based on a CCD (charge-coupled 
device), which consists of a set of light-sensitive photodiodes. 
The field of view of the lens can be calibrated from 10 to 25 
degrees, and the mass of the sensor varies in the range of 2-5 
kilograms. The sensitivity of the detector also depends on the 
model and customer requirements. 
A lot of interference occurs when using a star sensor, 
including image flare and small particles getting into the 
sensor lens. To work out such interferences and failures, 
simulated conditions are produced for test models on the 
ground. 
 

 
 
 

Mathematical Modeling of a Star Sensor 
 

Alipbayev K.1, Saurova K.2, Demesinova S.3, Sydykov R.4, Balbayev G.5  

5Gylym Ordasy, Almaty, Kazakhstan, e-mail: gani_b@mail.ru 
1,2,5Almaty University of Power Engineering and Telecommunications, Kazakhstan, e-mail: gani_b@mail.ru  

3,4Al-Farabi Kazakh National University, Kazakhstan 
 

        ISSN  2347 - 3983 
Volume 8. No. 10, October 2020 

International Journal of Emerging Trends in Engineering Research 
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter1248102020.pdf 

https://doi.org/10.30534/ijeter/2020/1248102020 
  

 



Alipbayev K  et al.,  International Journal of Emerging Trends in Engineering Research, 8(10), October 2020,  7442 -  7449 

7443 
 

 

 
Figure 1: SODERN star sensor 

 
2. STAR SENSOR WORKING PRINCIPLE 
 
All parts of the star sensor can be divided into: 
- optical components (lens, etc.); 
- photosensitive components (photodetector); 
- electronic components (photodetector electronics, data 
processing electronics, memory). 
The star sensor determines its location in the inertial 
coordinate system by observing the starry sky in the visible 
wavelength range. The sensor receives an image of the visible 
starry sky using the lens built into the sensor. In the resulting 
image, images of stars are identified, for which coordinates 
are determined on the matrix radiation receiver. The 
characteristics of stars in the frame are compared with the 
catalog of stars stored in the memory of the star sensor, for 
which the celestial coordinates in the Equatorial coordinate 
system are known. The result of the comparison is the 
identification of the starry sky from the catalog with the 
images of stars in the image. These stars are used to calculate 
the orientation of the stellar sensor relative to the inertial 
coordinate system associated with fixed stars. This orientation 
detection action is repeated periodically. The maximum 
repetition rate of the orientation detection action is 10 Hz. 
Calibration of the star tracker shall be held as degradation of 
the photosensitive CCD-matrix. Repeated calibrations depend 
on the radiation situation. Also in the sensor is a 
thermoelectric refrigerator to increase the temperature of the 
photodetector. 
 

 
Figure 2: Main elements of the star sensor 

First, let's look at the coordinate systems of the star sensor 
movement. To do this, we introduce two right Cartesian 
coordinate systems with the zero-point O in the center of the 
celestial sphere [1]. 

 
Figure 3: Relativity of the inertial and mobile coordinate 

systems. 
 

ОХଵХଶХଷ −	 integral (basic) coordinate system. The first 
axis lies on the plane of the celestial equator and looks at the 
point of the vernal equinox; the third axis lies on the axis of 
rotation of the Earth; and the second axis is the complement of 
the right three. 
 Охଵхଶхଷ − a mobile but spacecraft-related coordinate 
system whose axes are the axes of the satellite where the star 
sensor is installed. It is assumed that the optical sensor 
coincides with Охଵ, a plane parallel with the photo editor 
Охଶхଷ. 
The orientation of the mobile system can be written in matrix 
form: 
 

Х = Ах = อ
аଵଵ аଵଶ аଵଷ
аଶଵ аଶଶ аଶଷ
аଷଵ аଷଶ аଷଷ

อ 	 ⋅ х, (1) 

Where:  
аଵଵ = cos ܽ cos ܾ, 

аଵଶ = sin ܽ sin ݕ − cosܽ sin ܾ cosݕ, 
аଵଷ = sin ܽ cos ݕ + cosܽ sin ܾ sinݕ, 

аଶଵ = sin ܾ, 
аଶଶ = cos ܾ cosݕ, 
аଶଷ = −cosܾ sinݕ, 
аଷଵ = −sin ܽ cosܾ, 

аଷଶ = cosܽ sinݕ + sin ܽ sin ܾ cosݕ, 
аଷଷ = cosܽ cosݕ − sin ܽ sin ܾ sin  .ݕ

 
Equation of motion of the SPACECRAFT: 
 

