

Volume 8. No. 10, October 2020 International Journal of Emerging Trends in Engineering Research Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter1088102020.pdf https://doi.org/10.30534/ijeter/2020/1088102020

Image Processing Techniques for Acute Leukaemia Detection

Ashwini P. Patil¹, Manjunatha Hiremath²

¹PhD Scholar, of Computer Science, CHRIST (Deemed to be University), Bengaluru, Assistant Professor, Department of Computer Application, CMR Institute of Technology, Bengaluru, India, patil.ashwini.p@gmail.com
²Assistant Professor, Department of Computer Science, CHRIST(Deemed to be University), Bengaluru, India, manjunatha.hiremath@christuniversity.in

ABSTRACT

Every year a lot of people are diagnosed with blood cancer. This disease has a high mortality rate due to late and incorrect diagnoses. Acute leukaemia diagnosis requires an automated solution to facilitate early detection. This is one of the challenging problems and several machine learning techniques are proposed in recent years, however, image analysis using blood smear images remains the easiest and efficient technique to detect acute leukaemia. This study provides a literature review of the research work corresponding to the detection and classification of Acute lymphoblastic leukaemia (ALL) using digital image processing. The paper presents the analysis of various methods and techniques of image processing to detect leukaemia and highlights some of the research pros and cons. This literature review also introduces some of the research issues and challenges involved in this field of study

Key words : Acute lymphoblastic Leukemia, Classification, Image processing, Image segmentation..

1. INTRODUCTION

Leukaemia is one of the common blood cancers claiming many lives every year. Leukaemia is a blood cell cancer that originates in bone marrow spreading further to peripheral blood and other organs. Leukemic cancer can be classified into various types, based on the immaturity level of the cell it is divided as Acute or Chronic, and based on cell lineage it is divided into myeloid or lymphoid. Hence there are four different types of leukaemias i.e. Acute lymphoblastic leukaemia, Acute Myeloid leukaemia, Chronic lymphoblastic leukaemia, and Chronic Myeloid leukaemia. According to FAB Classification[1] two acute leukaemia are further divided into subcategories. Lymphoblastic leukaemia is subdivided into three types (L1, L2, and L3) whereas myeloid leukaemia is subdivided into six types (M1, M2, M3, M4, M5, and M6).

Acute leukaemia is considered riskier because it grows and spreads rapidly as compared to chronic and there would be very little time for diagnosis and treatment. Hence early detection of Acute leukaemia is very important. The diagnosis of leukaemia is done in three stages. First step is a complete blood count (CBC) test which gives the total count of hemoglobin, white blood cells, red blood cells, platelets and hematocrit. CBC test is one of the easiest and cheapest but it gives a complete analysis of your blood and is the most effective one. The second step is bone marrow aspiration; this test further helps in confirmation of leukaemia. The third step is to classify the type of leukaemia by analyzing the cancer cells characteristics.

This complete leukaemia diagnosis needs good infrastructure and an expert pathologist which might be a problem for underdeveloped as well as developing countries. Moreover this process if done manually will take a lot of time and diagnosis might get delayed. Due to these delays in diagnosis most of the patients are at advanced disease (stage 3-4) at the time of their diagnosis [21]. There is certainly a need to develop a completely automated, cost-efficient system to diagnose patients with leukaemia and detect the type of leukaemia.

A lot of studies have been done to find a better solution for leukaemia detection. Image processing using blood smear images serves as an efficient technique for early diagnosis of leukaemia. This paper reviews some of the studies and research work done in this area. The paper is organized as follows: Section1 defines the study; Section2 discusses the review protocol; Section3 gives details of the dataset; Section4 presents the review of methodology and summary of all the methods and techniques extracted from review papers; Section5 specify the research issues Section6 provides the conclusion.

2. DATASET

The first step in the detection of leukaemia disease is the acquisition of peripheral blood images. Most of the studies in this survey have used publicly available ALL-IDB database. The ALL-IDB dataset has two different versions (ALL-IDB1 and ALL-IDB2)[1]. Some of the studies which focus on ALL and AML classification have acquired images from The American Society of Hematology (ASH) Image Bank. ASH

bank is a web-based image library containing a wide range of hematology images [2]. Some of the articles have collected a dataset from the local hospitals and pathology centres. Fig.1 shows an example of peripheral blood microscopic images. Table 1 provides a summary of acute leukaemia datasets used in reviewed research papers.

