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 
ABSTRACT 
 
Homotopy Analysis Method (HAM) is a well organized 
method to get the periodic solution of Non-Linear Oscillatory 
Duffing Equation of Motion. By having a glance on 
Helmholtz Equation of Motion an attempt has been made to 
explore the proficiency of HAM. This research article 
explores on Helmholtz Equation of Motion possessing 
non-odd restoring force function. Moreover in this equation 
the behavior of oscillations is different for the same 
magnitude of +ve and –ve amplitudes. This phenomenon 
concerns with asymmetric oscillations which are nonlinear. 
In the case of large amplitude vibrations a greater amount of 
inconsistency has been noticed here. Furthermore the 
incapability of HAM in differentiating the non-periodic 
solution of Motion has been extensively discussed. 
 

Key words : Homotopy Analysis Method (HAM); Duffing 
Equation; Helmholtz’s equation of Motion (HEM) ; Periodic 
solution; Phase-plane diagram, Differential Equation (DE) 
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1. INTRODUCTION 
 

A larger number of problems in Engineering Sciences are 
modeled by Non-Linear Duffing Equation of Motion namely  
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Here restoring force function which is a polynomial is 

given by   
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G (t) =Forcing Function (Periodic) 
Here stiff constant is a. 
b, c,..d are parameters.  

 ,...5,3,1m . 
(2) is an odd function so that one can expect oscillations 

which are symmetric. To the equation of motion or a 
harmonically forced undamped single degree of freedom 
oscillator, Helmholtz added the nonlinearity. The behavior of 
the eardrum is like an asymmetric oscillation with restoring 
function 
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The Helmholtz equation of motion is 
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Khatami et al. [1] presented general solutions for Duffing 
oscillations which are not linear with 5th,6th and 7th degree 
polynomial odd restoring force functions. They incorporate 
DTM and received fruitful results. In the case of an odd 
degree polynomial restoring function with symmetric 
oscillations of the system this method can give good results. 
But in the case of non-odd restoring force functions with 
asymmetric oscillations uncertainties are observed. In this 
scenario a large number of researchers made an attempt by 
adopting HPM in order to crack many DEqs. The primary 
goal of this talk is to test the acceptability HPM for Duffing 
Oscillators with non-odd restoring force function 
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2. HOMOTOPY ANALYSIS METHOD  
 
HEM is 
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2

2

 xx
dt

xd                    (5) 

0, 
dt
dxBx  at 0t            (6) 

  = nonlinearity of x. 
B= Amplitude of x. 
In the light of Liao [10], the HAM is applied to the NLDE 

(5) and a Homotopy namely d   R 1,0  is introduced 
and follows   
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(7) is approximated with 
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Put (8) in (7) and by making comparison we can have  
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Let the beginning approximation (5) be 
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    )( is fixed and not equal to 0 and its value at 0is 1. 
(10) is simplified as  
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    The solution of (15), gives  
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The secular term in (16) is eliminated by setting 
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First Order Approximation to (9) is given by 
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Now  
 tCOSBBtBCOSqtBCOStx  2)41(5.05.0)( 1222   18) 

At 1q  

  tCOSBBBtx  25.05.0)( 22      (19) 
For B=1 & 1.0  (19) is 
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 (19) gives  
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This is used in comparing the results with actual solution. 
 
3. PHASE DIAGRAM GENERATION  
 To create PHASE DIAGRAM, one can see the relation  

as    )(
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The PHASE DIAGRAM of DE (5) with boundary 

condition  

 (6) is represented by the plot of 
dt
dx

 Vs x. For B=1 and 

1.0  the plot of 
dt
dx

 versus x created from (21) depicts a 

boundary which is closed. From (22) the magnitude of +ve 
amplitude of Non-Linear Oscillations is 1. From (22) the 
magnitude of –ve amplitude of Non-Linear Oscillations is 
-1.0717. This gives asymmetry of the PHASE DIAGRAM 

w.r.t   axis, whereas it is symmetric w.r.t x-axis. (1) 
describes the PHASE DIAGRAM created from (22) and it 
shows magnitudes of +ve and -ve amplitudes which are 
unequal. 

At B=1 and 1.0 the singularities are origin and 
(-10,0). Origin is the singular point. (-10, 0) is the saddle 
point. In 

 
 
Figure 1. Helmholtz equation Vs exact solution 
 
In order to get the periodic solution the range of amplitudes 

should lie in the interval (-10, 5).The periodic solution is 
impossible Out-side of this range. 

In Fig.2, 3, 4, 5; the PHASE DIAGRMS are created for 

 6,5,4,2B   and
10
1 . More over these are being 

compared with HOMOTOPY METHOD’s solution. PHASE 
DIAGRAM concerning with x(0)=5 stands for the separatrix. 
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In the case of x(0)=1 It stands for the boundary which is 
closed and possessing periodicity. PHASE DIAGRAM 
created for x (0) =5 by using (21) is possessing close 
magnitudes of +ve & –ve amplitudes. Here the separatrix 
stands for the big amount of difference in the magnitudes of 
+ve & -ve amplitudes. The HOMOTOPY solution stands 
exactly close to the domain at the particular boundary 
constraints. Fig.6 & 7 depict distinct PHASE DIAGRAMS 
from (21) and (22). HOMOTOPY METHOD is incapable to 
differentiate non-periodic &periodic behavior of the 
solutions. 

 
 
Figure 2.  Comparing the PHASE DIAGRAMS for x(0) =2 

 
 
Fiure 3. Comparing the PHASE DIAGRAMS for x (0) = 4. 

 
Figure 4. comparing the PHASE DIAGRAMS generated 

for x (0) =5 

 
Figure 5.  Comparing the PHASE DIAGRAMS for x (0) 

=6 

 
Fig. 6:  PHASE DIAGRAMS generated for different 

amplitudes obtained by the Homotopy analysis method 

 
Fig.7: PHASE DIAGRAMS created out of exact solution 

for various amplitudes 

4. CONCLUSION 
The capability of the Homotopy Analysis Method is 

investigated by observing the nonlinear oscillations of 
Helmholtz Equation of Motion. Large discrepancy is observed 
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in magnitudes of positive and negative amplitudes using the 
Homotopy Analysis Method in case of large amplitudes. 
Therefore Homotopy Analysis Method is incapable to 
differentiate non-periodic and periodic solutions. In the case 
of  B exceeding 5 and  1.0 , phase plane diagram 
obtaining by exact solution is not closed and depicts non- 
periodic nature, whereas the Homotopy Analysis Method 
gives the closed phase plane diagram (i.e., periodic) for all 
values of B. Hence, Homotopy Analysis Method is incapable 
to differentiate the non-periodic solutions. 
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