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 

ABSTRACT 

 

Remote sensing image (RSI) scene classification has 

received growing attention from the research community in 

recent days. Over the past few decades, with the rapid 

development of deep learning models particularly 

convolutional neural networks (CNN), the performance of 

RSI scene classification have been drastically improved due 

to the hierarchical feature representation learning through 

CNN. But, we found that these models suffer for 

characterizing complex patterns in remote sensing imagery 

because of small inter class variations and large intra class 

variations. In order to solve these problems, we have proposed 

a Dilated Convolutional Neural Network (D-CNN) to 

improve the performance of RSI scene classification. The aim 

of dilated convolution filter is to incorporate more relevant 

information by increasing the receptive field of convolutional 

layer. In addition to traditional CNN model, it increases CNN 

efficiency and reduce computational time. For evaluating the 

proposed approach, we have collected three publicly available 

benchmark datasets namely, NWPU 45-class, PatternNet and 

Aerial Image Dataset (AID). Finally, experimental results are 

demonstrated for our proposed model using above dataset and 

achieved 89.85%, 92.35% and 97.18% respectively, which is 

outperformed traditional CNN model.   

 

Key words: Convolutional neural networks, deep learning, 

dilated convolutional, remote sensing images, dilation rate 

and scene classification.  

 

1. INTRODUCTION 

 

With the rapid development of earth observation 

technology, image scene classification plays a significant role 

in the field of RSI. It’s applications ranges from agriculture 

monitoring, environmental monitoring, land use/ land cover 

planning, scene classification, urban planning, surveillance, 

geo-graphic mapping, disaster control, object detection, etc 

[1-2]. Several techniques have been developed for image 

scene classification during the last decades. These techniques 

are broadly categorized into two types based on the features 

they use, namely low level feature learning based and high 

level or deep feature learning based method. Earlier, image 

 
 

scene classification was based on the low level features or 

handcraft feature learning method [4]. This method was 

mainly used for designing the handcraft or human engineering 

features, such as color [3], shape, texture, spatial and spectral 

information. The histogram of gradients (HOG), color 

histogram (CH), gray level co-occurrence matrix (GLCM), 

local binary pattern (LBP), scale in-variant feature transform 

(SIFT) are some of the familiar handcraft feature extraction 

methods used for image scene classification [5-6]. These low 

level features are producing better results, but they require 

domain expertise and consume more time for the limited data. 

In addition, handcrafted features require an artificial dilation 

for extracting the features. 

To overcome the limitation of handcraft features, 

automatically learning the features from images are 

considered as best way. In recent years[7], deep learning 

method has great success in the field of image scene 

classification. It is composed of multiple layers that can learn 

more powerful feature extraction of data with multiple levels 

of abstraction. In addition, the deep layers of representations 

have great potential to characterise robust features with 

complex patterns and semantics, such as land use, land cover, 

functional sites etc. Currently, there are so many deep 

learning models are available such as Convolutional Neural 

Network, Recurrent Neural Network (RNN) with Long Term 

Short Memory (LSTM), Auto Encoder , Deep Belief Network 

and Generative Adversarial Network.  

      
(a)                            (b) 

Figure 1: Sample image labelled with parking lot and harbor 

 

The main reason for the popularity of deep learning are the 

highly improved parallel processing capability of hardware, 

especially the general-purpose graphical processing units 

(GPUs), the substantially increased size of data available for 

training, and the recent advances in machine learning 

algorithms. These advances enable deep learning methods to 

effectively utilize complex, compositional nonlinear 

functions, to automatically learn distributed and hierarchical 
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features, by effectively utilizing both labeled and unlabeled 

data. Figure 1a and 1b, are images from NWPU 45-class 

dataset though these images have similar visual perceptions; 

they are correctly classified as car in parking lot and ship in 

harbor using deep learning models. So, successful deep 

learning application requires a very large amount of data to 

train the model as well as GPU, to rapidly process the 

data[30]. Especially, the CNN models are familiar and widely 

used for image classification and have achieved better results.       

The rest of the paper is structured as follows: Section “Related 

works” contains the literature survey of CNN classification 

for remote sensing images; Section “Proposed work” presents 

the newly developed dilated convolutional model; Section 

“Experimental result and analysis” discusses how the 

performance is improved from traditional CNN to dilated 

convolutional model; and in Section “Conclusion” we 

reiterate the focus of the paper and summarize the work 

presented. 

 

2. RELATED WORKS 

 

The first CNN model was developed by LeCun et al.[8-9] 

which is similar to the traditional neural network and also it is 

the foundation for modern CNN. The structure of the CNN 

model is inspired by the neurons in animal and human brains. 

