
Tay Wei Han et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7287 - 7293

7287


ABSTRACT

Software testing is a part of the process in software
development life cycle (SDLC). Nowadays, the size of
software developed grow larger and bigger. The cost of testing
with manual method which is not efficient become
significant. A good algorithm or method which is less time
consuming and lower in cost is important to solve this
problem. However, although there are different kinds of
algorithm available for us to apply, which algorithm is better
for generating test cases is still not confirmed. This research is
carried out in order to find out and compare two algorithms
which are Depth First Search and Backtracking. The time
taken for both algorithms to generate test cases or test
pathways are recorded and compared. Three applications
were used as three cases to gather more results in different size
of application. The results show that the Backtracking
algorithm can achieve better and faster runtime results due to
the algorithm require lesser loops than the Depth-First-Search
algorithm while the number of loops and test pathways are
fixed.

Key words: Software Testing, Test Cases, Depth First Search
(DFS), Backtracking Algorithm

1. INTRODUCTION

With the development of software engineering and the
spread of its software in our daily life, strict requirements
arose regarding the reliability, maintenance, and security of
these programs [1]. When developing software, it is very
important to ensure that the program is free from defects.
However, not all programs can be 100% free from defects [2].
The industry had to respond to these new requirements by
developing methods of testing these programs, which means
increasing the technical expertise of test engineers in addition
to enhancing the importance and necessity of the test for
programmers. Software testing is the main method used by

many companies and industries to evaluate and improve the
quality of the software being developed. The software testing
process is carried out in three stages (generation of test cases,
test execution of test cases and evaluation of test cases) to
avoid the consumption of time as well as using many
resources [3]. Hence, many testers use automation of software
testing in order to save cost and time but can give results more
accurate compared with software testing that have been done
manually. The task of test case generation can be converted
into an optimal problem by heuristic search techniques as
Genetic Algorithm [4], Depth-first search (DFS) [5] [6], Hill
Climbing methods [7] and A* Algorithm [8]. This research
focus in implementing two algorithms namely Depth First
Search (DFS) algorithm and Backtracking algorithm to
generate test cases. The Depth First Search (DFS) is an
algorithm, which used for searches, that is based on tree graph
and uses the idea of backtracking. It explores all the nodes by
going forward if possible or uses backtracking. It will search
though all branches before backtracking [9]. It is a simple
algorithm that is quite easy to understand and may give
efficient results. For generating test cases, Depth-First Search
is assumed that it may generate all available options within
the program. Backtracking algorithm starts from the end of
the tree. As each end of the tree will result in one unique test
case path; by starting from each end nodes, it will reduce the
number of loops, and reduce the deciding time. Backtracking
may go through all possible nodes and make sure there is no
any possible test cases paths left out [10].

This research aims to know which of Depth First Search
technique or Backtracking technique is more suitable for
generating test cases. A comparison will be made between
both algorithms based on time consumed and complexity.

2. ALGORITHMS FOR TEST CASES GENERATION

In this section, Depth-First Search algorithm and
Backtracking algorithm used to generate test cases
automatically are presented.

Generating Test Cases from Mobile Application using
Depth First Search and Backtracking Techniques

Tay Wei Han1, Rosziati Ibrahim2, Samah W.G. AbuSalim3, Jahari Abdul Wahab4

1Universiti Tun Hussein Onn Malaysia, Malaysia, ai170223@siswa.uthm.edu.my
2Universiti Tun Hussein Onn Malaysia, Malaysia, rosziati@uthm.edu.my

3Universiti Tun Hussein Onn Malaysia, Malaysia, samahwasalim@gmail.com
4SENA Traffic Systems Sdn. Bhd., Malaysia, jahari@senatraffic.com.my

