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ABSTRACT 

 

Wireless networks of the future can take advantage of 

beamforming techniques in the millimeter wave (mmWave) 

and terahertz (THz) bands to effectively handle the immense 

bandwidths required. This opens up a world of possibilities for 

the advancement of wireless technology and the potential to 

create even faster and more efficient networks. To achieve 

directional beamforming gain, it is essential to have a reliable 

beam management (BM) framework that can track the best 

uplink and downlink beam pairs using traditional exhaustive 

beam scans (EBS). However, this requires extensive beam 

measurement, which can result in a significant overhead, 

especially for higher carrier frequencies and narrower beams. 

To tackle this issue, machine learning (ML) algorithms based 

on artificial intelligence (AI) are being created to detect and 

understand intricate mobility patterns and environmental 

changes. This article presents an overview of the current AI-

based ML beam tracking (BT) techniques used in 

mmWave/THz bands for 5G and future networks, highlighting 

the essential features of an effective beam tracking 

framework. 

 

Key words: mmWaves, Artificial Intelligence, Machine 

learning, Beam Tracking 

 

1. INTRODUCTION 

 

The ever-increasing demand for bandwidth-heavy 

applications, such as Virtual Reality (VR), Augmented 

Reality (AR), and Ultra-High Definition (UHD) 3D video is 

leading to a steady rise in wireless data traffic, doubling every 

year.  This trend is expected to continue, indicating a massive 

surge in the demand for ultra-high data rates in the foreseeable 

future [1]. Predictions suggest that by 2030, global data traffic 

demand could reach up to 5 Zettabytes (ZB) each month, by 

2030  with data rates expected to peak at 100 Gbps. However, 

due to limited availability of spectrum resources poses a 

significant challenge in meeting the increasing demand for 

high-bandwidth requirements of next generation wireless 

communication [2]. The challenge is to provide enough 

wireless bandwidth to support the growing demand for high-

speed data transmission. The upcoming 6th Generation (6G) 

of wireless technology is expected to provide significantly 

higher data rates and more reliable connectivity than current 

legacy systems. The upcoming 6G wireless technology is 

expected to offer much higher peak data rates of 1 Tbps, which 

is approximately 50 times faster than the current 5G 

technology, this improved speed is predicted to enable new 

applications such as autonomous driving, holographic images, 

and telemedicine. Additionally, the latency of 6G is expected 

to be one-tenth of 5G which is 0.1 ms [3]. To fulfill the 

demanding need for enhanced transmission capacity, there 

exist two solutions that can meet the stringent data 

requirements. 

 

One solution to address the challenge of limited spectrum 

resources is to improve spectrum efficiency by utilizing 

techniques such as large-scale Multiple Input Multiple Output 

(MIMO) and high-order modulation. The second approach 

involves techniques such as dual connection, non-orthogonal 

multiple access (NOMA), and carrier aggregation, which can 

expand system bandwidth substantially and improve the data 

service capacity [4]. However, despite the advances made in 

these technologies, overcoming the bottleneck of wireless 

bandwidth scarcity remains a challenge. To tackle this 

problem, researchers are investigating the use of mmWave 

/THz frequency bands because they provide an abundant 

amount of bandwidth resources that can fulfill the need for 

high transmission capacity [5]. Despite its potential benefits, 

mmWave/THz communication presents some difficulties and 

obstacles. 

 

1) Limited range of communication:  This is because the high 

frequency of mmWave bands leads to significant attenuation 

in free space, which ultimately restricts the effective range of 

communication. 
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2) Low diffraction capability:  The practical application of 

mmWave is significantly affected by its sensitivity to be 

blocked by obstacles. This is because mmWave links are 

highly directional, making it challenging for the signal to 

propagate through diffraction and other means.  

 

The use of beamforming and large-scale phase antenna array 

technology can be a possible solution to address the 

challenges of limited spectrum resources in wireless 

communication. By utilizing a large-scale phased antenna 

array combined with beamforming techniques, it is possible to 

generate a highly focused beam directed toward a specific 

direction [6]. 

 
Figure 1: Exhaustive beam search for finding optimal Tx/Rx beam 

 

The energy of the mmWave signal can then be focused into a 

narrow pencil beam, which allows for efficient data 

transmission over a greater distance. The beamforming 

technique also enables space division multiplexing (SDM) of 

spectrum resources, which can significantly improve the 

allocated spectrum utilization [7].  This SDM techniques 

converge the signal coverage from all directions to a precise 

directional service, minimizing interference between beams 

and enabling the provision of different communication links 

in the same space, leading to significant improvement in the 

performance of the base station (BS).  