߱ܬ + ߱ × ߱ܬ =  ଴, (2)ܯ
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where J is the inertia tensor calculated on the main axes. 
ω is the vector of absolute angular velocity. 
 .଴-Vector of the total moment of external forcesܯ
Dynamic equations of kinematic Poisson relations: 

߬௜ = ߱ × ߬௜, (3) 
 
Where ߬௜  is the orthopedic orientation of the moving 
coordinate systems. 
When integrating the displacements, ((2), (3)) zero moment 
and axisymmetric spacecraft are used, perform regular 
precession with known constraints. For this purpose, the 
mathematical modeling of the orbital and relative motion 
under the influencing, restoring and controlling moments of 
various types of nature has been implemented [2]. 
 
Here are some of them: 
- gravitational moment: 
 

଴ܯ
௚௠ =

௚ߤ3
ଷݎ

ܧ ×  ,ܧܬ
 
where µ is the gravitational parameter of the attracting center; 
r is the distance from the attracting center to the SC center of 
mass. 
E is the unit vector of the local vertical. 
- magnetic moment: 
 

଴ܯ
௠௔௚௡ = ݉ ×  ܤ

where m is the vector of the total magnetic moment of the 
carrier. 
B is the induction vector of the Earth's magnetic field. 
- the control moment, creating the flywheels: 
 

଴ܯ
мах = −Н − ߱ × Н 

where H is the angular momentum vector created by the 
flywheels. 
 
In the numerical integration of motion, the vector equation (2) 
is projected on the axis of the moving coordinate system. The 
vectors m and H are naturally written in the moving system 
and require a transition to the linked axes. Let's calculate these 
vectors using the elements of the theory of orbital motion. 
 
Let us take the orbital coordinate system of the spacecraft 
ОYଵYଶYଷ. The first axis is directed to the radius vector of 
the orbital position of the spacecraft, the second axis is located 
on the orbital plane, and the third axis complements the right 
orthogonal system. 
 

 
Figure 4: Orientation of the spacecraft coordinate system relative to 

the inertial one. 
 
The ascending node longitude and inclination angles 
determine the position of the orbital plane. The eccentricity of 
the orbit (e) determines its shape, and the parameter of the 
orbit (p) determines its size. The angle of the periapsis 
argument (the angle between the line of nodes and the 
direction to the periapsis of the orbit) specifies the position of 
the orbit in the spacecraft plane. The moment of time when the 
spacecraft passes through the periapsis for the first time is 
considered known. 
Getting ОХଵХଶХଷ  from ОYଵYଶYଷ  occurs after 3 
consecutive turns. The first rotation is by the angle of the 
ascending node around the third inertial axis, the second 
turning on the inclination angle of the new position of the first 
inertial axis, the third rotation angle argument of latitude 
around the new third inertial axis. The relationship between 
two coordinate systems can be described in matrix form: 

Х	 = 	СY, (4) 
Where 
С

=

⎝

⎜
⎛

cos Ω cosݑ − − cos Ω sinݑ − sin Ω sin ݅
− sin Ω sinݑ cos ݅ − sin Ω cosݑ cos ݅

sin Ω cosݑ + − sin Ω sinݑ + − cos Ω sin ݅
+ cos Ω sinݑ cos ݅ + cos Ω cosݑ cos ݅

sinݑ sin ݅ cosݑ sin ݅ cos ݅ ⎠

⎟
⎞

 
 

 
The position of the SPACECRAFT in orbit (the distance from 
the attracting center to the center of mass of the 
SPACECRAFT and the gravitational parameter of the 
attracting center) can be determined using the following 
equations: 

ݐ − ߬గ =
ܽଷ ଶൗ

ଵߤ ଶൗ
ܧ) − ݁ sinܧ	(5) ,( 

݃ݐ
ߴ
2

= ඨ1 + ݁
1 − ݁

݃ݐ
ܧ
2

, (6) 

 
where a = p/(1 – e2) is the semimajor axis of the orbit; 
E is an eccentric anomaly. 
Expression (5) describes the relationship between 
time and the position of the spacecraft in orbit, 
expressed in terms of an eccentric anomaly, and 
expression (6) – the relationship between eccentric 
and true anomalies. 
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Let's use expression (4) to write vectors E and B in 
the inertial coordinate system. The vector of the true 
vertical in the system ОYଵYଶYଷ can be written as 

ை௒ܧ = (1	0	0	)்  
and the geomagnetic field induction vector has the 
form: 

