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ABSTRACT 
The Deep Residual Network (ResNet) learning model is 
known to achieve better accuracy and requiring shorter 
training time compared to other pre-trained learning models 
for image classifications and recognition. In this paper, the 
use of ResNet networks for semantic segmentation of coral 
reefs images was explored. Three ResNet networks 
(ResNet-18, ResNet-50, and ResNet-101) were evaluated and 
compared using 900 images as training dataset and 38 images 
as test dataset. The last three layers of the pre-trained ResNets 
were replaced with a set of layers that classified each pixel of 
the images into four classes: ‘dead’, ‘alive’, ‘sand’ and 
‘unknown’. A Softmax layer was introduced to reduce the 
imbalanced defects. Then, DeepLabv3+ employed the Atrous 
convolution to extract the features computed by applied CNN 
and segment the pixels of the object. ResNet-101 was shown 
to achieve better results compared to ResNet-18 and 
ResNet-50. Further analysis of the results implied that the 
class weightage assignment needs to be improved and more a 
larger training dataset should be acquired.  
 
Key words : Semantic segmentation, Deep Residual network, 
class balancing, coral reef.  
 
1. INTRODUCTION 
Coral reefs are among the most biologically diverse 
ecosystems on Earth. Besides providing humanity with 
fisheries, they also served as a coastal protection and 
contributed to carbon sequestration that reduces global 
warming [1,2]. During the last few decades, coral reef 
ecosystems are being exposed to massive and rapid decline 
caused locally by overfishing, pollution, deforestation, and 
sedimentation. Global issues were caused mostly by global 
climate changes, including rising sea level and seawater 
temperature, and ocean acidification leading to a state of 
marine environmental crisis. Statistical data provided in [3] 
showed that in 2011, 19% of coral reefs had disappeared, 
while 75% were endangered. Therefore, it is essential to 
determine how both local and global stressors affect them and 
how to reduce degradation by providing solutions to sustain 
coral reefs. Manual mapping of underwater environments had 
been done for field survey and coral reef monitoring of the 
 

 

ecosystems. However, research and practical application 
results showed that there are many deficiencies in terms of 
relevance of the outcomes [4]. Besides, manual mapping of 
underwater environments is very time consuming, while 
aerial photography and satellite remote readings are 
inapplicable due to light absorbance properties of seawater 
[5]. With the advancement of autonomous underwater 
vehicles (AUV) that can capture high-resolutions images, 
underwater sea mapping is now done using video-based 
robotic surveys. Computer visions and image processing 
techniques were then used to understand the distribution of 
the coral taxa such as hard corals, soft corals, and algae. 
However, there are many difficulties in recognizing objects in 
underwater sea images due to color variations because of 
depth [6] dirt and sediments, and geometric variations of the 
objects. Therefore, semantic segmentation prior to 
recognition, annotation or detection is extremely critical for 
accurate results.  
 
In this paper, a comparison of three coral reef semantic 
segmentation results employing the ResNet-18, ResNet-50 
and ResNet-101 architectures was presented. All three 
architectures were applied on the same dataset, with 
hand-labeled images. To capture the contextual information 
at multiple scales, DeepLabv3+ model with atrous 
convolution with the encoder-decoder structure was applied, 
which allows us to effectively expand the field of view of the 
filters. DeepLabv3+ involved important semantic 
segmentation information from the encoder module. 
However, a detailed information of the object boundaries was 
missing because of the pooling or striding convolutions 
within the network. This effect can be mitigated by atrous 
convolution with a decoder module which can extract heavy 
feature maps and recover a detailed object boundary [7]. 
Encoder-decoder module [8] contributed the faster 
computation gradually recovering the boundaries of the sharp 
objects. The performance of the suggested methods was 
measured by pixel intersection-over-union averaged across 
four (4) classes, accuracy, and boundary F1. 
 
