
Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5668 – 5675

5668

ABSTRACT

The LiDAR (Laser Imaging, Detection and Ranging) system
is one of the most useful data capturing tools, with
high-accuracy sensors. Laser lights illuminate targets, and
the system measures the distance to the target objects. The
LiDAR systems can be used to obtain various kinds of
geological and geometric data, including terrain surfaces,
outside buildings, and others. From these LiDAR-scanned
data points, we need a variety of operations, including LiDAR
file format supports, point cloud manipulation features,
geometric primitive extractions, reconstruction of 3D objects
from the point clouds, and the efficient rendering of the point
clouds and the extracted geometric primitives. We have
analyzed each of those technical issues and presented
practical engineering solutions. We finally integrated all the
features into the system to efficiently display the geometric
primitives, which are numerically extracted from the original
LiDAR data points.

Key words : laser scanning, point cloud, efficient rendering,
geometric primitives, integrated system

1. INTRODUCTION 1

Recently, we have a wide variety of geometric and
non-geometric data from various sampling devices [1,2].
Since the size of the sampled data are matter, we need a
simple and intuitive way of handling those sampled data. In
this paper, we present an efficient system for the large-scale
laser-scanned data display, with geometric primitive
extraction and some additional features.

The laser-scanning system is called as LiDAR, which comes
from Laser Imaging, Detection and Ranging [1]. It is also
known as laser scanning or 3D scanning [2]. Theoretically,
the laser lights will illuminate the target points, and the
reflection enables us to measure the distances to the target
points. At this time, the LiDAR systems are widely used to
obtain various types of data, including geological data, terrain

1 This work has supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education (Grand No.NRF-2019R1I1A3A01061310).

surfaces, interior obstacles, and much more. Variety of
geometric and geological applications use the LDAR systems
and the laser scanning technology to get the raw data points,
their derived geological terrains, outside of buildings, interior
scanning, their related geometric models, and others
[1,2,3,4,5].

The LiDAR systems become one of the most widely used 3D
point cloud acquisition technologies [6]. Typical LiDAR
systems consist of some technical components: laser
generator, optics, detector, sensors, etc. Those systems can
have various settings, including airborne systems, terrestrial
systems, and indoor systems [7]. Mostly, the LiDAR system
produces very large data sets, with many 3D sampling points.
A conceptual explanation of the large-scale landscape LiDAR
system is shown in Figure 1. As another kind of LiDAR
systems, the terrestrial LiDAR system [8] is also shown in
Figure 2.

For handling LiDAR data, we meet difficulties of lacking
well-known standard formats and/or systems. Currently, the
LiDAR system works with various data file formats and data
acquisition methods. The large number of data points from
the LiDAR system makes another kind of problems.
Typically, the large-scale laser-scanned data points count to
millions or billions of 3D data points, and they call it as the
point clouds [9].

Efficiently Displaying Geometric Primitives Extracted

from LiDAR Data Points
Nakhoon Baek

School of Computer Science and Engineering, Kyungpook National University, Daegu 41566,
Republic of Korea, oceancru@gmail.com

Figure 1: An airborne LiDAR system.

 ISSN 2347 - 3983
Volume 8. No. 9, September 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter123892020.pdf

https://doi.org/10.30534/ijeter/2020/123892020

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5668 – 5675

5669

A typical point cloud has millions or even billions of 3D
points, which should be efficiently handled even with the
ordinary PC’s. Most of the high-level application programs,
including vision processing tools and Geographic
Information System (GIS) applications, usually extract some
geometric information from the point cloud, in their
preprocessing steps [10].

In this paper, we present our systematic ways of handling
these point clouds from LiDAR sensors. We integrated the
LiDAR data file formats, the point cloud handling and editing
operations, geometric primitive extractions, and efficient
visualization methods into a unified framework. The
following sections describe the new features and their
implementations.

2. UNDERLYING FILE FORMATS

To handle the point clouds from the LiDAR scanner, we start

from the error estimation of the point cloud registration. As
one of the simplest cases, we examine the point-to-point
correspondence cases. A 3D point cloud is a set of points

{ pi | i = 1, … , n },
which is embedded in the 3D space [web3d paper]. We refer
it as the reference surface, pi = (xi, yi, zi) with indices i = 1, ,
n. Another test surface is denoted as another set of points of qi
= (xi, yi, zi), with the same indices i = 1, , n [11].