ை௒ܤ = ଴ܤ ൭
−2 sinݑ sin ݅

cos ݑ sin ݅
cos ݅

൱ 

The vector E in projections on the axis ОХଵХଶХଷ 
can be written as: 
 

 

ை௑ܧ = ൭
cosΩ cosݑ − sinΩ sinݑ cos ݅
sinΩ cosݑ + cosΩ sinݑ cos ݅

sinݑ sin ݅
൱ 

 
Numerical integration of the equations of motion (2) and (3) 
with the given initial conditions, system parameters, and 
elements of the spacecraft orbit allows us to determine the 
matrix of guiding cosines (the current orientation of the sensor 
relative to the inertial system) at each time. In accordance 
with the user-defined field of view of the camera, the 
"observed" part of the space is determined. The spherical 
coordinates of stars (α, δ) are converted into Cartesian 
coordinates of the inertial system ОХଵХଶХଷ , which are 

translated into a mobile system (Охଵхଶхଷ)  using a 
well-known matrix of guiding cosines. The location of stars in 
the mobile coordinate system is converted to spherical 
coordinates (φ, θ), which determines the direction of the 
vector to the star. 
 

 
Figure 5: Finding the direction of the vector to the star in the mobile 

coordinate system. 
 

Using a perspective projection, the observed stars from the 
spherical system (φ, θ) move to a rectangular coordinate 
system associated with the model plane of the photodetector 
(Fig. 5) and will be displayed on the monitor. The brightness 
and size of the displayed stars are functions of the magnitude 

of the star; the number of stars displayed is a configurable 
parameter. 
You can also implement the function of displaying 
background objects: illuminating a part of space, finding and 
displaying objects that are stationary (dust on the lens) and 
mobile (space debris) relative to the detector plane. 
As a test star sensor, let's take the HYDRA-CP model from 
SODERN [3]. 
 
Table 1 - characteristics of THE Hydra-CP star sensor 

The name of the sensor HAS-2 (CMOS) 

Pixel sizes 18 mcm 

Matrix size 18.4 х 18.4 mm 

Permission 1024х1024 pixels 

Built-in lens 18.5 mm f2.6 H40଴ 

Max. Frame rate 30 frames / sec. 

Connection interface USB 

 
The image transmitted by the simulator is “captured " by the 
camera. Frame-by-frame analysis of the obtained video 
images is performed in a rectangular coordinate system 
associated with the detector plane (Fig. 6). 

 
Figure 6: The coordinate system associated with the detector plane. 
 
The problem of star recognition is solved in an idealized 
setting. The simulated images of the starry sky do not contain 
objects of complex configuration. In particular, tracks whose 
nature is significant angular velocities of the camera and noise 
caused by the passage of protons through the CCD at a large 
angle to its optical axis are not displayed. As noted earlier, 
images transmitted to the camera contain only point objects 
(stars and interference) and noise that mimics third-party 
inhomogeneous illumination. 
The procedure for recognizing the image of the starry sky is 
carried out in several stages. At the beginning, noise 
highlights are filtered by dividing the image into subdomains 



Alipbayev K  et al.,  International Journal of Emerging Trends in Engineering Research, 8(10), October 2020,  7442 -  7449 

7446 
 

 

and subtracting the average intensity values in the 
corresponding area from the current intensity of each pixel. 
This partitioning is necessary to deal with non-uniform 
highlights. After that, the filtered image is scanned, and the 
signal maxima local to the subdomains are determined. The 
integral signal intensity in the vicinity of the detected maxima 
is compared with the current noise value according to the 
specified detection criterion. When the criterion is met, the 
object is considered detected, and its center of mass is 
calculated in the coordinate system associated with the 
detector plane: 
 

௖ߦ =
௜ܫ௜ߦ∑
∑ ௜ܫ

, ௖ߟ =
௜ܫ௜ߟ∑
∑ ௜ܫ

 

 
where (ξ, n) are the coordinates of the image pixels that fall 
within the localization area of the point signal; 
 
I-corresponding intensities (figure 7) 

 
Figure 7: Calculating the star and determining the center of mass. 