2. RELATED WORK 
Semantic segmentation is one of the computer vision methods 
applied to select semantic labels to each pixel in the image. A 
lot of work has been done in image segmentation, applying 
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different approaches and techniques [9] and [10]. The authors 
from [11] described two main problems of semantic 
segmentation, intra-class inconsistency and indistinct 
inter-class. To overcome these issues, they proposed a 
Discriminative Feature Network with two sub-networks, 
Smooth Network and Border Network. Atrous convolution for 
semantic segmentation was proposed by [9] [13]. In [12], 
Dense Atrous Spatial Pyramid Pooling (DenseASPP) was 
applied to generate multiscale features, covering larger scale 
range densely without significant impact on model size. 
Convolution of Atrous Spatial Pyramid Pooling and decoder 
modules was applied in [9] and [7], resulting in an 
encoder-decoder network with improved performances in 
terms of speed and strength. Besides the convolution of 
upsampled filters, ASPP was proposed to robustly segment 
objects at multiple scales and improve the localization of 
object boundaries, combining few methods of DCNNs and 
probabilistic graphical models.  
 
Pixel-wise parsing for deep image segmentation of coral reef 
was evaluated across different classes of substrate in [13]. 
Support vector machine classifiers [14] applied on distinct 
datasets indicated the importance of choosing the right CNN 
architecture to perform better classification. A comparison of 
deep learning methods, patch-based CNN and fully 
convolutional neural network (FCNN) for semantic 
segmentation of coral reef survey images was described in 
[15]. It was shown that CNN methods performed better than 
Support Vector Machine-based classifiers, considering 
texture-based properties. Among five different deep learning 
CNN architectures, Resnet-152 performed the best on the 
labeled dataset of underwater coral reef images. The best 
results of FCNN were obtained with Deeplab v2 architecture. 
In a recent effort to automate coral identification in [16], the 
authors presented a model for accurate coral reef detection of 
underwater images and compared its performance to human 
abilities in terms of speed and accuracy. The accuracy of 
identification was about 95% higher than reached by humans. 
The proposed model was also able to identify coral reefs on 
blurry images or partially hidden reefs on clear images. 
Advanced deep learning tools for improvement of automatic 
analysis of AUV imagery was done in [17]. ResNet and 
VGG-net were applied to extract the features of corals and 
non-corals, followed by a classification process. The results 
indicated that the efficiency of automatic annotation of 
unlabeled sections may be improved when combined with 
AUV image analysis. One more method for training dense 
segmentation models was proposed in [18] based on ground 
truth labels allowing to effectively learn the coral 
segmentation.  
 
The use of Deep Residual networks (ResNets) in computer 
vision [19, 20], speech recognition, bioinformatics, medical 
image analysis [21], natural language processing, object 
detection and recognition [22, 23, 24] were popular due to its 
ability to enhance training in terms of complexity and speed. 
These networks also attained better accuracy compared to 

other neural networks [25, 26]. The authors from [27, 28] also 
stated that compared to the AlexNet and VGG16, ResNet-18 
is deeper, having residual blocks that performed better than 
regular convolutional blocks. Additionally, AlexNet, VGG, 
ResNet family, DenseNet family, CorNet-S and CorNet-Z 
were applied as tested convolutional neural networks, with 
AlexNet as the baseline. The best layers of pre-trained 
networks were submitted to Algonauts challenge to check for 
Spearman correlation percentage. Accuracy and loss were 
evaluated by mean intersection-over-union (mIoU). In [29], 
end-to-end image segmentation with deep learning 
convolutional neural networks was applied for tongue 
segmentation. High accuracy was obtained by ResNet, 
simultaneously increasing the segmentation speed. A 
comparison of the performance of Inception-v3, ResNet-50 
and ResNet-101 using multiple hardware platforms such as 
CPU and GPU was explained in [25]. Data training was 
obtained in TensorFlow indicating that the performance was 
significantly improved when the number of iterations 
increased, and the network became deeper. The shortest 
training time was required when ResNet-50 was applied as 
indicated by many literatures. A high error rate of 34.68% 
was achieved in [26], for 70,000 iterations of the training 
process. It was assumed that accuracy would be higher if the 
training data had higher resolution, since the size of the 
images were only 64x64 pixels. Apart from the image size, 
the size of the dataset also affected the training process and 
results. The impact of noisy labels on the learning process was 
described in [30]. Using the JFT-300M dataset with 375M 
noisy labels for 300M images, it was proved that the 
performance of computer vision methods increased 
logarithmically based on the volume of training data. 
Higher-scale dataset can boost the learning process and 
significantly improve the results. 
 