 

For directional transmission to be efficient, it is crucial that 

the beams of both the receiver and the transmitter are 

accurately aligned shown in Figure 1. The process of beam 

training, which involves obtaining current channel state 

information (CSI) and identifying the strongest channel path, 

can help in achieving this alignment. However, there are 

several challenges to achieving successful beam training and 

BT. Firstly, the frequent fluctuations in the wireless channel 

make beam training a time-consuming process, particularly in 

high-mobility scenarios. Secondly, the misalignment of beams 

can significantly decrease the link budget, resulting in 

decreased throughput or connection loss. Finally, in high 

mobility scenarios, it is essential to frequently switch to the 

optimal beam to ensure uninterrupted communication and 

seamless coverage for users. This process is crucial for 

maintaining the quality of the communication link. [8].  

 These processes of beam training and tracking must be 

executed with speed, precision, and reliability to establish a 

robust communication link capable of efficiently meeting the 

requirements of high data rates in future wireless 

communication networks. The changes in the Angle of Arrival 

(AoA) and Angle of Departure (AoD) over time can be 

utilized to facilitate the process of beam training by tracking 

their temporal correlations [9]. Recently, AI has gained 

immense popularity in wireless communication systems due 

to its impressive achievements in computer vision and natural 

language processing. In computer vision, AI has achieved 

exceptional performance in tasks such as object detection, 

segmentation, and recognition, in natural language 

processing, AI has made significant strides in areas like 

speech recognition, machine translation, and sentiment 

analysis. Furthermore, AI has been instrumental in advancing 

research enabling sophisticated applications like autonomous 

vehicles, medical diagnosis, and robotics. AI success in these 

domains has encouraged more researchers to explore its 

potential in wireless communication systems, AI research in 

wireless communication has demonstrated promising results 

in enhancing beam management, resource allocation, and 

other crucial aspects. 

 

To keep up with the fast paced progress in the field of 

mmWave/THz communication, we have integrated up-to-date 

research on BT using AI based ML techniques in this article. 

This study aimed at improving the understanding of the latest 

trends in the development of mmWave BT techniques using 

ML. The remaining sections of the article are organized as 

follows Section 2 discusses the general application scenarios 

of mmWave/THz beams. Section 3 provides a general 

introduction to ML. Section 4 is the main part of the article, 

and it presents a general overview of ML applications for 

beam tracking. Section 5 discusses some open research 

challenges in mmWave/THz beam tracking. Finally, section 6 

concludes the paper. 

 

2. APPLICATION OF MMWAVE/THZ BEAM 

TRACKING IN DIFFERENT SCENARIOS: 

 

To achieve optimal beamforming gain, beam training is 

utilized to specify the strongest channel path. However, 

frequent beam training in a fast-changing environment results 

in significant overhead. Once the strongest channel path is 

identified and the directional link is formed, even minor beam 

misalignment can lead to performance loss, reducing data 

rates or even causing unexpected link outages [10]. Reliable 

and efficient BT techniques, which result in maintaining the 

quality of directional communication links and reducing the 

overall beam training overhead, are crucial. Nonetheless, BT’s 

effectiveness and dependability need to be further enhanced, 

particularly in highly dynamic environments. Before delving 

into existing research on BT technologies, this article begins 

by outlining various application scenarios that take advantage 

of mmWave/THz beamforming technologies. The overview 

of different application scenarios is shown in Figure 2. 
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2.1 WLAN/WPAN: 

The 60 GHz band has been utilized for Wireless 

Local/Personal Area Network (WLAN/WPAN) 

communication technologies through the development of 

IEEE 802.11ad and IEEE 802.15.3c standards. This 

unlicensed bandwidth enables high-speed data transmission 

by utilizing mmWave bands for broadband multimedia 

applications over short distances at a low cost.  However, in 

this high frequency band, excessive path loss reaching (15 

dB/km) poses a significant challenge to the link budget, 

improves link security, and reduces interference. 

Additionally, beamforming, which results in a pencil narrow 

beam, causes a high speed connection. However, it becomes 

very sensitive to misalignment leading to interruptions which 

results in wireless link instability [11]. 

 

 
Figure 2: mmWave/THz beam application scenarios 

2.2 Cellular Networks 

The 3rd Generation Partnership Project (3GPP) has 

standardized the New Radio (NR) access technology for 

Release 15 to address the surge in data traffic and connectivity 

[12][3]. The increasing mobile communication volume and 

connection density of up to 106/𝑘𝑚2 have raised the maximum 

data rate requirement to 10 Gb/s, leading to a need for wider 

wireless channel bandwidth. To meet these challenges, 

mmWave/THz technology with its narrow beam, short 

wavelength, and flexible properties is a promising solution for 

ensuring reliable communication quality [13]. 

