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ABSTRACT 

 
The functionally graded material (FGM) are combination of 
ceramic and metal and hence exhibit properties such that FGM 
becomes suitable for  the conditions where high temperature 
environment is prevailing. The combination of the FGM is 
governed by the material variation which is done by following 
certain laws of material distribution such as Power law, 
Sigmoid law, Exponential law etc.  The analysis of FGM under 
thermal and thermomechanical loadings have been important 
aspect for scientists in emerging areas of research. It is 
important to have response of FGM plates in the conditions of 
thermal and thermomechanical environment. In the current 
work, FEM is used to model FGM plate and non dimensional 
deflection, stress and strain are computed in the condition of 
variable thermal environment. The results are compared for P-
FGM, S-FGM and E-FGM. 
 
Key words: FGM;Deflection; Stress;Strain; Thermo-
mechanical. 
 

1. INTRODUCTION 

The functionally graded material (FGM) are combination of 
ceramic and metal and hence exhibit properties such that FGM 
becomes suitable for  the conditions where high temperature 
environment is prevailing. The combination of the FGM is 
governed by the material variation which is done by following 
certain laws of material distribution such as Power law, 
Sigmoid law, Exponential law etc.  The analysis of FGM under 
thermal and thermomechanical loadings have been important 
aspect for scientists in emerging areas of research. Suresh and 
Mortensen [1] computed deformations of FGM plate under 
thermo-mechanical environment and found geometrical and 
load situations responsible for in equilibrium, change in shape 
changes and bifurcation. Power law distribution is considered 
by Marcelo [3], Sigmoid distribution and Exponential 
distribution have been utilized by Bhavani [4]. Qian and Batra 
[6] worked on unsteady deformations under heating conditions 
for FG thick plate under thermal load and mechanical load on 
ceramic surface. Liviu and Daniel [8] solve problems of 2-D 
heat conduction for isotropic, orthotropic, single, composite 
and non-linear FGMs by deriving continuity conditions  

 

considering temperature and heat flux at the interfaces. Hui 
and Qing [9] created a mesh-less algorithm to conduct analysis 
for two-dimensional (2D) thermal and mechanical problems in 
FGMs. He showed that suitable parameter for grading will lead 
to lower concentration of stresses and lesser change in 
distribution of stress fields. Prakash [10] formulated Laplace 
transformations to derive differentials of unsteady heat transfer 
to differentials (ODE) along thickness direction to be solved 
using power series method. derived analytical solution in close 
form  of an elliptic plate fixed at midplane in thermoelastic 
conditins. Nilanjan [4] reported that FGM plates exhibit  high 
capability to sustain stresses under high temperature 
conditions. FGMs are reactive to flow of heat variation 
through structure, as compared to that of structures made of 
pure materials.  Ashraf and Daoud [12] performed 
investigation of thermal deflection analysis for FGM plates 
subjected to uniform, linear and non-linear thermal loading 
along thickness and critical buckling temperature difference 
was found proportional to the plate aspect ratio. Mostaphaet. al 
[13] showed buckling analysis of FGM plate under thermal 
loading and found closed form solutions for the critical 
buckling temperatures of plates. Srinivas G et.al. [14] 
concluded that variation in stresses and deflection under 
thermo-mechanical loading is controlled by gradual variation 
in material properties.Dai et. al.[7] and Alshorbagy et. al.[15] 
derived equations dependent on the combination of the first 
order plate theory and the Von Karman strains. The Von 
Karman plate theory cosiders for moderately large deflections 
and small strains. It is assumed that transverse strain 
components are very less as compared to other strain 
components. Bhandari and Purohit [16] studied FGM plate 
when subjected to different types of mechanical loadings e.g. 
point load and uniform distributed loading. Qian and Batra [6] 
considered Aluminum- Silicon Carbide FGM, Reddy [2]and 
Bhandari and Purohit [17,18] used Aluminum-Zirconia FGM, 
Ashraf and Daoud [12] studied Aluminum-Alumina as FGM. 
Sharma [19] disclosed that material gradation affects the 
stability and failure behavior of FGM plate at a great level and 
concluded that FGM plate with elastic material properties 
exhibits stable equilibrium path. Xiaohui [20] analyzed the 
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thermomechanical behaviors of FGM plates with various 
configurations and presented intensity of the effect of material 
gradient and thermal field on response of plates made of 
FGM..Senthil and Batra [5], Mostaphaet. al. [13] used 
uncoupled quasi-static thermo-elasticity theory. They found 
equilibrium and stability equations of a rectangular plate made 
of functionally graded material (FGM) under thermal loads 
based on the higher order shear deformation plate theory. 
Hamza et. al. [21] used latest engineering techniques for 
thermal analysis. 