(a) (b) **Figure 1:** Examples of images from ALL- IDB: (a) Healthy Blood (b) Blood with ALL blast

#	Ref	Dataset	Number of Samples	Sources				
1 [6]		Drivete Detect	100 microscopic images	Medical Image and Signal				
1	[0]	Filvale Dalasel	(Training 62 images, Testing 38 images)	Processing Research Centre (MISP)				
2	[15] [17] [19]	Public Dataset	108 microscopic images Of resolution (2592×1944)	ALL-IDB				
3	[3] [4]	Public Dataset	-	ALL-IDB2				
4	[18]	Public Dataset	240 microscopic images (100 - healthy, 80 - AML, 60 - ALL)	American society of hematology (ASH) Image Bank				
5	[9]	Public Dataset	80 single cell images of 60×60 pixels (40 – normal blood cells, 40 – abnormal blood cells)	ALL-IDB				
6	[8]	Public Dataset and Private Dataset	14 images (2864×2909 pixel) 59 images (2592×1944 pixel) 215 images (300×300 pixel)	Cellavision database ALL-IDB database Jiashan database				
7	[5]	Public Dataset	-	ALL-IDB1				
8	[7]	Private Dataset	-	Ispat General Hospital, Rourkela Orissa and University of Virginia				
9	[13]	Private Dataset	1500 (750 AML + 750 ALL) Images Training 1200 (600 AML+600 ALL) images, Testing 300 (150 AML + 150 ALL) images	Hematology Department at University Sains Malaysia Hospital (HUSM) in Kubang Kerian, Kelantan, Malaysia				
10	[14]	Public Dataset and Private Dataset	115 public images (632×480 pixel) 642 private images	ALL-IDB				
11	[16]	Public Dataset	260 images of resolution (257×257) pixel	ALL-IDB				
12	[11]	Public Dataset	33 microscopic images	ALL-IDB1				
13	[20]	Public Dataset	15 testing and 130 training images for cell counting 85 Images (1712 x 1368 pixels) for detection	ALL-IDB				

Table 1: Datasets used in reviewed research

3. REVIEW OF METHODOLOGY

Medical image processing is an analysis technique in which we apply machine learning to automate medical diagnosis. Image processing in leukaemia diagnosis can be broadly classified into four stages, Pre-processing, segmentation, feature extraction and classification. Figure 2 shows the detailed workflow of all the stages involved in acute leukaemia detection. This section reviews all the methods used in selected research articles. Table 2 summarizes the comparison of all the methodologies adopted by reviewed articles.

3.1 Pre-processing

Image pre-processing includes image restoration, transformation, filtering and enhancement. Images have to be pre-processed before feeding them into the detection system because it greatly impacts segmentation and feature extraction steps. In pre-processing [19] converts RGB image into a grayscale image, but most of the researchers propose that converting RGB model to other colour space like YCBR[6], CY[4], CMYK[17] is more effective. [14] proves that selecting only a green component from an RGB image can also result in better accuracy in segmentation.

[11,12,15,17,18,19] have used histogram equalization to improve image contrast. Some of the articles have used various filtering techniques such as Order statistic filter [18], wiener filtering [15, 10], Selective filtering [7] etc.

Figure 2: Stages of Acute Leukemia Detection using Image Processing

3.2 Segmentation

Image segmentation is one of the crucial steps in leukaemia detection.

Lot of research work has been carried out in segmentation techniques and it is still one of the challenging steps in the entire process. In this step, the blast cell is identified and then nucleus and cytoplasm are segmented. Most common techniques used in this step are watershed algorithms, Otsu's thresholding and morphological operations. [9, 15] have proposed a novel marker-based segmentation (MBS) method for segmentation. [13] shows that the segmentation step could be excluded thus reducing computational and time cost.

3.3 Feature Extraction

In feature extracting and selection we extract desired features to identify or classify objects. Some of the common features that are used in leukaemia detection are colour, texture, contour, chromatic, geometric and statistical features.

3.4 Classification

Selected features from the previous steps are fed to the classification algorithm to detect leukaemia blast cells and healthy cells and further classify them into subcategories. The accuracy of classification largely depends upon features extracted and used to train the algorithms. Random forest, neural network, support vector machine (SVM), decision tree and k-nearest neighbour are the common methods used in leukaemia detection and classification.