Denoting the transformation matrix and the translation vector
as R and t, the sum of squared errors can be calculated as:

2(,) i iE R t p Rq t
,

where pi and qi are the points on the reference surface and the
test surface, respectively. We can achieve the suitable
registration of the test surface through minimizing the
estimated error E(R,t) with the best values of R and t [11].

In the more general cases, there are no direct correspondences
between points of the surfaces are given. Additionally, the
number of points to be registered may be different. In this
case, we cannot calculate the transformation matrix R and the
translation vector t directly. Instead, they find suitable
solutions numerically, with iterative methods. We call this
approach as iterative closest point (ICP) methods [6,12].

For laser-scanned data points, we can use iterative closest
point methods to extract geometric features. A scanned point
cloud can be described as a set of points , ,c c cx y , with a

set of range measurements rci at the measuring bearings ci.
We can also specify a geometric feature as another set of
range measurements rri at the bearings ri [13]. We can
calculate the projected scan readings, ,ci cir as follows:

2 2(cos()) (sin())

arctan2(sin() , cos()),
ci ci c ci c ci c ci c

ci ci c ci c ci c ci c

r r x r y
r y r x

where arctan2 function is the four-quadrant version of the arc
tangent function [13].

Some of the technical problems with laser-scanned point
clouds are directly related to the extremely large size of the
point cloud. Figure 3 is a typical example of the
LiDAR-scanned data, with more than millions of sampled
points. The first problem with the LiDAR-scanned data may
be file formats. Unfortunately, there is still no dominant
standard specification for the LiDAR-scanned data points.
There are several candidate file formats including LAS
[15,16,17], E57 [18], PCD [19], XYZ [20], and others.
Reversely, a LiDAR data handling system has better to
support as many file formats as possible.

The LAS file format (short for LASer) is designed to store
three-dimensional point data, developed by the American

Figure 2: A terrestrial LiDAR system.

Figure 3: A point cloud from LiDAR scanner [14].

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5668 – 5675

5670

Society for Photogrammetry and Remote Sensing (ASPRS)
[15,16]. A LAS file consists of sequences of binary formats,
each of which stores some data points from the laser scanner.
It can additionally store the intermediate results and partial
results by various applications. This file format has recently
begun to receive attention in the terrestrial laser scanning
community [17].

The E57 file format is specified by the American Society for
Testing and Materials (ASTM). It is also known as ASTM
E57 3D file format, or the ASTM E2807 standard [21]. This
file format is compact enough to store point clouds, derived
images, and other metadata from various sensors and 3D
scanning systems. From a global point of view, an E57 file has
a hierarchical tree structure, which is basically based on the
XML data format. In its low-level view, the actual data points
in an E57 file are represented in compressed binary forms.
The format can support XML-based flexibility and also
efficiency with compressed streams of binary data [18, 21].

In our system, we support several file formats for
LiDAR-scanned data points. The LAS and the E57 file
formats are the core of our file format support. In the
following sections, we will show how to handle point clouds
stored in these file formats.

3. IMPLEMENTATION RESULTS

3.1 Fine-handling of Point Clouds

In most cases, it is hard to edit millions of points on the single
screen. It is even hard to manage those point clouds. The first
feature of our system is the basic handling operations of point
clouds. Our system provides graphical interfaces to the point
cloud handling, as shown in Figure 4.

As the basic point cloud handling operations, we provide
many editing operations, including the following:

 preview images – our system generates fast preview

images on-the-fly, for fast recognition and easy
identification of the point cloud.

 union of point cloud sets – adjacent and/or
logically-related point clouds can be merged into a single
union point cloud.

 point cloud compression – to reduce the number of points
from the original LiDAR-scanned point clouds, we apply
point cloud compression techniques.

 height map generation – a point cloud can be projected
onto a plane, to generate a height map

 digital terrain model generation – we can convert the
LiDAR point cloud into a digital terrain model, for more
advanced uses.

Figure 4: Our graphical user interface for point-cloud handling operations.

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5668 – 5675

5671

One of the most important features of the point cloud editing
is the merging operation with several point clouds. Typically,
we scan a single object several times from even different
scanning locations, and then, we have many sets of point
clouds for a single object. In this case, we can merge the

logically-related point clouds into a single one. Figure 5
shows a single step of merging two point-clouds into a large
one. Figure 6 shows the result of combing 15 point-clouds
into a single point cloud.