It is important to have response of FGM plates in the 
conditions of thermal and thermomechanical environment. In 
the current work, FEM is used to model FGM plate and non 
dimensional deflection, stress and strain are computed in the 
condition of variable thermal environment. The results are 
compared for P-FGM, S-FGM and E-FGM.  

2. METHODOLOGY 

A square (1mx1m) FGM plate is considered with a boundary 
condition of simply supported. Plate is made up Aluminum 
(Al) –Zirconia (ZrO2). Thermal and thermo-mechanical 
analysis is performed.  The thickness of the plate (h) is taken 
0.02m.   

2.1 Thermal analysis 
 
Thermal analysis is performed by applying thermal 
environment to the FGM plate. At ceramic top surface 
temperature is varied form 50°C to 400°C, metal surface is 
maintained at 0°C along with other edges. 

2.2 Thermomechanical analysis 
 
Analysis under thermomechanical conditions is conducted by 
providing thermal environment to the FGM plate alongwith a 
mechanical udl (po) of 1 MPa. Temperature of 100 °C is 
applied at ceramic top surface while bottom (metal) surface 
and all edges are maintained at a temperature of 0 °C.  
Volume fraction exponent (n) is varied for the purpose of 
analysis in Power law-FGM, Sigmoid law-FGM and 
Exponential law-FGM e.g. for n;0 (pure ceramic), n;∞ (pure 
metal), n; 0.5, 2 for Power-FGM and Sigmoid- FGM and 
Exponential-FGM. Resultsare computed such as deflection 
(uz), tensile stress (σx), shear stress (σxy), strain (ex) and shear 
strain (exy). Results are presented in non-dimensionalized 
outcomes i.e. non-dimensionalized deflection (u୸തതത=uz/h), non-
dimensionalized tensile stress (σ୶തതത=x/po), non-dimensionalized 
shear stress (σ୶୷തതതത=xy/po), Strain (ex) and Shear strain (exy). 
Finite element modelling is applied and simulation is done in 
ANSYS.  

 

3. RESULTS 
3.1 Variable thermal environment 

Non dimensional parameters are computed when the FGM 
plate is subjected to variable thermal environment where 
temperature is varied form 50 °C of 400 °C for square simply 
supported plate. Non dimensional parameters are depicted in 
Tables 1,2,3,4 and 5. Graphical comparisons have presented in 
Figs. 1,2,3,4 and 5.   

3.1.1 Non-Dimensional Deflection (ܢܝതതത) 
 

Table 1: Non-dimensional deflection (u୸തതത) under variable thermal 
environment 

T 
(C) 

Ceramic 
(n0) 

Power 
(n 

0.5) 

Sigmoid 
(n 0.5) 

Power 
(n 2) 

Sigmoid 
(n 2) 

Exp. Metal 
(n ∞) 

50 0.24 0.12 0.07 0.16 0.10 0.15 0.26 
100 0.49 0.23 0.14 0.33 0.21 0.3 0.52 
150 0.73 0.37 0.23 0.49 0.31 0.45 0.78 
200 0.98 0.49 0.30 0.65 0.41 0.6 1.03 
250 1.22 0.61 0.38 0.81 0.52 0.75 1.29 
300 1.47 0.73 0.45 0.98 0.62 0.9 1.55 
350 1.71 0.86 0.53 1.14 0.72 1.05 1.81 
400 1.95 0.98 0.61 1.31 0.83 1.2 2.07 

 

 
Figure 1: Non-dimensional deflection (u୸തതത) under variable thermal 

environment 
3.1.2 Strain (ex)  

 
Table 2: Strain (exx1000)under variable thermal environment 

T 
(C) 

Ceramic 
(n 0) 

Power 
(n 

0.5) 

Sigmoid 
(n 0.5) 

Power 
(n 2) 

Sigmoid 
(n 2) 

Exp. Metal 
(n ∞) 

50 0.65 0.18 0.34 0.43 0.40 0.29 0.67 
100 1.29 0.37 0.68 0.87 0.80 0.58 1.35 
150 1.94 0.55 1.02 1.3 1.20 0.87 2.02 
200 2.58 0.73 1.36 1.73 1.61 1.16 2.69 
250 3.23 0.92 1.70 2.17 2.01 1.44 3.36 
300 3.87 1.1 2.04 2.6 2.41 1.73 4.04 
350 4.52 1.28 2.38 3.03 2.81 2.02 4.71 
400 5.16 1.46 2.72 3.47 3.21 2.31 5.38 
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Figure 2: Strain (ex)under variable thermal environment  

 
3.1.3Shear Strain (exy) 
 
Table 3: Shear strain (exy x1000)under variable thermal environment 

T 
(C) 