3.  METHODOLOGY 
Transfer learning was done by re-tuning the pre-trained 
ResNet models. The last three layers of pre-trained ResNets 
were replaced with a set of layers that classified the coral reefs 
pixels into four classes. A Softmax layer was introduced to 
reduce the imbalanced defects. Then, DeepLabv3+ employed 
the atrous convolution to extract the features computed by 
applied CNN and perform the pixel-wise segmentation. A 
detailed methodology is described in the following sections. 
 
3.1 Data Collections and Pre-Processing 
In this paper, a collection of 128 coral images was captured 
from high-resolution videos of coral reefs located in the East 
Coast of Peninsular Malaysia. The images were then labelled. 
The labelled images served as the groundtruth dataset for the 
evaluations of semantic segmentation. Even though 
hand-labelling is challenging and time-consuming, it is more 
accurate as can be seen in Figure 1 where the results of 
hand-labelling and using automated labeling is compared. 
The pixels are labelled into four (4) classes as follows: green 
for alive, brown for dead, yellow for sand, and black for the 
unknown. 



Šejla Džakmić  et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020,  54 - 61 

56 
 

 

Figure 1: Comparisons of Ground Truth and Automated Labeliing of the Coral Image 
 

In ideal cases, all the classes should have approximately equal 
number of observations. Like many image datasets, it is very 
expensive in terms of time and labor to acquire balanced 
datasets. For the datasets, the ‘dead’ class has the highest 
number of observations, followed by ‘alive’ class. ‘Sand’ and 
‘unknown’ classes have the least number of observations as 
can be seen in Figure 2. Therefore, a class weighting was 
applied by using the median pixel frequencies calculated by 
the labeled pixel counts. The class weights for each 
corresponding class is shown in Table 1. Class ‘unknown’ has 
the highest weightage to balance its low number of 
observations, while class ‘alive’ was assigned the lowest 
weightage.  

 
Figure 2: Class Observations 

 
Table 1: Class Weightage Assignment 

Class 
Name 

‘alive’ ‘dead’ ‘sand’ ‘unknown’ 

Class 
weight 

0.5099 0.5774 3.7310 5.2552 

 
The next step is to divide the images into training and testing 
datasets. Since 70:30 percent ratio for the division of dataset 
was used, 90 images were used as training, while 38 images 
were used for testing and datasets. Having a large dataset is 
crucial to train a deep learning model. Therefore, data 

augmentation was done to increase the training dataset and 
improved the accuracy of the network. For each of the 
training images, 10 augmented images were created totaling 
to 900 images as training datasets. In this work, data 
augmentation was done by initially modifying the contrast, 
brightness and saturation of the images. Then, affine 
transformation was applied to the training images that were 
random scaling by a scale factor ranging from 0.8 to 1.5, 
horizontal reflection, random rotation using left/right 
reflection and X/Y translation of +/- 10 pixels. After 
augmentation, all the images’ size was reduced to 250x250. 
DeepLab3v+ was employed to create a network based on 
ResNet-18, 50 and 101 models.  

 

3.2 ResNet Convolutional Neural Network 
ResNet-18 consists of 17 convolutional layers and 1 
fully-connected layer, all constructed into 5 convolution 
blocks. The first convolution block is composed of a single 
convolution layer with 64 filters of size 7x7. The following 
convolution blocks consist of 2 residual blocks, each 
consisting of two convolution layers with the same number 
of filters. Each filter is of 3×3 dimension. Each 
convolution block scaled down the output image size by 2 
and doubled the number of filters (feature dimension). The 
fully-connected layer connects to 1000 classes and the rest 
of the network is considered as a feature extractor. For this 
work, the fully-connected layer to the 4 classes was 
reduced. A detailed architecture of ResNet models applied 
in this research can be found in [25].  
 