Author , year	Proposed work	Methods		Merits and Demerits	Results
<u>Jha &</u> <u>Dutta,</u> <u>2019</u> [3]	Detection of Acute Lymphocytic Leukemia using Mutual Information based hybrid model and deep learning	Preprocessing Segmentation	Image Resizing Mutual Information(MI) based hybrid model which employs Active contour and FCM based image Segmentation	<u>Merits:</u> Proposed two novel approaches 1) MI based hybrid model used for segmentation 2)Chronological SCA based deep CNN classifier	98.7% Accuracy
		Feature Extraction	Color histogram features, LDP features		
		Classification	Chronological Sine Cosine Algorithm (SCA) based Deep CNN		
<u>Moham</u> <u>med et</u> <u>al.,</u>	Acute Lymphoblastic Leukemia Segmentation Using C-Y Color Space	Preprocessing	Convert image to CY color model, Extract Y component	Merits: By applying CY color space achieved better accuracy as	Segmentation accuracy is 98.38%
<u>2014</u> [4]		Segmentation	Use histogram, median filter, convert final image to RGB	compared to RGB color space	
Bhattac harjee & Saini, 2015 [5]	Compare four types of classifiers and develop graphical user interface using classifier with	Preprocessing	Contrast enhancement and Quality adjustment	<u>Merits</u> 1)Achieved better segmentation accuracy using morphological operations as compared to other techniques 2)developed GUI for	Segmentation accuracy is 96.67%
		Segmentation	Morphological Dilation and Erosion		
		Feature Extraction	Morphological features(Area, Perimeter, circularity, form factor)		

Table 2: Comparison of reviewed literature

	best output to detect ALL	Classification	KNN, SVM, ANN, K-means clustering	segmentation and classification of lymphoid cells <u>Demerits</u> Lymphocytes in the image are individuated manually	Figs. of Merit kNN SVM ANN K-means True Positive 9 9 9 9 True Negative 20 19 20 18 False Positive 1 2 1 3 False Negative 0 0 0 0 Misclassification 4.76% 9.52% 4.76% 14.28% Specificity 95.23% 90.47% 95.23% 85.71% Sensitivity 100% 100% 100% 100%
<u>Agrawa</u> <u>l et al.,</u> 2019 [6]	To develop automated system for early detection of WBC cancer i.e. Myeloma and Leukemia (ALL and AML)	Preprocessing Segmentation Feature Extraction Classification	Convert RGB image to YCBCR color space Gaussian Distribution, Otsu's Thresholding, Kmeans clustering GLCM method to extract texture features. CNN	<u>Merits</u> 1) Detects Myeloma and types of Leukemia 2) This technique requires minimum preprocessing and excellent feature extraction	Detect ALL, AML and Myeloma with 97.3% Accuracy
Joshi et al2013 [19]	This work propose automatic WBC segmentation and classifyblast cells from normal lymphocyte cells	Preprocessing Segmentation Feature Extraction Classification	Convert image into gray scale image, use histogram equalization, linear contrast stretching to adjust intensity of image Otsu's Thresholding, morphological opening, size test removal to discard unwanted objects Shape feature (area, perimeter and circularity) KNN	Merits Good accuracy with minimal feature extraction Demerits Only classify blast cells and normal cell, does not detect type of leukemia	93% Accuracy
<u>Mohapa</u> <u>tra et</u> <u>al</u> <u>2010</u> [7]	Proposed work to classify a lymphocyte into normal or a ALL lymphoblast.	Preprocessing Segmentation Feature Extraction Classification	Selective filtering, un-sharp masking, RGB to Lab color space FCM and Bounding box Texture, color space, Fractals by hausdorff dimension, contour signature SVM	Merits Two new features ie. Contour signature and hausdorff dimension are used to classify lymphocyte cell nucleus Demerits Does not include identification of types of leukemia	95 % Accuracy
Zhao et al., 2017 [8]	Automatic system to detect and classify WBC"s from peripheral blood images	Preprocessing Segmentation Feature Extraction	R-B image Morphological operations Extract Granularity features(PRICoLBP) from each WBC, use SVM to discern basophil and eosinophil, CNN to extract features from other types of WBC"s Random forest	Demerits It fails to detect all the WBC''s, and it sometimes considers a few non WBCs as WBCs	92.8% Accuracy
Khash man & Abbas, 2013 [9]	Method to extract data from microscopic cell images without performing segmentation and using neural network classifier to identify normal and abnormal blood cells	Preprocessing Segmentation Feature Extraction Classification	Crop single cell images , Otsu's thresholding , median filter , edge detection(canny operator), pattern averaging (2×2 kernel) - - ANN with 3 learning schemes. LS1, LS2 and LS3	<u>Merits</u> Reduce computational and time cost without performing segmentation and extraction of local feature from the blood cell images	$\begin{array}{c} Accuracy \\ Learning Scheme I 90\%, \\ Learning Scheme II 80\%, \\ Learning Scheme III 75.1\%. \\ \hline \\ $