In recent days, researchers have developed many models 

related to image classification problems. For example, Xuning 

Liu et al.[10] developed Siamese networks for Remote 

sensing scene classification. The results showed that Siamese 

CNN model performance is efficient and better than the 

VGG-16 (Visual Geometry Group) results. The research in 

[11] proposed CNN model for road recognition system from 

remote sensing images. The research by Wong et al.[12] 

presented a smart object detection system for blind people. 

This method capture object scene by webcam and then extract 

the features by using convolutional layer. After that, audio 

detector was used to analyse the detected object for the blind 

people. Chih-Yuan Koh et al.[13], proposed a bird sound 

classification model, in which features of ResNet model and 

Inception model are combined. Yu Weng et al.[14], 

introduced an effective framework for solving different image 

scene classification based on convolutional neural 

architecture search (CNAS).  

Souleyman Chaib et al.[15], developed a feature fusion model 

for high resolution remote sensing image scene classification, 

where VGG-16 and Inception model features are combined. 

In [16], a deep learning fusion framework was introduced for 

improving the classification accuracy of remote sensing 

images. This method used feature fusion of three 

state-of-the-art models namely traditional CNN, VGG-16 and 

ResInception and obtained higher accuracy than the 

individual models. In [17], a deep CNN model was proposed 

for classification and detection of plant leaf diseases. Yunya 

Dong et al.[18], introduced a combined deep learning model 

for High Resolution-RSI scene classification. This model 

combines CNN features representation with LSTM model for 

improving the accuracy of scene classification. Gong Cheng 

et al.[19], proposed a discriminative CNN model to improve 

the performance of RSI scene classification, in which within 

class diversity and between class similarity problems are 

addressed. Abdul Qayyum et al.[20], proposed an efficient 

method for scene classification of aerial images by CNN 

based sparse coding learning techniques.  

Wei Zhang et al.[21], introduced a capsule network for RSI- 

scene classification. This model first extract the features based 

on CNN and then the extracted features are fed into capsule 

network to obtain better classification accuracy.  Peng Ding et 

al.[22], performed object detection model for RSI images by 

faster regional CNN approach. This model reduces the 

detection time (test-time) and memory requirements. In 

addition, the proposed model can detect small objects in RSI 

more efficiently. Antonio-Javier Gallego et al. performed 

automatic ship classification by combining CNN and 

k-Nearest Neighbor method (k-NN) to improve the 

performance[23]. Maher Ibrahim Sameen et al.[24], classify 

Very High Resolution(VHR) aerial photographs to classify 

the several land cover classes namely, building, barren land, 

dense area, grassland, road, shadow and water body of 

Selangor, Malaysia. Grant J. Scott et al.[25] presented a 

fusion algorithm in which multiple deep CNN model such as 

CaffeNet, GoogLeNet, and ResNet50 features were extracted 

for land cover classification of HRI. All the above mentioned 

models are not efficient as they require more computational 

time to train and validate the data. Taking the above 

disadvantages into consideration, we have proposed a dilated 

convolutional model for scene classification of remote 

sensing images. 

 

3. DILATED CONVOLUTIONAL NEURAL 

NETWORKS 

 

In this section, we have proposed a dilated convolutional 

neural network by replacing the traditional CNN for 

improving the classification accuracy of RSI scene 

classification. The new dilated convolution filter expands the 

receptive field without increasing parameters. So, we can 

improve the performance of this model and also reduce the 

computational time. With a deep convolutional network, the 

traditional CNN model with small convolution kernels needs 

to learn more relevant information, which has a more 

computational complexity. To deal with more complex 

situation and achieve better performance of network, by 

increasing the depth of CNN in traditional model. In order to 

handle these problems, we have introduced dilated 

convolution kernel instead of traditional convention kernel. 

Dilated convolution kernel is based on the idea of expanding 

or increasing kernel receptive field without increasing the 

number of parameters and by adding zero weight values in the 

filters. 

The Dilated CNN model consists of N numbers of dilated 

convolution layers followed by N numbers of pooling layers 

and two fully connected layers. The architecture of proposed 

Dilated CNN model is shown in Figure 2 and layer1, layer2 

and layer3 represent three levels of dilated convolutional 

layers with corresponding ‘ReLu’ activation function and max 

pooling are used for feature reduction. The major problem in 

deep learning techniques is overfitting while training these 

structures. Data augmentation, optimizer, dense, dropout and 

drop connect are some of the techniques developed to avoid 

overfitting problems. 
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Figure 2: Architecture of proposed dilated convolutional neural network 

 
(a)           (b)                                                 (c) 

Figure 3: (a) Traditional convolutional with kernel size 3×3 (b) dilated convolution with dilation rate 2 and kernel size is 5×5 (c) dilated 

convolution with dilation rate 3 and kernel size is 7×7. 