 ISSN 2347 - 3983
Volume 8. No. 10, October 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter1048102020.pdf

https://doi.org/10.30534/ijeter/2020/1048102020

Tay Wei Han et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7287 - 7293

7288

2.1 Depth-First Search

Depth first Search (DFS) or Depth first traversal is a
recursive algorithm for searching all the vertices of a graph or
tree data structure. DFS is an efficient algorithm for exploring
the tree, achieving the optimal cost of twice the sum of the
lengths of edges in the tree [11]. Kirupa [12] stated that depth
first search works by taking a node, checking its one side of
branch, expanding the first node it finds among the branch,
checking if that expanded node is our destination, and if not,
continue exploring more nodes [9]. Depth first search is one
kind of algorithm. Simply defined, this algorithm will go as
deep as possible for one side of branch until it reaches the end,
only then it will backtrack and go for another one side of the
branch again, repeatedly. As this algorithm ensures that each
node in the tree will be included, it is suitable to be used as a
tool to generate test cases. However, the node that has been
visited have to be recorded in the system to avoid duplicated
test cases from occurring [13]. For example, in Figure 1, the
first node “A”, will be continued to “C” then “D”, which is
one side (left side) of the tree. Since “D” is the last node in
that branch, the searching process will backtrack to “C” to
search for another branch that have a node that is not visited
yet. As “G” is not visited yet it will go to “G”. Then, it will
backtrack to “C” again, as there is no more node or branch
that under “C” that have not been visited. The process will
backtrack again, to “A” then “E”, and “B”. The flow will
continue until all nodes have been visited which is “J” being
the end as shown in Figure 1.

Figure 1: Depth-First Traversal

2.2 Backtracking Algorithm

Backtracking is an algorithmic-technique for solving

problems recursively by trying to build a solution
incrementally, one piece at a time, removing those solutions
that fail to satisfy the constraints of the problem at any point
of time (by time, here, is referred to the time elapsed till
reaching any level of the search tree). Backtracking
Algorithm is usually applied to avoid or reduce the possibility
of fail pathways in a maze or a puzzle [10]. Other than
backtracking while fail in pathway, the backtracking
technique may also be applied in the way to start its path from

the end to find all possible path way to reach end from start by
backtracking from end to start without leaving out any
possible pathway [9].

3. RELATED WORK

This section explains on other related research reports that
used different techniques to generate test cases. Although
different techniques have been used, the aim of these research
reports are similar which is to ease the way to generate test
cases.

Hamimoune [14] applied four different mutation testing
techniques. The techniques are random sampling, all
operators, method-level operators and class-level operators.
The results of [14] show that using all operators sampling was
the best mutation testing technique. However, different
mutation testing technique may affect in efficient and other
factors such as all operators sampling only suitable for small
and middle-sized applications. In larger application all
operators sampling may consume a lot of time.

Srisura and Lawanna [15] shows a technique to improve
regression testing by selecting suitable false test. Regression
testing is known as a testing process that consume a lot of
time. This may be more significant when using to test large
application. This problem causing inefficient and high cost
due to it is execute the test repeatedly. In this study, a false test
case selection is proposed that select which part of false test
which is really necessary to re-execute. Since part of the false
test cases is excluded when re-execute the testing, the case
size of testing will become smaller. So, the testing consumes
shorter time and less cost.

Vivekanandan et al. [16] presented a new approach for test
path generation automatically by using Clonal selection
Algorithm and compare the results with Genetic Algorithm
based on execution time. The results show that their approach
reduces the effort and time of the route generation. Whereas,
Clonal selection algorithm generate 85% of basis path with
lesser time than genetic algorithm.

Banias [17] apply quadratic dynamic programming
algorithm in a software testing domain, it makes the test case
selection decision more specific. This may find potential
defects in a shorter time, as all software testing work’s time
are limited. The method he uses calculate the priority in
concern of time and cost.

Mishra et al. [18] shows a random test case generation by
using genetic algorithm. It also studied how different types of
hybridized genetic algorithm that are helped in software
testing field by generate test cases randomly and
automatically. Genetic algorithm here can be used with
neural networks and fuzzy systems for performing different
types of testing to improve the performance.

Arwan and Rusdianto [6] used two approaches to find on
an independent path directly from a pseudocode. They use
graph theory and Depth First Search algorithm for finding an
independent path. The results show that the device accuracy
check was able to find the right independent path.