In some cases, the 3D point cloud can be regarded as a height
map. The 3D data points are projected onto a 2D plane, and
we can assign the height information to each of 2D points. We
construct the height map in a straight-forward manner. The
height map is represented as a 2D array internally. All the 3D
source points are projected onto the 2D target plane, and we
measure the distance from the 3D point to the target plane as
the height of that point, as shown in Figure 7.(a).

We can also combine various image-filtering operations to the
height map. As an example, we can use the Gaussian filters to
remove small objects from the height map, if needed. Median
filters can be applied to removes device measuring noises.
Figure 7.(b) represents the generated contours from the
filtered height maps.

(a) a height map

(b) its contour extraction

Figure 7: An example height map and its contour extraction.

In addition to the image handling features, our system
supports Digital Terrain Model (DTM) editing features,
especially for the airborne LiDAR-scanned point clouds.
Typically, a DTM data means the pure ground surface,
removing as many artificial objects including buildings and

(a) a point cloud

(b) another point cloud

(c) merged result

Figure 5: An example of point-cloud merge operation

Figure 6: The merged result of 15 point clouds.

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5668 – 5675

5672

even plants, from the LiDAR data. In this case, the object
removal operations are essential in addition to the normal
handlings of the LiDAR point cloud [22]. We use the adaptive
TIN (triangular irregular networks) model, as described in
[23].

Internally, our system uses the 1 byte signed integer data type
to store the depth values, if possible. Thus, the height maps,
and some of its derived DTMs may be represented with their
approximated integer values, even though they are originally
stored and calculated as floating-point numbers. Figures 8
shows an example DTM and its modified version, with our
system’s DTM editing features.

(a) a digital terrain model

(b) its modified model

Figure 8: An example Digital Terrain Model (DTM) and its

modification.

3.2. Geometric Features Extraction

For more efficient handling of LiDAR-scanned data points,
we also provide geometric feature extractions. The typical
geometric feature extractions from the LiDAR-scanned data
points can be mathematically interpreted as the well-known
3D data registration problem [6]. In the early stages of our
implementation, we tried to implement our in-house versions
of the 3D registration algorithms. However, we rapidly found
that we already have a set of well-implemented public
versions of this 3D data registration algorithms.

As an example, the Computational Geometry Algorithms
Library (CGAL) [24] provides those registration algorithms

through its own API functions. Currently, many applications
in the various areas already use CGAL to solve their
geometric operations. Using our in-house implementations
and also CGAL API functions, we can extract a set of
geometric primitives, from the point clouds. Those geometric
primitives are again combined to construct 3D geometric
models, which, at least theoretically, can be used other 3D
modeling programs.

Actually, we have some research results on 3D geometric
model reconstruction from point clouds [25]. However, in our
case, it is not easy to use those methods directly, since our
LiDAR scanned data has its own properties. Those are
representing real-world buildings, with relatively large-scale
data points. Another problem is that the previous research
results assume a single closed surface, rather than a set of
overlapped point clouds, such as our LiDAR point clouds. In
practice, typical LiDAR scanners are hard to get the bottom
side during its building interior scanning.

(a) a geometric primitive from the point cloud

(b) extracted results

(c) progressive results

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5668 – 5675

5673

(d) the final result

Figure 9: Conversion of point-clouds to 3D geometric models.

Our proposed scheme starts with manually selecting a
suitable geometric primitive, for the target point clouds. The
selectable primitives can be ranged from simple triangles and
squares to 3D shapes of cylinders, cubes, spheres, and others.
After selecting a geometric primitive, our system executes the
geometric primitive extraction and fitting with the
registration algorithms. Then, our system also extract the
optimal texture images for the geometric primitive, from the
grabbed framebuffer. Figure 9 shows an example sequence of
this semi-automatic geometric primitive extraction, from the
large-scale point clouds [9].

3.3. Customized Display Methods

One of the remaining problems would be the efficient display
of the original LiDAR-sampled point clouds and also the
extracted geometry primitives. For general cases, we have
many 3D graphics rendering systems, including OpenGL
[26], DirectX [27], X window system [28], Display PostScript
[29], Cairo [30], OpenInventor [31], Qt [32], and others.
However, those graphics libraries are tuned for general 3D
rendering, rather than the LiDAR-scanned point clouds [33].