Training process started with Feature Extraction Layer 
(FEL). The FEL is located at different layers of ResNet-18, 
ResNet-50 and ResNet-101. After locating the FEL which is 
prior to the classification layer, all the layers after the FEL 
were removed.  the ResNet network was customized by 
removing three different layers. This step was repeated 
throughout the whole network, prior to each classification 
layer. In DeepLab v3+, the downsampling factor was typically 
reduced to either 16 or 8. Atrous convolution was applied to 
dilated convolutions to recover large receptive fields lost by 
removing downsampling layers. Atrous convolution was 
introduced in the network and described in the next section. 

(a) Original image (b) Ground Truth (c) Automated labeling 
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Then, skip layer was defined for each ResNet model. The 
decoder sub-network for DeepLabv3+ that restored the 
feature maps to their original resolution were added. 
Upsampling of the original resolution was done by a factor of 
16. Finally, softmax and pixel classification layers were 
applied to classify each pixel of the images. The fully 
convolutional layer was replaced to classify four (4) classes 
instead of the pre-defined1000 classes. Table 2 shows the 
modification to the layers’ configurations. 
 

Table 2: Configurations of Modified Layers 

 ResNet018 ResNet-50 ResNet101 
Feature 
Extraction 
layer 

’res5b_relu’ ’activation_49_
relu’ ’res5c_relu’ 

Removed 
layers 

’pool5’, 
’fc1000’, 
’prob’, 
’Classificatio
n 
Layer_ 
prediction’ 

’avg_pool’, 
’fc1000’, 
’fc1000_ 
softmax’, 
’Classification- 
Layer_fc1000’ 

’pool5’, 
’fc1000’, 
‘prob’, 
’Classificatio
n 
Layer_ 
prediction’ 

Update 
image size 

1000 × 1000 500 × 500 500 × 500 

Layers 
with 
reduced 
samples 

’res5a_ 
branch1’, 
’res5b_ 
branch2a’ 

’res5a_branch1’
’res5b_branch2
a 

’res5a_ 
branch1’, 
’res5b_ 
branch2a’ 

Skip layer ’res2b_relu’ ’activation_10 
_relu’ 

’res5b_relu’ 

 

3.3 Atrous Convolution and DeepLabv3+ 

Atrous convolution is a powerful tool that regulates the 
resolution of features computed by deep convolutional 
neural networks. It also adapts the field of view of the 
network filters to capture the multi-scale information [6]. 
Considering the case of two-dimensional signals, it can 
be described by Eq. 1. 

 
(1) 

where i is the location of the output feature map y and 
convolution filter ω, applied over input feature map x. Atrous 
rate, r determined the stride by which input signal was 
sampled. Changing the field of view of the network filter was 
done by modifying the rate value. DeepLabv3+ is a type of 
convolutional neural network used for semantic image 
segmentation. This paper introduced three ResNet models 
(ResNet-18, ResNet-50 and ResNet-101) for the training 
process, modified with respect to DeepLabv3+ as shown in 
Table 2 earlier.  

3.4 Evaluation of Semantic Segmentation 
The performance of semantic segmentation was evaluated 
using Intersection over Union (IoU). Generally, it measures 

the difference between the original dataset with the 
groundtruth labels. It is also known as the Jaccard Index that 
measures the performance of the segmentation process, 
compared to the pixel-wise accuracy. Jaccard index is defined 
by the vectors: y∗ vector of ground truth labels and y*- vector 
of predicted labels, and class c; given by Eq. 2 [31]. 
 