Cerami
c 

(n 0) 

Power 
(n 0.5) 

Sigmoi
d (n 
0.5) 

Power 
(n 2) 

Sigmoi
d (n 2) 

Exp. Metal 
(n ∞) 

50 8.76 6.82 7.71 9.56 8.86 7.92 8.51 
10
0 

20.92 13.6
5 

15.43 18.0
4 

17.72 15.8
4 

22.0
0 

15
0 

29.91 20.4
7 

23.14 28.6
7 

26.58 23.7
6 

32.7
5 

20
0 

39.88 27.3
0 

30.86 38.2
3 

35.44 31.6
9 

43.6
7 

25
0 

49.85 34.1
2 

38.57 47.7
8 

44.30 39.6
1 

54.5
9 

30
0 

59.81 40.9
5 

46.28 57.3
4 

53.16 47.5
3 

65.5
1 

35
0 

69.78 47.7
7 

54.00 66.9
0 

62.02 55.4
5 

76.4
3 

40
0 

79.75 54.6
0 

61.71 76.4
5 

70.88 63.3
7 

87.3
4 

 
Figure 3: Shear strain (exy)under variable thermal environment 

The observations are as follows: 
i. Deflection at 400C, for Power (n2) (u୸തതത = 1.31) is 

more that of Sigmoid (n2) (u୸തതത =0.83). Deflection for Power 
(n0.5) (u୸തതത  = 0.98) is more than Sigmoid (n0.5) (u୸തതത  =0.61) 
Deflection increases linearly with temperature.  

ii. Tensile stress for Power (n2) (σ୶തതത = 173) is more than 
Sigmoid (n2) (σ୶തതത=160.2). Tensile stress for Power (n0.5) (σ୶തതത = 
111.5) is lesser than Sigmoid (n0.5) (σ୶തതത =124.2). Tensile stress 
increases linearly with temperature. 

iii. Shear stress for Power (n2) (σ୶୷തതതത = 2063) is more than 
Sigmoid (n2) (σ୶୷തതതത=1910). Shear stress Power (n0.5) (σ୶୷തതതത = 
1718) is less than Sigmoid (n0.5) (σ୶୷തതതത =2078). Shear stress 
increases linearly with temperature. 

iv. Strain (ex) for Power (n2) (ex = 3.47) is more than 
Sigmoid (n2)  (ex=3.21). Also strain (ex) for Power (n0.5) (ex = 
1.46) is lesser than Sigmoid (n0.5) (ex =2.72). Strain increases 
linearly with temperature. 

v. The shear strain (exy) of Power (n2) (exy = 76.45) is 
more than Sigmoid (n2) (exy=70.88). Also shear strain for 
Power (n0.5) (exy = 54.6) is lesser than Sigmoid (n0.5) (exy 
=61.71). Shear strain increases linearly with temperature. 

vi. Deflection ofExp.FGM (u୸തതത = 1.2) isintermediate to 
Power (n2) (u୸തതത = 1.31) and Power (n0.5) (u୸തതത = 0.83).Same 
kind of observation is in other non-dimensionalized results.  

 
3.2 Variable thermal environment under mechanical 
load 

Non dimensional parameters are computed when the FGM 
plate is subjected to variable thermal environment where 
temperature is varied form 50 °C of 400 °C under constant udl 
of 1MPa for square simply supported plate. Non dimensional 
parameters are depicted in Tables 6,7,8,9 and 10. Graphical 
comparisons have presented in Figs. 6,7,8,9 and 10.   
 
3.2.1 Non-Dimensional Deflection (ܢܝതതത) 
 

Table 4: Non-dimensional deflection (u୸തതത) under variable thermal 
environment and constant mechanical load 

T 
(C) 

Ceramic 
(n 0) 

Power 
(n 

0.5) 

Sigmoid 
(n 0.5) 

Power 
(n 2) 

Sigmoid 
(n 2) 

Exp. Metal 
(n ∞) 

50 3.75 2.52 2.73 3.08 2.93 2.91 3.95 
100 3.9 2.64 2.84 3.24 3.13 3.06 4.03 
150 3.9 2.77 2.95 3.4 3.32 3.21 4.11 
200 3.94 2.89 3.06 3.57 3.51 3.36 4.15 
250 3.99 3.01 3.17 3.73 3.71 3.51 4.25 
300 4.04 3.13 3.29 3.89 3.9 3.66 4.45 
350 4.11 3.26 3.4 4.06 4.09 3.81 4.63 
400 4.2 3.38 3.51 4.22 4.19 3.96 4.83 
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Figure 4: Non-dimensional deflection (u୸തതത) under variable thermal 
environment and constant mechanical load 