Since the graphics libraries developed in a stepwise manner,
the modern graphics architecture is actually a kind of library
stacks. In the case of modern OpenGL library
implementation, it works over the operating system kernels,
X window system, and GLX extensions. Even the
two-dimensional graphics output support with the X window
system simultaneously work on the same system. Our system
presents a new way of accelerated 3D rendering, directly
based on the Linux kernel support. In this case, we have no
need to integrate it with any graphics window systems and
any acceleration extensions. We represent the concepts and
designs for our graphics pipeline with fixed function graphics
features.

In our design and implementation of the customized display
methods, we adopted to use the Graphics Processing Unit
(GPU) more actively. In the modern computer architecture,
the GPUs are most essential and core unit for the 3D graphics

support. In the case of Linux operating systems, its kernel
architecture has the Direct Rendering Manage (DRM)
module [34,35], which can access the GPUs and the
framebuffer directly. Thus, with the DRM modules, we can
directly control and tune the GPU actions for more
accelerated and customized display of our target point clouds
and extracted geometric primitives. More precisely, the DRM
module provides kernel function calls to access GPUs
directly, especially in the case of Linux operating systems
[36]. For graphics output, the upper-level libraries, such as
OpenGL and DirectX, use the DRM module to control GPUs
and also to transfer the graphics data to the GPUs.

Our system has the kernel of 3D transformations and
rendering features. To derive GPU core instructions, we use
the fixed GPU instruction sequences extracted from the
existing implementations of OpenGL. Figure 10 shows the
results of our DRM-based direct 3D graphics rendering
system. As shown here, point-clouds from the LiDAR
sampled data and its reconstructed 3D models successfully
works with our system.

Table 1: Experimental results from our system.

Finally, our system combines all the acceleration methods
described in the previous sections. Table 1 shows the final
speed-up factors of our system. We started from raw-level
point cloud with LiDAR scanned systems. Various geometric
algorithms process them, and extract the primitives. Our
system shows remarkable speed-ups of around 100 times
faster than the generic rendering of the original point clouds.

(a) our DRM-based graphics output

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5668 – 5675

5674

(b)another output

Figure 10: Examples of our DRM-based 3D graphics outputs.

4. DISCUSSION AND CONCLUSIONS

Recently, the LiDAR-scanning technology is widely applied
in various applications. In its technical uses, we should use
more efficient and much customized way of handling the
point clouds and the derived geometric data [37,38,39]. In
this work, we focused on the following technical issues:

 LiDAR data file formats
 Point cloud manipulation features
 Geometric primitive extraction
 Reconstruction of 3D objects from the point clouds
 Efficient rendering of the point clouds and geometric

primitives

We have analyzed each of the technical issues and presented
practical engineering solutions. We finally integrated all the
features into the system for LiDAR-scanned data handling.
Our implementation shows remarkable speed-ups, for the
handling of LiDAR-scanned point clouds, geometric
primitive extraction, and customized display of the
reconstructed 3D graphics models.

Our current implementation can be improved with some
parallel processing features. For example, our current
extraction algorithms will be more accelerated with their
re-implementations in parallel programming systems
including OpenMP, OpenCL, and/or CUDA. Our system will
be available to the commercial markets, in the near future.

REFERENCES
1. G. E. Marshall and G. E. Stutz. Handbook of Optical

and Laser Scanning, 2nd Ed., CRC Press, 2011.
2. G. Vosselman and H.-G. Mass, Airborne and Terrestrial

Laser Scanning, CRC Press, 2010.
3. W. R. Benner Jr., Laser Scanners: Technologies and

Applications, Pangolin, 2016.

4. M. Maltamo and E. Næsset, Forestry Applications of
Airborne Laser Scanning: Concepts and Case Studies,
Springer, 2016.

5. J. Shan and C. K. Toth, Topographic Laser Ranging
and Scanning: Principles and Processing, 2nd Ed.,
CRC press, 2018.

6. C. Cao, M. Preda, and T. Zaharia, 3D Point Cloud
Compression: A Survey. The 24th International
Conference on 3DWeb Technology. Association for
Computing Machinery, 2019, Web3D ’19, pp. 1–9.

7. I. Dowman, Integration of LIDAR and IFSAR for
Mapping, International Archives of Photogrammetry
and Remote Sensing, 35, 90-100, 2004.

8. P. Hobbs, C. Pennington, S. Pearson, L. Jones, C. Foster,
J. Lee and A. Gibson, Slope dynamics project report,
Norfolk Coast (2000 - 2006), 2008.