					[
Patel &	Automated	Preprocessing	Median filtering, wiener	Merits	
<u>Mishra,</u> 2015	approach for		filtering and image	Important part of this work	
$\frac{2013}{101}$	detection	Segmentation	K magne alustaring	and myelocytes	
[10]	detection	Segmentation	histogram equalization	and mycrocytes	
			Zack algorithm, Bounding	Demerits	93.57% Accuracy
			Box	Only classify cancerous	
		Feature	Color, Geometric, texture	cells from healthy cell. Type	
		Extraction	and statistical features	of leukemia is not detected	
		Classification	SVM		
Putzu et	Proposed and	Preprocessing	CMYK color model,	Merits	
<u>al.,</u>	automated		Contrast stretching	1) Innovative technique for	
<u>2014</u>	method to		operations,	identification and	
[11]	identify and		Histogram equalization	classification of leukocytes.	
	classify WBC	Segmentation	Zack algorithm, Bounding	2)Developed a new method	
	microsconic		Box, grouped WBC	cronned images which is	
	images		roundness analysis	excellent for both chromatic	
	innuges		Watershed segmentation	and texture features	
			operation. Distance		
			transform image		
			calculation,		
			Watershed line refining.		
		Feature	Developed a new method		93% Accuracy, 98% Sensitivity
		Extraction	to calculate background		
			pixels using previously		
			calculated binary mask		
			and remove this pixels		
			This technique allows to		
			extract chromatic features		
			from whole WBCs		
			nucleus and from the		
			cytoplasm, for 21 color		
			descriptors		
		Classification	SVM with Gaussian		
			radial basis kernel		
<u>Dharani</u>	Develop	Preprocessing	Enhance image using	<u>Demerits</u>	
<u>&</u>	methodology to		"imadjust" command in	1) This research work only	Original Image
<u>Haripra</u>	detect leukemia		MAILAB, Convert RGB	proposes method to segment	
2018	from healthy		equalization	2)No performance analysis	
[12]	cells		equalization	2)100 performance analysis	
[12]	cons				Pare Service
		Segmentation	Otsu's Thresholding		Final Image
		Segmentation	Morphological operation		
			and complement		
			1		
		Feature	Centroid perimeter		
		Extraction	roundness		Morphological operations
			······································		
		Classification			
		Classification			2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
					Image complement
Supardi	Classification of	Preprocessing	-	Merits	
<u>et al.,</u>	blast cell in ALL	Segmentation	-	Used large data set for	Highest accuracy using cosine
<u>2012</u>	and AML using	Feature	12 features extracted	training and testing	distance in identifying ALL is
[13]	KNN	Extraction	manually from the image		84.67% and AML is 87.33%
				Demerits	

		Classification	KNN	It is not a fully automated approach. Features are manually extracted	
<u>Negm</u> <u>et al.,</u> <u>2018</u> [14]	Decision support system that comprises of panel selection, segmentation using k-means clustering feature extraction and image refinement to identify leukemia cells	Preprocessing Segmentation Feature Extraction Classification	Select green component K means algorithm, data normalization WEKA tool ANN and decision tree	<u>Merit</u> - High accuracy -	Accuracy is 99.517% Sensitivity is 99.348% Specificity is 99.529%
		Preprocessing	Histogram equalization	Merits	
<u>et al.,</u> <u>2017</u> [15]	using (MBS) marker-based segmentation, (GLCM) gray level co-occurrence matrix based feature extraction, and (PPCA) probabilistic principal component analysis based feature reduction.	Segmentation Feature Extraction	marker-based segmentation (MBS) GLCM and PPCA	Proposed new technique for identification and classification of lymphoblast	Accuracy
		Classification	Random Forest		Segmentation 96.29% , Classification 99.004% and nucleus and cytoplasm 96%
<u>Muntas</u> <u>a &</u> <u>Yusuf,</u> <u>2019</u> [16]	A detection model for ALL using principal object characteristics of the color image	Preprocessing	Separate the image into Red, Green, Blue channels. Image enhancement, Merge all 3 Channel images and convert RGB to HSV channel	Merits Proposed system has two novelties: 1) image enhancement using 3 color channels. (red green blue), 2) feature extracted using Densitometry components extension.	
			MatMask), local entropy threshold, Morphological operations, color image segmentation	Demerits Main focus is on image enhancement and feature extraction. This work do not include classification of	81.54% accuracy for Euclidean Distance, 76.92% accuracy for
		Feature Extraction	Feature extraction using Energy (EN), Shanon Entropy HX, Entropy(EP), Log Energy Entropy (EE), Variance (VA), Mean (ME), and Correlation (CO), Normalize features, calculate similarity measurement using Euclidean Distance, Manhattan, Canberra, and Chebyshev methods	ALL and its subtypes	82.31% accuracy for Chebyshev
Pathira	Image	Classification Preprocessing	- Noise removal, edge		
ge et al	processing		detection		