Salihu et al. [19] implemented tool called AMOGA in
order to test the mobile applications. The experimental results

Tay Wei Han et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7287 - 7293

7289

show that AMOGA works to improve the coverage of mobile
applications by creating a comprehensive model that does this
and can be an alternative to the model-based testing of mobile
applications. The technique has proved its efficacy by
achieving a high degree of code coverage and mutation score
for various applications.

Abusalim et al. [20] aim to employ an appropriate mutant
reduction technique by comparing and analyzing between two
approaches namely selective and non-selective mutants. The
experimental results showed that selective mutant operators
can drastically reduce the execution time and make mutation
testing more effective since the execution time for selective
mutant is 8.5 seconds while non-selective mutant takes 27.25
seconds in execution time.

Ibrahim et al. [21] proposed a DART approach to detecting
and refactoring code smells from the Android application's
source codes to minimize redundancy in test case generation.
The results show that the number of test cases produced has
been reduced and branch coverage was increased up to 5.0%.

Table 1 summarize the literature review in test cases
generation techniques.

Table 1: The Comparison of Different Techniques

Authors &
year Technique Definition Contribution

Hamimoune
. (2016) [14]

Mutation
Technique

The best
operator of
Mutation
technique is
found by
doing
statistic
comparison.

The concept
of turning test
object into
nodes is
referred.

Srisura and
Lawanna.
(2016) [15]

Regression
Technique

Propose a
new
technique to
improve
current
regression
testing
which
minimize the
case size.

The objective
of this project
is similar, to
find or create
algorithm
that suits
generating
test cases.

Banias.
(2017) [17]

Generic
Algorithm

Ways to
generate
random test
case and
flow of
genetic
algorithm is
proposed.

The format of
test case
generated is
referred.

Mishra et al.
(2018) [18]

Dynamic
Algorithm

A
calculation
of the test
cases priority
is proposed

The
importance of
time taken
that affect the
testing

and coding
for checking
test case
priority is
proposed.

process is
shown.

Salihu et al.
(2019) [19]

Model-Based
testing

AMOGA
isused to test
the mobile
applications

AMOGA
improve the
code coverage
of mobile app

Abusalim et
al. (2020)
[20]

Mutation
Technique

compare and
analyze
between
selective and
non-selective
mutants for
reduction
technique

Selective
mutant
operators can
drastically
reduce the
execution
time

Based on Table 1, there are many researches proposed by
several people on the field of software testing. Many
researchers tried to reduce the time of generating test cases.

4. UML SPECIFICATION

UML diagram is used to illustrate the flow of project. The
process of this research will be shown in figure within this
section. All diagrams and figures follow the flow of process in
generating test cases using specific algorithm. Firstly, the
element of chosen application will be input manually by user,
the type of element such as button, textbox will be defined by
user. After all element of that application are entered as input
by user in the correct flow, the user may choose to generate
test cases by using either algorithm. The test cases will be
generated using the chosen specific algorithm. In the end, the
time taken of the result to be generated will be shown in
notification. These test cases include the common function
such as sign in, searching and edit profile information. The
first diagram shown below is the use case diagram which
takes place in designing system with actors, use cases and
relations.

4.1 Use Case Diagram

Use case diagram graphically shows an overview of a
system’s flow and processes. The actor in this use case is a
user. The user needs to insert the elements in correct flow into
system, which in the interface created by Eclipse IDE
environment. The use case includes insert elements, check
dependencies of the elements, choose algorithm, and
generating test cases. The figure that shows the use case
diagram for generating the test cases using specific algorithm
is shown in Figure 2.

Tay Wei Han et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7287 - 7293

7290

Figure 2: Use-Case Diagram

4.2 Class Diagram

Class diagram helps in constructing executable coding. It

shows the system’s structure by describing the system classes,
attributes and also the operations. The figure of the class
diagram for this case study is shown as on Figure 3.