9. N. Baek, W. Shin and K. J. Kim, Geometric Primitive
Extraction from LiDAR-scanned Point Clouds,
Cluster Computing, 20(1):741-748, 2017.

10. W. Shin and N. Baek, Editing LiDAR-Based Terrains
with Height and Texture Maps, ICISS 2016, 2016.

11. G. Krell, et al., Assessment of iterative closest point
registration accuracy for different phantom surfaces
captured by an optical 3D sensor in radiotherapy,
Computational and Mathematical Methods in Medicine,
2017(2938504), 13 pages, 2017.

12. Z. Zhang, Iterative Closest Point (ICP), In: K. Ikeuchi,
Computer Vision, Springer, 2014.

13. G. A. Kumar, et al., A LiDAR and IMU Integrated
Indoor Navigation System for UAVs and its
application in real-time pipeline classification,
Sensors, 17:1268, 2017.

14. A. Samberg, An implementation of the ASPRS LAS
standard, IAPRS, vol. XXXVI, 2007.

15. The American Society for Photogrammetry & Remote
Sensing, LAS Specification, Version 1.4, ASPRS, 2011.

16. The LAS ASPRS LiDAR data translation toolset,
http://www.liblas.org/. 2016.

17. D. Huber, The ASTM E57 file format for 3D imaging
data exchange, Proceedings of the SPIE, Vol. 7864A,
2011.

18. The Point Cloud Data file format,
http://pointclouds.org/documentation/tutorials/pcd_file_
format.php (retrieved in Aug 2020).

19. XYZ file format,
https://en.wikipedia.org/wiki/XYZ_file_format
(retrieved in Aug 2020).

20. https://www.unavco.org/software/visualization/idv/IDV
_datasource_point_cloud.html (retrieved in Aug 2020).

21. ASTM E2807, Standard Specification for 3D Imaging
Data Exchange, Version 1.0, 2011.

22. Y. Feng, et al., Urban DEM generation from airborne
Lidar data, Urban Remote Sensing Event, ISSN
2334-0932, 2009.

23. T. Strutz, Data Fitting and Uncertainty, 2nd Ed.,
Springer, 2016.

Nakhoon Baek, International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5668 – 5675

5675

24. CGAL homepage, http://www.cgal.org/ (retrieved in
Aug 2020).

25. B. Matthew, et al., A Benchmark for Surface
Reconstruction, ACM Transactions on Graphics,
Vol.32, 2013.

26. M. Segal and K. Akeley, The OpenGL Graphics
System: A Specification, Version 4.5 (Core Profile),
Khronos Group, 2016.

27. F. Luna, Introduction to 3D Game Programming with
DirectX 12, Mercury Learning & Information, 2016.

28. D. Young, The X Window System: Programming and
Applications with Xt, OSF/Motif, 2nd Edition, Prentice
Hall, 1994.

29. Adobe Systems, Programming the Display Postscript
System With X (APL), Addison-Wesley, 1993.

30. http://www.cairographics.org/ (retrieved in Aug 2020).
31. J. Wernecke, The Inventor Mentor: Programming

Object-Oriented 3D Graphics with Open Inventor,
Addison-Wesley, 1994.

32. G. Lazar, Mastering Qt 5, Packt Publishing, 2017.
33. B. Im, N. Baek and J. Lee, An Efficient

Implementation of LiDAR Data and its Geometric
Representation Extraction, ICITCS 2016, 2016.

34. K. Packard and E. Anholt, The Graphics Execution
Manager: Part of the Direct Rendering Manager,
on-line article, 2008.

35. R. E. Faith, The Direct Rendering Manager: Kernel
Support for the Direct Rendering Infrastructure,
http://dri.sourceforge.net/doc/drm_low_level.html,
2016.

36. J. Fonseca, Direct Rendering Infrastructure:
Architecture, 2005.

37. A. S. Alon, E. D. Festijo and C. D. Casuat, Tree
Extraction of Airborne LiDAR Data Based on
Coordinates of Deep Learning Object Detection from
Orthophoto over Complex Mangrove Forest, IJETER,
8(5):2107-2111, 2020.

38. M. Kumar and R. H. Sree, Home Computerization
Monitoring System with Google Supporter, IJETER,
8(6):2240-2244, 2020.

39. N. Baek, A Simplified Implementation of the
Fixed-Function Graphics Pipeline: DRM Approach,
IJATCSE, 9(2):1551-1555, 2020.