 

Figure 4 shows the traditional and dilated convolution kernel 

over an image of size10 × 10, where (a) is a traditional 3×3 

convolution kernel, a zero is inserted between each point in 

the matrix in (a) and transformed into (b) is called dilation rate 

2, similarly, (c) is a dilation rate 3 kernel. As shown in Figure 

3, the kernel’s receptive field is 3×3, 5×5 and 7×7 

respectively. The receptive field size is increased by adding 

the zero between the matrices; however, the number of 

parameters in all the dilated convolution kernels is same. 

Therefore, using such a dilated convolutional kernel to 

process images can get more information from the 

convolution kernel without increasing the computation. In 

dilated convolution, a small kernel size w×w is extended to w 

+ (w-1) (dr-1) with dilate rate dr.  In traditional convolutional 

kernel with size of 3×3, the receptive field is 3×3. While 

performing dilated convolutional kernel with size of 3×3, its 

receptive field is 5×5 when dilation rate dr = 2, and 7×7 when 

dr = 3. The receptive field is generally defined as [k + (k − 1) 

(i −1)] × [k + (k − 1) (i − 1)] when dr = i.  

 
(a)                                                    (b)                                                       (c) 

Figure 4: Conceptual illustration of traditional and dilated convolution; (a) traditional convolution (b) dilated convolution with dilation rate 2; (c) 

dilated convolution with dilation rate 3. 
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3.1 Dilated Convolutional Layer 

The convolution layer is the most important layer in the CNN, 

which is the origin of the “convolutional neural network”. The 

aim of convolution layer is to learn feature representations of 

the inputs. The convolution layer is a three dimensional 

matrix with size of h×w×c with corresponding weight for each 

point, where h represents height of the inputs, w represents 

width of the inputs and c represents the depth of the channel. 

A kernel of convolution is a neuron, and the size of the 

convolutional kernel is called as neuron’s receptive field. Like 

neural networks, convolutional network uses convolution 

operation rather than matrix multiplication process. The 

general form of convolution is defined as: 

s(i, j) =  ∑ (Xk × Wk)(i, j) + b
nin
k=1      (1) 

where nin represents the input matrices of the tensor. Xk is kth 

input matrix. Wk is the kth sub-convolution kernel matrix of 

the convolution kernel. s(i,j) represents the output values for 

matrix of corresponding elements to the kernel w. For 

example, 10×10 two-dimensional matrix as a input with 

padding size of 1(11×11 input size) and the size of 

convolution kernel is 5×5 matrix, the size of stride is set to 1, 

the output of corresponding convolution size is 7×7 and 

convolution process is shown in Figure 5. 

 

Figure 5: Pictorial representation of dilated convolution process 

3.2 Activation Function 

The Activation Function is mainly used to improve the 

performance of CNN model. There are many activation 

functions available such as ReLU, ELU, tanh, sigmoid and 

maxout. In this paper, standard and familiar Rectified Linear 

Unit (ReLU) activation function has been used. The ReLU 

activation function is defined as:  

bi,j,k = max (ai,j,k, 0)      (2) 

where, ai,j,k is the input of the activation function at location  

(i, j) on the k-th channel. In this layer we replace every 

negative value from the filtered images with zeros. The Figure 

6. elaborates the process of activation function. 

 
Figure 6: Pictorial representation of activation function 

3.3 Pooling or Sub-sampling layer 

The pooling process is used to reduce the dimensionality of 

feature maps that have passed through convolutional layer and 

activation functions. These processes reduce the number of 

connection between convolutional layers, so it will reduce the 

computational time also. The well known pooling types are 

max pooling, min pooling and average pooling. In each case, 

the input image is divided into non-overlapping two 

dimensional spaces. The input size is 4×4 and sub sampling 

size is 2×2.  A 4×4 image is divided into six non-overlapping 

of matrices 2×2. The Figure 4 shows the operation of sub 

sampling process. For max pooling operations, the maximum 

value of the four values is selected. In the case of min pooling, 

the minimum value of the four values is selected and similarly 

average pooling takes average value of input.   The main 

advantage of pooling process is to provide reduction of input 

image. Figure 7, shows the operation of max pooling and 

average pooling process. 