 
The procedure for recognizing calibration grid nodes is 
slightly different from recognizing simulated images of the 
starry sky. In this case, you need to find a large number of 
stars (from 100 to 400), without missing any. At the same 
time, it is necessary to establish the locations of all stars 
relative to the Central point of the grid in order to further 
establish an unambiguous correspondence between the 
simulated and recognized stars. 
Recognition begins with a Central point that is slightly 
different in size from the rest of the stars and serves as a good 
sign for identifying it. After that, a priori information about 
the grid structure is used, which allows you to predict the 
position of images of neighboring nodes based on previously 
detected ones. This method simplifies the search and detection 
of stars by reducing it to a forecast-confirmation-correction 
algorithm, and also allows you to automatically get the 
desired match between simulated and detected stars. 
 
You should pay attention to the problem of localizing a point 
object – the selected area of the image (a group of pixels), 
which is taken into account when calculating the center of 
mass. In this article, we used a rectangular area in which the 
source image is inscribed. All pixels of the image that fell into 
this area were taken into account when calculating its 
coordinates. However, this method has significant 
disadvantages, since it does not take into account the actual 
shape of the image. An increase in accuracy in determining 
the coordinates of the center of mass can be achieved by 

solving this problem of finding the image contour. The next 
level of accuracy can be obtained by using the distribution 
functions of the observed signal of a point object. In other 
words, the localized signal is interpolated on an analytical 
function (Fig. 8), whose distribution parameters are estimated 
at the stage of device calibration at different angles of the 
source orientation relative to the optical axis. 
 

 
Figure 8: Three-dimensional distribution function of the received 

signal. 
 
In this case, various optical effects can be taken into account, 
such as distortion in the extreme areas of the image and, as a 
result, the accuracy of the device is increased. 
After performing star recognition and determining the actual 
angular distances between them using previously prepared 
calibration functions, they are determined by comparing the 
obtained configurations with the configurations presented in 
the star catalog. 
The problem of detecting stars, along with the problem of 
recognition, is the main factor that determines the quality of 
the device as a whole. This is the most resource-intensive 
operation, and if the correct solution of the identification 
problem in General determines the accuracy, then the system 
speed directly depends on the methods of solving the 
identification problem [4]. 
One of the main ideas that is basic in the implementation of 
many identification algorithms is that stars from the catalog 
are represented as vertices of an undirected graph G1, whose 
edge weight is equal to the angular distance between the stars. 
Objects found after analyzing the captured frame are also 
represented as an undirected graph G2. The main task is to 
implement fast methods for finding a subgraph from G that is 
isomorphic to G2. 
 
Another group of identification algorithms includes the 
so-called grid algorithms, the main idea of which is that each 
star is associated with a bit matrix (or pattern). The value of 
the matrix field is 1 if it includes a star adjacent to the selected 
one. Otherwise, the field value is 0.to determine star 
configurations, a bitwise comparison of the matrices 
constructed for the analyzed image with the corresponding 
templates from the catalog is used.  
All these algorithms are of the "Lost In Space" type 
(hereinafter referred to as LIS) and are characterized by the 
fact that their implementation does not require any a priori 
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information about the current orientation and angular velocity 
of the camera. 
If there is a priori data about the sensor movement obtained 
from third-party devices or pre-calculated using LIS 
algorithms, the position of stars in the detector system can be 
predicted with high accuracy. In this case, the recognition and 
detection tasks are reduced to the maintenance task performed 
according to the forecast-correction scheme, which 
significantly increases the performance of the system as a 
whole. 
 

 
Figure 9: Diagram of the angular distance table 

 
In this work, an algorithm optimized for search speed was 
chosen. The catalog size is limited to the N brightest stars. 
Each star is assigned a unique number. A table of size N x N is 
created with the values of angular distances between stars 
with corresponding numbers in its cells (Fig. 9). Using the 
built table, you can quickly access the distance by star 
numbers [5]. 
After that, a list is created (figure 10), each row of which 
contains information about the numbers of stars and the 
corresponding angular distance between them. The list is 
limited according to the angle of view of the sensor used and 
ordered in ascending order of distances. 
 

 

  
Figure 10: List of distances between them with comparison by star 

catalog. 
 

The algorithm for determining observed stars uses the 5 
brightest objects in the image. One object is selected, and the 

angular distances to the remaining four are calculated. for 
each of them, matching pairs are found in the distance list. 
Next, a list of 5 stars is formed, for which the distance from 
the first to the other four is in the range δ ± ε, where ε is the 
accuracy of the sensor in determining the angular distance. 
For each entry in the list, all distances between stars are 
determined (using the distance table), and their 
correspondence to the distances in the image is checked. If at 
least one distance does not match, we consider the following 
entry. The scheme of the identification algorithm is shown in 
Fig. 11. 
If there are "phantoms" (objects that are not present in the 
catalog) among the 5 selected stars in the image, then the list 
will not contain any correct configuration. In this case, the star 
identification procedure is repeated with a different set of 
stars. 
Using this algorithm, the detection was carried out when 
displaying 1500 objects, while information was present only 
about three hundred, that is, the proposed method successfully 
bypasses the problem of the presence of dim stars and 
"phantom" objects in images.  
The problem of optimizing the search speed in the presence of 
"phantom" objects, as well as the problems of detailed 
analysis of the algorithm in comparison with existing 
approaches may be the subject of future research. 
 