 
3.2.2 Strain (ex)  
 

Table 5: Strain (ex x1000)under variable thermal environment and 
constant mechanical load 

T 
(C) 

Ceramic 
(n 0) 

Power 
(n 

0.5) 

Sigmoid 
(n 0.5) 

Power 
(n 2) 

Sigmoid 
(n 2) 

Exp. Metal 
(n ∞) 

50 6.52 4.27 4.72 5.66 5.33 5.18 6.86 
100 6.30 3.83 4.31 5.33 4.98 4.77 6.46 
150 5.76 3.40 3.91 5.01 4.63 4.36 6.06 
200 5.37 2.98 3.52 4.73 4.32 3.96 5.66 
250 5.01 2.66 3.25 4.57 4.15 3.66 5.27 
300 4.72 2.43 3.07 4.55 4.09 3.45 4.97 
350 4.52 2.29 2.98 4.63 4.13 3.34 4.76 
400 4.40 2.21 2.98 4.80 4.27 3.31 4.63 

 

 
 

Figure 5: Strain (ex)under variable thermal environment and constant 
mechanical load 

 
 

3.2.2Shear Strain (exy) 
 
Table 6: Shear strain (exy x1000)under variable thermal environment 

and constant mechanical load 

T 
(C) 

Cerami
c 

(n 0) 

Power 
(n 

0.5) 

Sigmoi
d (n 
0.5) 

Power 
(n 2) 

Sigmoi
d (n 2) 

Exp. Metal 
(n ∞) 

50 21.60 15.8
4 

17.19 20.1
8 

19.43 18.4
7 

22.7
4 

10
0 

27.95 20.6
1 

22.39 26.4
5 

25.46 23.8
4 

28.2
2 

15
0 

32.19 25.3
7 
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5 
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20
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Figure 6: Shear strain (exy)under variable thermal environment and 
constant mechanical load 

 
The observations are as follows: 

i. Deflection for Power (n2) (u୸തതത = 4.22) is more than Sigmoid 
(n2) (u୸തതത =4.19). Deflection Power (n0.5) (u୸തതത = 3.38) is more 
than Sigmoid (n0.5) (u୸തതത =3.51). The deflection increases with 
increase in temperature.   

ii. Tensile stress for Power (n2) (σ୶തതത = 341) is more than Sigmoid 
(n2) (σ୶തതത=291). Tensile stress for Power (n0.5) (σ୶തതത = 139) is 
lesser than Sigmoid (n0.5) (σ୶തതത  =208). Tensile stress shows 
decline with increase in temperature since the bending stress 
and thermal stress are of opposite nature in the case. 

iii. Shear stress for Power (n2) (σ୶୷തതതത  = 2173) is more than 
Sigmoid (n2) (σ୶୷തതതത=2028). Also shear stress for Power (n0.5) 
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(σ୶୷തതതത = 1789) is less than Sigmoid (n0.5) (σ୶୷തതതത =1940). Shear 
stress is of incremental nature with temperature. 

iv. Strain (ex) for Power (n2) (ex = 4.8) is more than Sigmoid 
(n2) (ex=4.27). Also strain (ex) for Power (n0.5) (ex = 2.21) is 
less than Sigmoid (n0.5) (ex =2.98). Strain shows decline with 
increase in temperature. 

v. Shear strain (exy) for Power (n2) (exy = 80.54) is more than 
Sigmoid (n2) (exy=75). Also shear strain Power (n0.5) (exy = 
58.36) is lesser than Sigmoid (n0.5) (exy =65.38). Shear strain 
is of incremental nature with temperature. 
Non-dimensionalized deflection for Exp. FGM (u୸തതത = 4.83) is 
intermediate to Power (n2) (u୸തതത = 4.22) and Power (n0.5) (u୸തതത = 
3.38). 
 

4.  CONCLUSION 
A plate made of ceramic and metal which is called FGM has 
been studied under variable thermal and thermomechanical 
environment. Geometric parameters are computed by varying 
material distribution and temperature. The following 
conclusions are: 
(a) Deflection for metal plate is more than FGM plates 
(i.e. 0<n<). Ceramic and metal plates give least tensile stress 
as compared to various FGMs. The metal rich region and 
ceramic rich region gives comparable tensile stress. Shear 
stress diverge as volume fraction index increases. 
(b) The minimum deflection, strain and stress is observed 
for Power FGM (n0.5) because stiffness of Power FGM (n0.5) 
plate is higher when compared to Exp. FGM plate and stiffness 
of Exp. FGM plate is higher when compared to that of Power 
FGM (n2).  
The work may have extension in area of FG plates with more 
complex mechanisms such as variable mechanical and thermal 
loading combinations.  
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