 
Figure 7: Pictorial representation of Pooling processes 

3.4 Fully Connected Layer 

After the several convolutional and pooling layer processes, 

the two-dimensional data is converted into one-dimensional 

vector. The one dimensional data will be the input for fully 

connected layers. There may be one or more hidden layers 

which perform high level reasoning.  Each neuron uses the 

data from the previous layers to multiplies the connection 

weights and add a bias value. The output of final fully 
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connected layers fed into the classifier ie. softmax function. 

The softmax function is used to classify the object. The 

general form of softmax is defined as in Eq. (3) 

classj =  
exp (sfj)

∑ (sfq)q
       (3) 

where, exp (sfj) is the probabilities of each target class where 

as sfq is possible of all the target classes. 

 
(a)                                   (b)                                  (c) 

Figure 8: The sample images from three benchmark datasets. (a)  NWPU 45-class dataset (b) AID Dataset (c) PatternNet 
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4. EXPERIMENTAL RESULTS AND PERFORMANCE 

METRICS 

 

In this section, we focus on performance and effectiveness of 

RSI scene classification based on Dilated CNN model and 

traditional CNN model under the same parameters and 

conditions. First, we introduce the benchmark datasets for RSI 

scene classification, then analyzed the performance of 

traditional CNN model, and finally presented the 

experimental results for proposed D-CNN with different 

dilation rates. The proposed dilated convolutional network 

model is developed on Python and Anaconda IDE tools. 

 

4.1 Dataset Descriptions 

 

For experimental evaluation, we have used three publicly 

available benchmark datasets for remote sensing image scene 

classification. The first dataset is Aerial Image Dataset[27] 

which contains 30 classes and totally 10 000 images. Each 

class ranges from 220-420 images with resolution of 600 × 

600 pixels. The spatial resolution of images ranges from 0.5 to 

8m. The second dataset is North Western Polytechnical 

University (NWPU) 45-class dataset[4] which contains 45 

classes and totally 31 500 images. Each class consists of 700 

images with resolution 256 × 256 pixels. The spatial 

resolution of images ranges from 0.2 to 30m. The dataset was 

collected from more than 100 countries and extracted by 

Google Earth. The final dataset is PatternNet[28] which 

contains 38 classes and totally 30 400 images. Each class 

consists of 800 images with resolution 256 × 256 pixels. The 

spatial resolution of images ranges from 0.062 to 4.69m. For 

our proposed work, we have chosen common classes namely 

airplane, baseball diamond, beach, bridge, forest, ground 

track, harbor, parking lot, river and storage tank for remote 

sensing image scene classification from the three benchmark 

datasets. Sample images from three benchmark datasets are 

shown in Figure 8. 

 

4.2 Performance Metrics 

 

We have evaluated the performance of a proposed model by 

using various performance metrics such as Accuracy, 

Precision, Recall, F1-measure and Mean Square Error (MSE). 

The Accuracy can be calculated by the number of properly 

classified data in a dataset divided by the total number of 

samples, as shown in the equation(4).  

Accuracy =
t

n
          (4) 

where t is a number of properly classified samples and n is a 

total number of samples in a dataset. 

The precision can be measured by number of properly 

classified data in a datasets divided by total number of all 

samples in a class. Precision value of the class c, Pc can be 

shown in equation (5) where, tc is a total number of properly 

classified samples in class c and nc is a total number of 

samples in the class c.  

𝑃𝑐 =
𝑡𝑐

𝑛𝑐
           (5) 

The recall can be measured by number of properly classified 

datas are divided by the number of all relevant samples in the 

corresponding class. Recall value of the class c, Rc can be 

shown in equation (6) where, tc is a total number of properly 

classified samples in class c and kc is number of samples 

classified as relevant to class c. 

𝑅𝑐 =
𝑡𝑐

𝑘𝑐
          (6) 

The F1-measure (harmonic mean) is used to show the balance 

between the precision and recall measures. F1- score value 

can be calculated using equation (7):  

F1 =
2∗(Pc∗Rc)

Pc+Rc
        (7) 

 

Figure 9: Concepts of confusion matrix 

The working principle of confusion matrix processes is shown 

in figure 9. It is essential to find the confusion matrix while 

calculating the performance measures. Confusion matrix is a 

technique used to summarise results and used for validating 

classification methods. There are two common classes, which 

are usually deal with confusion matrix namely positive class 

and negative class. These two common classes can be further 

divided into four categories. True Positive is an outcome, 

where the model that has correct classification of positive 

example. False Negative is an outcome, where the model that 

has incorrect classification of positive examples. False 

Positive is an outcome, where the model that has incorrect 

classification of positive examples. True Negative is an 

outcome, where the model that has correct classification of 

negative examples. 