Figure 3: Class Diagram

5. RESEARCH METHODOLOGY

The steps for this research start with literature review on
different methods and techniques that used for test cases
generation., implement algorithms of DFS and Backtracking
to generate test cases, and compare the time taken of both
algorithms to complete generating test cases. Figure 4 shows
all the steps for developing test cases generation tool. The
following sub-sections discuss in details.

Figure 4: Research Methodology

5.1 Literature Review on Test Cases Methods Generation

This research follows the steps as in Figure 4. The
literature review is conducted based on recommendation by
Brereton [22]. Some of the related papers are reviewed as
summarized.

5.2 Implement DFS and Backtracking Algorithms to

Generate Test Cases.

Depth-First Search algorithm and Backtracking algorithm
are used in developing the test cases generation tools. The
functions and test data will be input by tester and the test cases
generation tools will rearrange available data into sets of test
cases. The list of test cases generated will act as the output by
this tool. There will be knowledge of pointer and for loops
applied in this generation tool. The initial possible tree is a
required input by tester, only the tools may function to change
them to numbers of test cases that includes every of each
element. In this research, the Eclipse environment will be
used to develop the test case generation tools. Eclipse is an
integrated development environment (IDE) that is widely
used for Java programing language [23].

5.3 Comparing and Analyzing

Depth-First-Search and Backtracking algorithm are both
completed with the same numbers of test pathways.
Implementation of Depth-First-Search and Backtracking
algorithm on the test pathway generating tools are compared
using the complexity and runtime with the same input
number of nodes, ways and tree structure. Three case studies
with different number of nodes are used in this research which
are Skype, Google Map and Food Panda. Table 2 shows brief
description for those case studies and number of nodes for
each one.

Literature Review on Test Cases
Methods Generation

Implement DFS and
Backtracking Algorithms to

Generate Test Cases.

Comparing and Analyzing

Tay Wei Han et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7287 - 7293

7291

Table 2: The Case Studies

Case
Study

Description Number of
nodes

Skype app to speak and send text
or voice messages,
communicate with friends
and speak with them by
voice or voice and image.

14

Google
Map

providing real-time
information on traffic
density and public
transport using GPS and
exploring local
neighborhoods by learning
about places to eat and
drink and places you can
visit wherever you are in
the world.

50

Food
Panda

collect and delivers the
food order within 30min
after the order was placed
by app.

61

6. RESULTS AND DISCUSSION

Table 3 shows the runtime in Backtracking (BT)
algorithm and Depth-First-Search (DFS) algorithm.
Backtracking algorithm is faster than Depth-First-Search
algorithm for Case 2 and 3.

Table 3: Comparisons for The Results

Applic
ation

Numbe
r of
Nodes

Number
of Test
Path
Ways
Generat
ed

Time
Take
n in
BT

Time
Take
n in
DFS

Differen
t in ms

Skype
(Case1)

14 10 1ms 1ms 0ms

Google
Map
(Case2)

50 38 2ms 4ms 2ms

Food
Panda
(Case3)

61 48 3ms 5ms 2ms

The difference in time taken is calculated by using the

formula:
 (|Tb-Td |)

 (1)

where, Tb is the time taken by Backtracking algorithm
and Td is the time taken by Depth-First-Search algorithm.

Overall, Backtracking algorithm is faster than
Depth-First-Search algorithm in most cases. In Case 1, the
number of nodes and test pathways generated could be too
little to see the difference in the time taken to do so. However,
Case 2 and Case 3 show the same difference, where the
Backtracking algorithm is faster than the Depth-First-Search
algorithm by 2ms. This is because the Depth-First-Search
algorithm has a greater Big-O value compared to the
Backtracking algorithm. Depth-First-Search algorithm
requires loops for every each of the nodes while the
Backtracking only loops for the number of end nodes. More
loops consume more time with limited resources.