 
Figure 11: Diagram of the algorithm for determining stars. 

 
You can also note the object tracking algorithm. In this case, a 
priori information about the current orientation of the camera 
and its angular velocity was transmitted from the simulator to 
the frame processing module, the position of the 
corresponding stars in the detector coordinate system was 
predicted, the selected image regions were recognized, their 
presence was confirmed, the positions of the image centers of 
mass were corrected, and the procedure for comparing the 
detected configuration with the forecast one was performed. 
This approach significantly increased the speed of the system 
as a whole. 
For fige. 12 an example of a recognized image and identified 
objects is presented. Among all the detected point objects, the 
nine brightest ones are highlighted (double border). The 
identification was carried out for 5 objects. 
 



Alipbayev K  et al.,  International Journal of Emerging Trends in Engineering Research, 8(10), October 2020,  7442 -  7449 

7448 
 

 

 
Figure 12: Determining the image of stars. 

 
Determining the current orientation of the SPACECRAFT is reduced 
to solving an optimization problem of the form: 

min
൛௔ೕೖൟ

෍‖ ௜ܺ − ‖௜ݔܣ
௡

௜ୀଵ

 

where n is a list of certain stars;  
X-coordinates of the i-th star in the inertial coordinate system.  
x – corresponding coordinates in the mobile coordinate system. In 
this case, the elements of the matrix of guide cosines a j k must 
satisfy the orthogonality conditions.  
In this case, we will consider a method for determining the current 
matrix of guiding cosines, the essence of which is as follows. 

Let ݏ௝௜ be the coordinates of 3 stars in the detector coordinate 
system (j = 1...3 is the index of the corresponding point, i = 
1...3 is the coordinate projected on the corresponding axis), 
and ௝ܵ௜  be the corresponding coordinates in the inertial 
system. The elements of the matrix of guiding cosines are 
determined in the course of solving equations of the form: 
 

ቌ
௝ܵଵ

௝ܵଶ

௝ܵଷ

ቍ = ะ
ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

ะ × ൭
௝ଵݏ
௝ଶݏ
௝ଷݏ
൱ 

 
The following equality is obvious 
 

௝ܵ௜ = ෍ ௝ܽ௞ݏ௝௞

ଷ

௞ୀଵ

, 

 
which after the introduction of the auxiliary matrix: 
 

ܦ = อ
ଵଵݏ ଵଶݏ ଵଷݏ
ଶଵݏ ଶଶݏ ଶଷݏ
ଷଵݏ ଷଶݏ ଷଷݏ

อ 

 
grouped into the following 3 algebraic systems 
 

ቌ
௝ܵଵ

௝ܵଶ

௝ܵଷ

ቍ = ܦ ൭
ܽ௜ଵ
ܽ௜ଶ
ܽ௜ଷ

൱ 

 
Whence it follows that 
 

൭
ܽ௜ଵ
ܽ௜ଶ
ܽ௜ଷ

൱ = ଵିܦ ൭
ܵଵ௜
ܵଶ௜
ܵଷ௜
൱ 

 
Next, we perform several calculations (for different triples), 
average the result, and perform orthogonalization of the 
matrix of guiding cosines.  
Using two known camera orientations A(k) and A(k+1) 
separated by an interval t, the angular velocity of the 
SPACECRAFT rotation can be found by solving the Poisson  
equation: 
 

ܣ݀
ݐ݀

= Ωܣ,Ω = ൭
0 −߱ଷ ߱ଶ
߱ଷ 0 −߱ଵ
−߱ଶ ߱ଵ 0

൱ 

where ω is the projection of the absolute angular velocity on 
the axis of the inertial coordinate system.  
 
In that case 
 

Ω =
ܣ݀
ݐ݀
ଵିܣ	

≈
௞ାଵܣ − ௞ܣ

ݐ∆
൬
௞ାଵܣ + ௞ܣ

2
൰ . [2] 
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