	1			1	
2016	techniques to	Segmentation	Circular Hough transform		
[20]	WBC and	Feature	Geographical and color		
	platelet cells and	Classification			
	classify ALL and	Classification			
	CLL				
Shafiqu	Develop	Preprocessing	RGB image converted to	Demerits	
e et al.,	automated		CMYK color space,	Only classification of blast	
<u>2019</u>	system for Acute		Histogram equalization	cell and normal cell. Do not	
[17]	Lymphoblastic	Segmentation	Zack algorithm,	include ALL subtype	93% Accuracy
	detection		watersned segmentation,	No povelty in this work	92% sensitivity
	detection	Featura	Color, shape and texture	No noverty in this work	91% specificity
		Extraction	features		
		Classification	SVM		
Rawat	Develop system	Preprocessing	Nucleus sub image	Merits	
et al	to identify	reprocessing	selection.	1)Classification of leukemia	
2017	leukemic cells		Histogram equalization,	into ALL, AML and their	
[18]	from healthy		Order statistic filter	subtypes with high accuracy	
	cells and classify			2)Used genetic algorithm	
	them into ALL	Segmentation	Otsu's thresholding,	for feature selections	
	and AML and		morphological opening,		
	them into their		and border cleaning)		
	subtypes	Feature	shape features, GLRL		
	succipes	Extraction	FOS, GLDS, NGTDM,		
			SFM, EDGE and GLCM,		Acute lymphoblastic cells, Acute
			signal processing based		myeloid cells and healthy cells
			features, transform		Classification accuracy for L1 L2
			domain based models		and L3 is 97.1%.
			(FPS and 2-D Gabor		Classification accuracy for M2,
			transformation features		M3 and M5 is 98.5%.
			color features		
			Feature selection using		
			genetic algorithm		
		Classification	SVM with various kernel		
			functions.		
			Quadratic kernel,		
			Multilayer perceptron		
			(MLP) kernel, Linear		
			kernel, polynomial kernel		
			function kernel		
			Tunetion Kerner		

4. RESEARCH ISSUES

A lot of studies and research works are being conducted on automatic leukaemia detection. Many studies are achieving better accuracy and reliability, but researchers have to face a lot of challenges regarding dataset. Most of the research works do not use the same dataset which makes the comparison of accuracy and efficiency difficult. Low sample size and noise in the dataset are also some of the difficulties. Further challenges in this research area are extracting features from blood smear images to classify leukaemia into its various types and subcategories, hence researchers mostly focus on classifying cancerous cells and non-cancerous cells.

5. CONCLUSION

This review paper presents details of various methods and

techniques, their merits and demerits which are summarized in a table. There is a lot of scope for future work in the development of automatic leukaemia detection system. Researchers should expand the size of their dataset and develop a system with high reliability and accuracy. Detection system should also be faster and economical. A lot of novel technologies could also be implemented to enhance the accuracy of segmentation and classification. Researchers should also focus on classifying leukaemia into various types and sub categories.

REFERENCES

1. J. M. Bennett *et al.*, "Proposals for the Classification of the Acute Leukaemias French-American-British (FAB)

Co-operative Group," *British Journal of Haematology*, vol. 33, no. 4. pp. 451–458, 1976, doi: 10.1111/j.1365-2141.1976.tb03563.x.