 
(2) 

 
For multilabel dataset such as in this work, the Jaccard 
index was averaged across the classes, yielding the mean 
IoU [49]. Jaccard index was calculated pixel-wise over 
the evaluated segmentation dataset. Weighted IoU that is 
the average IoU of each class was also calculated because 
the dataset has disproportionate size classes. Other than 
IoU, other metrics such as accuracy and boundary F1 
were also used in this work. Accuracy is the rate of 
correctly segmented pixels in a class according to the 
groundtruth. For this work, the Global Accuracy and 
Mean Accuracy for the datasets were measured. Global 
Accuracy is the estimate of the percentage of correctly 
segmented pixels, while Mean Accuracy is the average 
accuracy of all four classes. The last metric that was used 
is the boundary F1 (BF) that measures how well the 
predicted boundary of each class aligns with the actual 
boundary. The Mean BF score that is the average BF 
score of all classes in the dataset was calculated. 

4. RESULTS AND DISCUSSION 
Three Res-Net networks were compared: ResNet-18, 
ResNet-50 and ResNet-101. One example of the semantic 
segmentation result is presented in Figure 3. In this figure, the 
first row presented the original image to be segmented and its 
corresponding groundtruth image. Semantic segmentation of 
ResNet-18, ResNet-50 and ResNet-101 are subsequently 
demonstrated in the second, third and fourth row. The first 
column shows the result of color-coded semantic 
segmentation by the respective ResNet networks, where green 
are pixels classified as ‘alive’, brown for ‘dead’, yellow for 
‘sand’ and black for ‘unknown’ class. In the second column, 
the segmented image is overlapped with the groundtruth 
image indicating oversegmentation and undersegmentation 
that are represented by light green and magenta colors, 
respectively. Visual inspection of the oversegmentation and 
undersegmentation suggested that ResNet-18 produced better 
results compared to ResNet-50 and ResNet-101. The ‘alive’ 
and ‘dead’ classes were also segmented better than ‘sand’ and 
unknown. Therefore, further evaluations were done by 
calculating objective measurements using accuracy, mean of 
intersection and boundary score as shown in Table 3. 
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Figure 3: Sample of Semantic Segmentation Results 
 

Based on Table 3, ResNet-18 network outperformed both 
ResNet-50 and ResNet-110 by achieving 84.22% accuracy, 
69.49% IoU and 64.75% meanBFscore. ResNet-101, on the 
other hand, is slightly better at segmenting the coral images 
compared to ResNet-50.  
Further evaluations of the semantic segmentation results was 
done by class, and this is presented in Table 4. It shows that 
class ‘dead’ achieved the highest score for IoU and 
MeanBFScore for all three ResNet networks. This implies 
that class ‘dead’ has a high percentage of overlapping pixels 
of the segmented image and groundtruth, and the predicted 
boundaries were also aligned with the actual boundaries of the 
class. While class ‘unknown’ achieved the lowest score for 
accuracy and IoU for all three networks. Since the number of 
observations were high for class ‘dead’ and very low for class 
‘unknown’, these results were expected. A better class 
balancing should be done in the future. 

 
Table 3: Objective Measurements of Semantic Segmentation 

Models Classes IoU 
ResNet-18 Alive 0.8912 

Sand NaN 
Dead 0.9137 

Unknown NaN 
ResNet-50 Alive 0.8679 

Sand 0 
Dead 0.8881 

Unknown NaN 
ResNet-101 Alive 0.8467 

Sand 0 
Dead 0.8719 

Unknown NaN 
 

Original 
Image 

Groundtruth 
Image 

ResNet-18 
 

Segmented 
Image 

Overlapped 
Image 

ResNet-50 
 

Segmented 
Image 

Overlapped 
Image 

Overlapped 
Image 

ResNet-101 
 

Segmented 
Image 

oversegmentation 
undersegmentatio
n 

oversegmentation 
undersegmentatio
n 

oversegmentation 
undersegmentatio
n 
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Table 4: Semantic Segmentation by Class 