Table 4 shows the results obtained after running the two
algorithms are different due to the difference in complexity.
For algorithms of DFS and Backtracking go through all nodes
to generate all test pathways from these nodes. For
Backtracking Algorithm, it loops all end nodes and backtrack
its stack from the upper level; the time complexity of
backtracking in this case is O(N) where N represent the
number of end nodes. However, DFS loops for all vertices and
edges where the time complexity is equal to O(V+E); V is
number of vertices and E is number of all edges. Based on the
time complexity, we can conclude that the Depth First Search
algorithm will take more time than the Backtracking
algorithm as the number of end nodes is always less than the
number of vertices, N<V. Thus O(N) will always be smaller
than O(V+E).

Table 4: The Comparison for Complexity of the Algorithms

Algorithm Time complexity
Backtracking O(N)

Depth First Search O(V+E)

7. CONCLUSION

The demand for software products is increasing,

competition in the software market is becoming very strong,
and software quality is becoming more and more important,
which plays a vital role in the performance of the entire
software system [24]. This research aims to implement two
algorithms namely the Depth First Search (DFS) algorithm
and the Backtracking algorithm to generate test cases, and
compare the time consumed for each two algorithms in
generating test pathways using Eclipse IDE. Both Depth First
Search (DFS) algorithm and Backtracking algorithm work
well in generating test cases or test pathways. The reason that
causes a difference in the time taken, is the number of loops
required to go through all nodes and generate an output of test
cases. As the concept of Depth First Search algorithm
requires a loop in every node to search all its branches, the
number of loops required is equal to the number of nodes. In
comparison to the Backtracking algorithm which loops for
every end node and backtrack to the beginning node, the

Tay Wei Han et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7287 - 7293

7292

number of loops is only equal to the number of end nodes. So,
the DFS algorithm is slightly slower compared to the
backtracking algorithm and the difference will become bigger
if the application being tested is larger, which will surely have
more access points or nodes. However, DFS algorithm is
somehow more reliable when the application has cycle
between loops. This is because DFS will only visit each node
once and mark its track until the last node, hence no nodes
will have a repeated visit. There is no similar constraint for
the Backtracking algorithm that may cause infinite loops
when nodes are given with cycle branches.

A more complex situation can be explored when comparing
algorithms other than only increasing the size of application
and number of nodes. For example, giving nodes with cycle
branches. More algorithms such as Breath-First-Search can
also be included in future studies.

ACKNOWLEDGEMENT

This project is funded by the Ministry of Education
Malaysia under the Malaysian Technical University Network
(MTUN) grant scheme Vote K234 and SENA Traffic Systems
Sdn. Bhd.

REFERENCES
1. G. Kaur, P. Singh. Test Case Generation Using UML

Diagram. International Journal of Emerging
Technologies in Engineering Research (IJETER)
Volume 1, Issue 2, July (2015).

2. R. B. Jadhav, S. D. Joshi, U. G. Thorat, A. S. Joshi.
Software Defect Prediction Utilizing Deterministic
and Probabilistic Approach for Optimizing
Performance through Defect Association Learning.
International Journal of Emerging Trends in
Engineering Research, Volume 8. No. 6, June 2020.

3. M., I. Septian, R. S. Alianto, Daniel, & F. L. Gaol.
Automated Test Case Generation from UML Activity
Diagram and Sequence Diagram using Depth First
Search Algorithm. Procedia Computer Science, 116,
629–637, 2017.

4. R. Khan, M. Amjad, & A. K. Srivastava. Optimization
of Automatic Generated Test Cases for Path Testing
Using Genetic Algorithm. 2016 Second International
Conference on Computational Intelligence &
Communication Technology (CICT), Ghaziabad, 2016,
pp. 32-36, doi: 10.1109/CICT.2016.16.

5. N. Rathee, R.S. Chhillar. A Survey on Test Case
Generation Techniques Using UML Diagrams.
Journal of Software vol. 12, no. 8, pp. 页码, 2017.

6. A. Arwan, D.S. Rusdianto. Automation of Independent
Path Searching using Depth First Search. Journal of
Information Technology and Computer Science, Volume
3, Number 1, 2018, pp. 104-112.

7. F. C. M. Souza, M. Papadakis, Y. Le Traon, & M. E.
Delamaro. Strong mutation-based test data generation
using hill climbing. Proceedings of the 9th International
Workshop on Search-Based Software Testing - SBST ’16.