- 2. "Website." [Online]. Available: https://imagebank.hema tology.org/. [Accessed: 3-Oct-2020].
- K. K. Jha and H. S. Dutta, "Mutual Information based hybrid model and deep learning for Acute Lymphocytic Leukemia detection in single cell blood smear images," *Comput. Methods Programs Biomed.*, vol. 179, p. 104987, Oct. 2019.
- R. Mohammed, O. Nomir, and I. Khalifa, "Segmentation of Acute Lymphoblastic Leukemia Using C-Y Color Space," *International Journal of Advanced Computer Science and Applications*, vol. 5, no. 11. 2014, doi: 10.14569/ijacsa.2014.051117.
- R. Bhattacharjee and L. M. Saini, "Robust technique for the detection of Acute Lymphoblastic Leukemia," 2015 IEEE Power, Communication and Information Technology Conference (PCITC). 2015, doi: 10.1109/pcitc.2015.7438079.
- 6. R. Agrawal, S. Satapathy, G. Bagla, and K. Rajakumar, "Detection of White Blood Cell Cancer using Image Processing," 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (VITECoN). 2019.
- S. Mohapatra, D. Patra, and S. Satpathi, "Image analysis of blood microscopic images for acute leukemia detection," 2010 International Conference on Industrial Electronics, Control and Robotics. 2010, doi: 10.1109/iecr.2010.5720171.
- J. Zhao, M. Zhang, Z. Zhou, J. Chu, and F. Cao, "Automatic detection and classification of leukocytes using convolutional neural networks," *Med. Biol. Eng. Comput.*, vol. 55, no. 8, pp. 1287–1301, Aug. 2017.
- A. Khashman and H. H. Abbas, "Acute Lymphoblastic Leukemia Identification Using Blood Smear Images and a Neural Classifier," *Advances in Computational Intelligence.* pp. 80–87, 2013, doi: 10.1007/978-3-642-38682-4_10.
- N. Patel and A. Mishra, "Automated Leukaemia Detection Using Microscopic Images," *Procedia Computer Science*, vol. 58. pp. 635–642, 2015.
- L. Putzu, G. Caocci, and C. Di Ruberto, "Leucocyte classification for leukaemia detection using image processing techniques," *Artif. Intell. Med.*, vol. 62, no. 3, pp. 179–191, Nov. 2014.
- 12. T. Dharani and S. Hariprasath, "Diagnosis of Leukemia and its types Using Digital Image Processing Techniques," 2018 3rd International Conference on Communication and Electronics Systems (ICCES). 2018, doi: 10.1109/cesys.2018.8724075.
- N. Z. Supardi, M. Y. Mashor, N. H. Harun, F. A. Bakri, and R. Hassan, "Classification of blasts in acute leukemia blood samples using k-nearest neighbour," 2012 IEEE 8th International Colloquium on Signal Processing and its Applications. 2012, doi: 10.1109/cspa.2012.6194769.

- A. S. Negm, O. A. Hassan, and A. H. Kandil, "A decision support system for Acute Leukaemia classification based on digital microscopic images," *Alexandria Engineering Journal*, vol. 57, no. 4. pp. 2319–2332, 2018, doi: 10.1016/j.aej.2017.08.025.
- S. Mishra, B. Majhi, P. K. Sa, and L. Sharma, "Gray level co-occurrence matrix and random forest based acute lymphoblastic leukemia detection," *Biomedical Signal Processing and Control*, vol. 33. pp. 272–280, 2017.
- 16. A. Muntasa and M. Yusuf, "Modeling of the Acute Lymphoblastic Leukemia Detection based on the Principal Object Characteristics of the Color Image," *Procedia Computer Science*, vol. 157. pp. 87–98, 2019, doi: 10.1016/j.procs.2019.08.145.
- 17. S. Shafique, S. Tehsin, S. Anas, and F. Masud, "Computer-assisted Acute Lymphoblastic Leukemia detection and diagnosis," 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE). 2019.
- J. Rawat, A. Singh, H. S. Bhadauria, J. Virmani, and J. S. Devgun, "Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia," *Biocybernetics and Biomedical Engineering*, vol. 37, no. 4. pp. 637–654, 2017.
- 19. Joshi, M D et al. "White Blood Cells Segmentation and Classification to Detect Acute Leukemia Ms." (2013).
- Pathirage, Sachethana & Marapana, Shavini & Chandrananda, Supun & Amarathunga, Nishika. (2016). Detection of Leukemia using Image Processing and Machine Learning. 10.13140/RG.2.2.18469.24804.
- M. Singh, C. P. Prasad, T. D. Singh, and L. Kumar, "Cancer research in India: Challenges & opportunities," *Indian J. Med. Res.*, vol. 148, no. 4, p. 362, Oct. 2018.