2.3 V2X Communications 

As the number of vehicles on the road has increased, traffic 

congestion and related issues such as safety and 

environmental preservation have become significant 

problems. Intelligent Transportation Systems (ITS) using 

V2X (Vehicle to Everything) communication have emerged 

as a potential solution. Dedicated Short-Range 

Communication (DSRC) based on Vehicular Ad hoc 

Networks (VANET) and Cellular-V2X (C-V2X) have been 

studied as two main types of V2X communication protocols 

[14]. For high-level autonomous driving cars, 3GPP Release 

16 requirements specify a transmission rate of more than 1 

Gbps with a delay of less than 3 ms for collision avoidance in 

the collective perception of environment scenario [15]. 

However, BT in mmWave/THz V2X communication is time-

consuming and challenging in mobile scenarios. Sensing 

information can help obtain the relative positions of vehicles, 

reducing beam searching space and decreasing latency. 

Accurate and low-latency BT is still a challenge due to 

significant changes in the AoD and AoA in mobility scenarios.  

[16]. 

2.4 High Speed Train (HST) 

It is anticipated that the HST will provide a sufficient quality 

of service while enabling rapid mobility up to a speed of 500 

km/h. However, the HST scenarios present challenges such as 

rapid movement, frequent channel changes, and significant 

Doppler frequency offsets. The use of mmWave/THz and BT 

technology can effectively address these challenges and 

provide high-quality data services in HST scenarios [17]. 

 

3. MACHINE LEARNING FOR MMWAVE BEAM 

TRACKING 

 

There has been extensive research conducted on traditional 

beam tracking techniques, which employ Bayesian statistics 

such as the Kalman Filter [18], Extended Kalman Filter [19], 

Unscented Kalman Filtering [20], and Particle Filter [21]. 

These methods have been studied extensively in the literature 

and are widely adopted for BT in various applications. 

However, this paper does not provide an in-depth analysis of 

conventional BT approaches. Instead, it focuses more on AI 

based ML solutions for mmWave/ THz frequency bands in the  

following sections. The reason behind this is that AI/ML is 

believed to be a crucial aspect of 5G and beyond networks and 

is expected to overcome the shortcomings of traditional BT 

methods.  

 

ML allows computer systems to learn and improve 

automatically from experience without being explicitly 

programmed, it involves training algorithms on data. There 

are several types of machine learning algorithms, including 

Supervised Learning (SL) - In this type, the algorithm is 

trained on labeled data with known inputs and corresponding 

outputs. Unsupervised Learning (USL) - In this type, the 

algorithm is trained on unlabeled data and identifies patterns 

and relationships within the data without any prior knowledge 

of what it represents. Reinforcement Learning (RL) - This 

type of algorithm learns by trial and error. It is trained to make 

decisions based on a set of rules, and it receives feedback on 

its actions to improve its decision-making abilities. 

 

4. STATE OF THE ART 

 

This section covers a brief introduction of ML/AI based 

mmWave/THz BT approaches, prior research on ML-based 

BT techniques can be categorized into three primary groups: 

USL, SL, and RL. Furthermore, SL techniques can be 

categorized into two groups based on their use of auxiliary 

information: auxiliary information-assisted BT and non-

auxiliary information-assisted BT, Table 1 shows the overall 

summary of BT related research, presented in this article. 
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Table 1: A brief summary of ML based beam tracking algorithm with dataset tools and performance evaluation 

 

4.1 Supervised Learning without Auxiliary Information  

Among the various ML techniques, SL is commonly used 

because of its simplicity. In addition to BT, it has multiple 

applications in wireless communication networks such as data 

compression, error correction codes, power management, 

mobility management, and channel estimation. Several well-

known supervised learning algorithms include long short-term 

memory (LSTM), recurrent neural networks (RNNs), 

convolutional neural networks (CNN), support vector 

machines (SVM), and K-nearest neighbors (KNN). 