8. D.B. Mishra, R. Mishra, K.N. Das, A.A. Acharya. Test
Case Generation and Optimization for Critical Path
Testing Using Genetic Algorithm. In: Bansal J., Das
K., Nagar A., Deep K., Ojha A. (eds) Soft Computing for
Problem Solving. Advances in Intelligent Systems and
Computing, vol 817. Springer, Singapore.

9. S. S. Skiena. (2008). The Algorithm Design Manual
Second Edition.
https://doi.org/10.1007/978-1-84800-070-4

10. Gurari, E. (1999).
http://web.cse.ohio-state.edu/~gurari/course/cis680/cis6
80Ch19.html - backtracking algorithms.

11. S. Das, D. Dereniowski & U. Przemyslaw. Energy
Constrained Depth First Search. (2017)

12. Kirupa. (2006). kirupa.com - Depth First and Breadth
First Search: Page
1.https://www.kirupa.com/developer/actionscript/depth_
breadth_search.htm

13. P. Prakash, A. Sri & K. Rao. R Data Structures and
Algorithms Increase speed and performance of your
applications with efficient data structures and
algorithms. www.packtpub.com (2016).

14. S. Hamimoune and B. Falah. Mutation testing
techniques: A comparative study, 2016 International
Conference on Engineering & MIS (ICEMIS).

15. B. Srisura & A. Lawanna. False test case selection:
Improvement of regression testing approach. 2016
13th International Conference on Electrical
Engineering/Electronics, Computer,
Telecommunications and Information Technology
(ECTI-CON).

16. K. Vivekanandan, T. Megala and P. Chandini.
Automatic generation of basis test path using clonal
selection algorithm. 2016 International Conference on
Information Communication and Embedded Systems
(ICICES), Chennai, 2016, pp. 1-4, doi:
10.1109/ICICES.2016.7518907.

17. O. Banias. Dynamic programming optimization
algorithm applied in test case selection. 2018
International Symposium on Electronics and
Telecommunications (ISETC).

18. D.B. Mishra, S. Bilgaiyan, R. Mishra, A.A. Acharya and
S. Mishra. A Review of Random Test Case Generation
using Genetic Algorithm. Indian Journal of Science
and Technology, 10(30),2017.

19. I.-A. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli, & A.
Usman. AMOGA: A Static-Dynamic Model
Generation Strategy for Mobile Apps Testing. IEEE
Access, 1–1. doi:10.1109/access.2019.2895504.2019.

20. S.W.G. AbuSalim, R. Ibrahim, J.A. Wahab.
Comparative Analysis between Selective and
Non-Selective Mutation Techniques. International

Tay Wei Han et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7287 - 7293

7293

Journal of Emerging Trends in Engineering Research.
Vol 8., No 4., April 2020, pp 1103-1110.
https:://doi.org/10.30534/ijeter/2020/25842020

21. R. Ibrahim, M. Ahmed, R. Nayak, & S. Jamel. Reducing
redundancy of test cases generation using code smell
detection and refactoring. Journal of King Saud
University - Computer and Information Sciences. Vol 32,
Issue 3, March 2020, pp367-374,
https:://doi.org/10.1016/j.ksuci.2018.06.005

22. P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner,
M. Khalil. Lessons from applying the systematic
literature review process within the software
engineering domain. Journal of systems and software
80(4) (2007) 571–583.

23. M.R. Penumala, J. Gonzalez-Sanchez. Towards
Embedding a Tutoring Companion in the Eclipse
Integrated Development Environment. In: Nkambou
R., Azevedo R., Vassileva J. (eds) Intelligent Tutoring
Systems. ITS 2018. Lecture Notes in Computer Science,
vol 10858. Springer.

24. A. M. Erman, H. Fawareh. Impact Cultural-Quality
Factors on Successes and Failures Software System.
International Journal of Emerging Trends in
Engineering Research. Volume 8. No. 5, May 2020.