 Class Accuracy IoU Mean 
BFScor

e 

ResNet-18 Alive 0.7851 0.5456 0.2869 

Dead 0.5806 0.4481 0.3110 

Sand 0.3393 0.2656 0.1611 

Unknown 0.0955 0.0523 0.0673 

ResNet-50 Alive 0.6539 0.3748 0.1800 

Dead 0.5435 0.4224 0.3054 

Sand 0.1852 0.1447 0.0751 

Unknown NaN 0 NaN 

ResNet-10
1 

Alive 0.8062 0.5798 0.3220 

Dead 0.6330 0.5218 0.3109 

Sand 0.4393 0.5218 0.3109 

Unknown 0.0609 0.0299 0.0594 

4.1 Testing Results 
 
The ResNet networks were tested using 38 test images and the 
results are shown in Table 5. It should be emphasized that the 
tested images were the same for all the three ResNet 
networks. Based on Table 5, ResNet-101 network performed 
best compared to ResNet-18 and ResNet-50. The percentage 
of correctly segmented pixels for ResNet-101 was 68.32%, 
followed by ResNet-18 at 63.90% and ResNet-50 at 54.39%. 
The low accuracy attained by all three networks was due to the 
small size of the training dataset. The accuracy for each class 
was even lower as indicated by the mean accuracy at an 
average of 45% to 48% only. The number of images for each 
class was disproportionate, and the class weightage balancing 
using median may not be sufficient. The imbalanced size of 
each class also affected the weighted IoU, mean IoU and the 
mean boundary F1 measurements which performed rather 
poorly. 
 

Table 5: Results of Model Evaluations 

 ResNet-1
8 

ResNet-5
0 

ResNet-10
1 

Global 
Accuracy 0.6390 0.5439 0.6832 

Mean 
Accuracy 0.4501 0.4609 0.4848 

Mean 
IoU 0.3729 0.2355 0.3641 

Weighte
d IoU 0.4660 0.3745 0.5192 

Mean BF 
Score 0.2556 0.1990 0.2816 

5. CONCLUSION 
In this paper, three Deep Residual networks were evaluated 
for semantic segmentation of coral reefs images. The aim of 
the evaluation is to investigate the potential of the ResNet 
model in semantic segmentation. Based on the results, 
ResNet-101 outperformed both RestNet-18 and ResNet-50 for 
pixel-wise segmentation of the coral reefs images. However, 
more investigations need to be done as the accuracy and 
Intersection-of-Union metric measurements can be further 
improved. Since the training datasets are still inadequate, 
more data should be acquired, and different augmentation 
processes can be applied. Since high-resolutions images of 
coral reefs are scarce, the potential of getting disproportionate 
classes are highly possible. Therefore, future work should also 
look at advanced techniques of class balancing.  
 
ACKNOWLEDGEMENT 
 
Due acknowledgement is accorded to the Faculty of Computer 
and Mathematical Sciences, Universiti Teknologi MARA for 
the funding received for this publication. 

REFERENCES 
1. N. S. Foley, T. M. van Rensburg, and C. W. Armstrong. 

The ecological and economic value of cold-water coral 
ecosystems, Ocean and Coastal Management, Vol. 53, 
No. 7, pp. 313-326, 2010. 

2. Conservation International. Economic values of coral 
reefs, mangroves, and seagrasses: A global 
compilation, Center for Applied Biodiversity Science, 
Conservation International, Arlington, Virginia, 2008. 

3. L. M. Burke, K. Reytar, M. Spalding, and A. Perry. Reefs 
at risk revisited, World Resources Institute, 
Washington DC, 2017. 

4. J. D. Hedley, C. M. Roelfsema, I. Chollett, A. R. 
Harborne, S. F. Heron, S. Weeks, W. J. Skirving, A. E. 
Strong, C. M. Eakin, and T. R. Christensen. Remote 
sensing of coral reefs for monitoring and anagement: 
A review, Remote Sensing, Vol. 8, No. 2, pp. 118, 2016. 