 

4.3 Experimental Results of Traditional CNN and Dilated 

CNN  
 

The proposed model was trained and tested with three 

benchmark datasets using tensor flow in Core i7 CPU 

2.6GHz, 1 TB of Hard Disk and 16 GB of RAM. The 

proposed dilated convolutional models, experimental results 

are compared with traditional CNN model with same 

parameter and configurations. Like traditional CNN model, 

the dilated convolutional with dilation rate of 2 is as it same as 

parameter and configuration but, the receptive field is 

increased as 5×5. So, in order to increases of receptive field is 

incorporated with more relevant information and increase the 

performance of proposed model as well as reduce the 

computational time. Similarly, the dilated convolutional with 

dilation rate of 3 is as it same as parameter and configuration 

in traditional CNN model but, the receptive field is increased 

as 7×7.  
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Table 1: Performance metrics of NWPU 45-class dataset 

 

S. 

No. 

Dataset Model Accuracy Precision Recall F1-Score 

1 NWPU 

45-class 

Traditional CNN 85.85 86.21 85.86 85.73 

2 Dilated CNN-1 87.71 88.35 87.71 87.42 

3 Dilated CNN-2 89.85 89.49 89.43 89.37 

 

 
Figure 10: Classification accuracy for NWPU 45-class dataset 

 

To evaluate the effectiveness of traditional CNN and Dilated 

CNN for RSI scene classification, we have conducted 

experiments on three datasets. These three datasets contain 

different spatial and spectral information. We compare the 

performance of traditional CNN model, Dilated CNN-1 and 

Dilated CNN-2 with the state-of-the-art results in these three 

datasets and performance metrics are summarized in Table 1, 

2 and 3 respectively. The experimental setting of traditional 

CNN and Dilated CNN model consists of three convolutional 

layer and max pooling. For avoiding the problem of 

overfitting concepts, we have used dropout and Adam 

optimizers. Figure 10. shows the performance metrics of 

NWPU 45- class dataset (traditional CNN, dilated CNN-1 and 

Dilated CNN-2 model) for 15 epochs on both training and 

validation data. In first experimental set, Dilated CNN-2 

model has highest performance accuracy because the 

receptive fields are increased than other two models. Figure 

11 shows performance metrics of AID dataset. 
 

Table 2: Performance metrics of Aerial Image Dataset 

S. 

No. 

Dataset Model Accuracy Precision Recall F1-Score 

1 AID Dataset Traditional CNN 90.88 91.39 90.88 90.69 

2 Dilated CNN-1 91.76 92.27 91.76 91.61 

3 Dilated CNN-2 92.35 92.66 92.35 92.28 

 

 
Figure 11: Classification accuracy of AID Dataset 

 

In third experiment set, we have trained pattern net dataset for traditional CNN, dilated CNN-1 and dilated CNN-2 model. Figure 12 

shows performance metrics of PatternNet dataset. 

 
Table 3: Performance metrics of PatternNet Dataset 

 

S. 

No. 

Dataset Model Accuracy Precision Recall F1-Score 

1 PaternNet 

Dataset 

Traditional CNN 94.85 95.44 94.86 94.89 
2 Dilated CNN-1 96.85 97.17 96.86 96.89 
3 Dilated CNN-2 97.18 97.41 97 96.98 
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Figure 12: Classification accuracy of PaternNet Dataset 

 

4.4 Performance Comparison of Proposed Model with 

Traditional CNN 

 

Based on experimental results show that, the dilated-1 

CNN model and dilated-2 CNN model have higher accuracy 

than traditional CNN model and also computation time is less 

compared to traditional model. The dilated CNN-1model has 

2% higher than the traditional CNN model. Similarly, dilated 

CNN-2 model has 3% higher than the traditional model. The 

performance comparison of proposed model is shown in 

figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Performance analysis of proposed model with traditional 

model 

5. CONCLUSION 

In this paper, we have proposed a Dilated Convolutioanl 

Neural Network model for remote sensing image scene 

classification by replacing the kernel of traditional CNN with 

dilated convolutional kernel. We have trained dilated 

convolutional models for remote sensing image scene 

classification for three benchmarks datasets namely NWPU 

45-class, PatternNet and Aerial Image Dataset with dilation 

rate of 2 & 3 and achieved better performance than traditional 

CNN. In future, we have planned to incorporate our proposed 

dilated convolutional neural network model in remote sensing 

object detection system and by implementing in GPU 

environment for reducing the computational time.  
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