4.1.1 Deep Neural Networks (DNN) 

DNN is a type of artificial neural network that consists of 

multiple layers of interconnected nodes or neurons consisting 

of weight and biases. DNNs refine their precision by 

analyzing training data and gaining the ability to perform 

intricate tasks. Because of their effectiveness in AI and 

computer networks, they have been extensively studied to 

enhance BT processes. In [22], the author presented a 

combined scheme that utilizes a DNN and LSTM, where DNN 

is utilized to learn the intricate relationship between the 

received beam patterns and CSI. After channel estimation, 

LSTM is utilized to track the specific channel with decreased 

training overhead. In [23], a DNN-based solution for hardware 

constrained MIMO system is proposed where the predefined 

DFT codebook is utilized and DL learns the specific codebook 

for the surrounding environment and location where more 

users are located, this environment adaptability results in 

overall improvement of BT. Similarly, in [24], a hierarchical 

beam alignment technique combined with DNN was used to 

design a probing codebook by learning the environmental 

features of the specific location. While training, the BS 

captures the CSI channel matrix by scanning wider beams. 

The DNN then utilizes this matrix to modify the weights of 

the beam forming antennas for the wider beams.  

 

Once the site-specific codebook for wider beams has been 

learned, the DNN predicts narrower beams for data 

transmission without any additional training. Simulation 

results, which were conducted using both ray tracing and the 

Category  Algorithm Ref. Data Generation Performance Evaluation Pros & Cons 

  [22] 
DeepMIMO [45] 

Ray tracing Wireless Insite[49] 
MMSE, Effective 

achievable rate 

 

Without Auxilary 

information Assisted 

Supervised Learning 

Deep Neural 

Networks 

[23] 
Ray Tracing 

DeepMIMO [45] 
Spectral Efficiency 

 

[24] 
Ray Tracing 

Wireless Insite[49] 
Avg. SNR, beam 

Alignment Accuracy 

Higher Precision and 

wide applicability at the 

cost of huge training 

data and long training 

time. Lower online 

complexity due to offline 

training.  In case of 

environmental change 

retraining is required  

[25] 
Real world Data 

Deep Beam[46] 

Beam Alignment accuracy, 

AoA accuracy 

Long Short-

Term Memory 

Networks 

[27] 
Ray tracing 

QuaDRiGA[51] 

Outage probability AoA 

Error 

[28] Ray tracing Wireless insite[49] Spectral Efficiency 

[29] Simulations 
Prediction accuracy, 

beamforming gain 

[30] Cost200 Channel MSE, AoA   

Auxiliary Information 

Assisted Supervised 

Learning 

Location 

Information 

[31] 
Wireless Insite[49] 

Ray Tracing 
MSE, beam Power 

Relying solely on 

additional information 

makes these methods 

less reliable if the 

information used is 

either inaccurate or not 

available. 

[32] 
Wireless Insite[49] 

Ray Tracing 

Spectral Efficiency, beam 

training, power loss 

[33] 
Wireless Insite[49] 

Ray Tracing 
Misalignment Probability 

Sub 6 GHz CSI 
[34] Ray tracing  

accuracy, spectral 
efficiency 

[35] Simulation Accuracy of Prediction 

Other Sensory 

Information 

      [37] 

      [38] 
Simulation, ViWi 

Framework [52] 
Beam Prediction Accuracy 

 

Reinforcement 

Learning 

Deep Q-

Networks and 

Q-Learning 

      [39] Simulation 
Spectral efficiency, 

alignment probability 

No need for large 

training data, and lower 

accuracy due to the 

online training process. 

Able to adapt to 

changing environments 

at the expense of 

increased online 

complexity and longer 

convergence time. 

      [40] Simulation 

Multi Armed 

Bandit 

      [41] Real World data 
Misalignment  

Probability  

      [42] Simulation Spectral efficiency 

      [43] Simulation 
Misalignment Probability,  

spectral efficiency 
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DeepMIMO [45], reveal that this approach to designing a site-

specific probing codebook outperforms traditional 

hierarchical methods with decreased overhead and resulting in 

better accuracy. However, the approaches presented in 

references [22] and [23] require knowledge of the CSI, which 

can be a high-dimensional complex channel matrix because of 

large scale   MIMO utilization and extremely challenging to 

obtain in the mmWave/THz band. CNN has been developed 

to decrease the computational complexity of DNN by utilizing 

sharing parameters. Traditionally, they are used in tasks such 

as image classification, pattern recognition, and computer 

vision [25]. The DeepBeam solution, presented in [26], is a 

BM method based on a CNN that leverages the useful 

information extraction capabilities of CNN to passively 

eavesdrop on data transmissions in a network and infer the 

AoA and beam identifier. The simulation results demonstrate 

that DeepBeam CNN achieves high accuracy in beam 

prediction, with up to 77% and 99% accuracy for 12 and 5-

beam codebooks, respectively. Moreover, the study indicates 

that for a 12-beam codebook, avoiding excessive search 

during the initial beam establishment can reduce the latency 

by seven times. Another significant contribution of this study 

is the release of an experimental dataset that is publicly 

available for further research purposes [46]. 