5. A. King, S. M Bhandarkar, and B. M. Hopkinson. Deep 
learning for semantic segmentation of coral reef 
images using multi-view information, in Proceedings 
of the IEEE Conference on Computer Vision and Pattern 
Recognition Workshops, Long Beach, California, June 
16-20, 2019, pp. 1-10. 

6. M.K.S. Alsmadi, K. Omar, and S.A. Noah. Fish 
recognition based on the combination between robust 
feature selection, image segmentation and 
geometrical parameter techniques using artificial 
neural network and decision tree, Journal of Computer 
Science, Vol.  6, No. 10, pp. 1088-1094, 2009. 

7. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schro, and H. 
Adam. Encoder-decoder with atrous separable 
convolution for semantic image segmentation, in 
Proceedings of the European Conference on Computer 



Šejla Džakmić  et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020,  54 - 61 

60 
 

 

Vision (ECCV), Munich, Germany, September 8-14, 
2018, pp. 801-818. 

8. M. Chala, B. Nsiri, A. Soulaymani, A. Mokhtari, and B. 
Benaji. Deep convolutional networks based on 
encoder-decode architecture for automatic optic disc 
segmentation in retina images. International Journal of 
Advanced Trends in Computer Science and Engineering, 
Vol. 9, No. 2, March-April 2020, pp. 2078-2084. 
https://doi.org/10.30534/ijatcse/2020/181922020 

9. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, 
and A. L. Yuille. Deeplab: Semantic image 
segmentation with deep convolutional nets, atrous 
convolution, and fully connected Crfs, IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 40, No. 4, pp. 834 848, 2017. 

10. Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully 
convolutional instance-aware semantic segmentation, 
in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, Honolulu, Hawaii, July 
21-26, 2017, pp. 2359-2367.  

11. C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang. 
Learning a discriminative feature network for 
semantic segmentation, in Proceedings of the IEEE 
Conference on Computer Vision and Pattern 
Recognition, Salt Lake City, Utah, June 18-22, 2018, pp. 
1857-1866. 

12. M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang. 
Denseaspp for semantic segmentation in street scenes, 
in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, Salt Lake City, Utah, 
(2018), June 18-22, 2018, pp.3684-3692. 

13. A. Steffens, A. C. de A. Campello, J. Ravenscroft, A. 
Clark, and H. Hagras. Deep segmentation: Using deep 
convolutional networks for coral reef pixel-wise 
parsing, in Proceedings of the Conference and Labs of 
the Evaluation Forum, Lugano, Switzerland, September 
9-13, 2019, Working Notes. 

14. F. C. M. Rodrigues, N. S. Hirata, A. A. Abello, T. 
Leandro, D. La Cruz, R. M. Lopes, and R. Hirata Jr. 
Evaluation of transfer learning scenarios in plankton 
image classification, in Proceedings of the 13th 
International Joint Conference on Computer Vision, 
Imaging and Computer Graphics Theory and 
Applications, Funchal, Madeira, January 27-29, 2018, 
pp. 359-366 . 

15. AM. Alqudah, H. Alquraan, IA. Qasmieh, A. Alqudah, 
and W. Al-Sharu. Brain tumor classification using 
deep learning technique-A comparison between 
cropped, uncropped, and segmented lesion images 
with different sizes. International Journal of Advanced 
Trends in Computer Science and Engineering, Vol. 8, 
No. 6, Jan 23, 2020, pp. 3684-3691. 
https://doi.org/10.30534/ijatcse/2019/155862019 

16. A. King, S. M. Bhandarkar, and B. M. Hopkinson. A 
comparison of deep learning methods for semantic 
segmentation of coral reef survey images, in 
Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition Workshops, Salt Lake 
City, Utah, June 18-22, 2018, pp. 1394-1402. 

17. S. Villon, D. Mouillot, M. Chaumont, E. S. Darling, G. 
Subsol, T. Claverie, and S. Villéger. A deep learning 
method for accurate and fast identification of coral 
reef fishes in underwater images, Ecological 
Informatics, Vol. 48, pp. 238 244, 2018. 

18. S. Jaisakthi, P. Mirunalini, and C. Aravindan. Coral 
reef annotation and localization using faster R-CNNs, 
in Proceedings of the Conference and Labs of the 
Evaluation Forum, Lugano, Switzerland, September 
9-13, 2019, Working Notes. 

19. I. Alonso, A. Cambra, A. Munoz, T. Treibitz, and A. C. 
Murillo. Coral-segmentation: Training dense labeling 
models with sparse ground truth, in Proceedings of the 
IEEE International Conference on Computer Vision, 
Venice, Italy, October 22-29, 2017, pp. 2874-2882.  

20. Z. Wu, C. Shen, and A. Van Den Hengel. Wider or 
deeper: Revisiting the Resnet model for visual 
recognition, Pattern Recognition, Vol. 90, pp. 119-133, 
2019. 

21. A.S Meghana, S. Sudhakar, G. Arumugam, P. 
Srinivasan, and KB. Prakash. Age and gender 
prediction using Convolution, ResNet50 and 
Inception ResNetV2, International Journal of 
Advanced Trends in Computer Science and Engineering, 
Vol. 9, No.2, March-April 2020, pp. 1328-1334. 
https://doi.org/10.30534/ijatcse/2020/65922020 

22. A. Canziani, A. Paszk, and E. Culurciello. An analysis 
of deep neural network models for practical 
applications, arXiv preprint arXiv:1605.07678, pp. 1-7, 
2016. 

23. N. F. P. Setyono, D. Chahyati, and M. I. Fanany. Betawi 
traditional food image detection using Resnet and 
Densenet, in Proceedings of 2018 IEEE International 
Conference on Advanced Computer Science and 
Information Systems (ICACSIS) Yogyajakarta, 
Indonesia, October 27-28, 2018. pp. 441-445. 

24. J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object 
detection via Region-Based Fully Convolutional 
Networks, in 30th Conference on Neural Information 
Processing Systems (NIPS 2016), Barcelona, Spain, 
2016, pp. 379 387. 

25. L. Sun. Resnet on Tiny Imagenet, Stanford University, 
pp. 1-7, 2016. 

26. X. Yu and S.-H. Wang. Abnormality diagnosis in 
mammograms by transfer learning based on 
Resnet18, Fundamenta Informaticae, Vol. 168, No. 2-4, 
pp. 219-230, 2019. 

27. A. Mahbod, G. Schaefer, I. Ellinger, R. Ecker, A. Pitiot, 
and C. Wang. Fusing fine-tuned deep features for skin 
lesion classification, Computerized Medical Imaging 
and Graphics, Vol. 71, pp. 19-29, 2019. 

28. H. Jung, M.-K. Choi, J. Jung, J.-H. Lee, S. Kwon, and W. 
Young Jung. Resnet-Based vehicle classification and 
localization in traffic surveillance system in 
Proceedings of the IEEE Conference on Computer 



Šejla Džakmić  et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020,  54 - 61 

61 
 

 

Vision and Pattern Recognition, Honolulu, Hawaii, July 
21-26 2017, pp. 61-67. 

29. B. Lin, J. Xle, C. Li, and Y. Qu. Deeptongue: Tongue 
segmentation via Resnet, in Proc. IEEE International 
Conference on Acoustics, Speech and Signal Processing 
(ICASSP). Calgary, Alberta, April 15-20, 2018, pp. 
1035-1039. 

30. C. Sun, A. Shrivastava, S. Singh, and A. Gupta. 
Revisiting unreasonable effectiveness of data in deep 
learning era, in Proceedings IEEE International 
Conference on Computer Vision, Venice, Italy, October 
22-29, 2017, pp. 843-852.  

31. P. Jaccard. Étude comparative de la distribution 
florale dans une portion des alpes et des jura, Bull Soc 
Vaudoise Sci Nat, Vol. 37, pp. 547-579, 1901. 
 