4.1.2 Long Short-Term Memory Networks (LSTM) 

LSTM, which is a type of RNN architecture, is designed to 

handle the issue of vanishing and exploding gradient descent 

in standard RNN. LSTM networks use a memory cell to keep 

track of information over a sequence of inputs, allowing them 

to selectively forget or remember certain pieces of information 

and hidden details as needed. This makes them well-suited for 

tasks that involve processing sequential data, such as natural 

language processing, speech recognition, and time series 

analysis, as a result of its capability to learn hidden details and 

recognize long-term relationships within input data, the 

LSTM approach has been widely studied to improve beam 

management and BT procedures [47] [22]. In [27], a solution 

based on LSTM was proposed for beam tracking and 

estimating the AoA over certain paths. The LSTM model 

takes the received signal as input and past AoA estimations as 

input and leverages the fact that certain paths exhibit 

sequential changes in UE parameters due to mobility.  In [28], 

the LSTM approach for BT in a multi-input single-output 

(MISO) vehicle mmWave system is presented. This technique 

comprises two stages of channel tracking. In 1st stage, the UE 

sends pilots signals to all BS where each BS estimates the 

channel and predicts the optimal beamforming vector. At the 

same time, all the BSs sent the estimated channel to a 

centralized cloud where all channels are integrated and fed as 

input to the LSTM model where LSTMs are trained based on 

integrated channels. In the 2nd stage, the trained LSTM model 

will predict the next channel in upcoming coherence time, 

where there will be no need for further pilot training signals 

In [29] to take advantage of the feature extraction abilities 

offered by a CNN, it is employed alongside LSTM to capture 

spatial correlations present in beam domain images of both 

high and low resolutions , by employing a multi-resolution 

codebook, which consists of wide and narrow beams, low-

resolution beam domain images are acquired through wide 

beam measurements, Subsequently, these images serve as 

input to an LSTM-based CNN model, which learns the 

correlation between low-resolution and high-resolution beam 

domain images and predicts the quality of narrow beams, 

Simulation results are performed using wireless Insite [49]..  

In a recent study [30], a combination of a sequential Bayesian 

estimation framework and an LSTM prediction model is 

described to enhance the performance of the BT method. The 

method utilizes a DFT codebook-based approach, which relies 

on the channel power leakage property to estimate the AoD 

and main LOS path deviation. The model also proposes 

optimal neighboring criteria (ONC) and maximum probability 

criteria (MPC) for selecting narrow beams while the user is 

moving at high speed. The ADAM optimizer [50] with a 

cross-entropy loss function for backpropagation is 

implemented. The simulation results achieved perform better 

compared to the traditional Kalman filter [48] and LSTM [27] 

methods in terms of BER and beamforming gain. 

4.2 Auxiliary-Information-Assisted SL 

In high-speed scenarios, measuring beams can be time-

consuming, leading to increase overhead. One potential 

solution is to utilize ML techniques to predict optimal beams 

based on auxiliary information shown in Figure 3, such as the 

location and orientation of the user equipment and sub-6 GHz 

CSI. Furthermore, sensor-based information, such as LIDAR 

and radar, is increasingly being employed for beam 

management in mmWave/THz networks. 

 

 
Figure 3: Auxiliary information assisted ML model 

4.2.1  Location Information 

To effectively track the optimal beam the UE location can be 

utilized to decrease the overhead of beam training. In [31], the 

authors proposed a coordinated beamforming approach that 

utilizes radio frequency signatures obtained from received 

pilots at multiple base stations.  On the basis of the received 

pilots, they trained a CNN model to forecast the highest 

possible rate for each base station beam. The method then 

chooses the beam with the best rate of prediction.  The use of 
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auxiliary information in the form of location was further 

explored to address BT challenges in V2I [32] [33]. In [32] 

the author developed a database for storing beam pairs and 

quantized location bins. In [33], they proposed a learning 

model that could handle receiver locations that are not 

discrete. In [34], the author exploited an SL approach that 

involved SVM, KNN, and logistic regression algorithms for 

5G new radio (NR) mmWave beam tracking. They utilized the 

CSI matrix and UE location information collected at the base 

station to train the ML models. During the prediction phase, 

the optimal narrow beam is accurately predicted without the 

need for additional CSI reports, which allows for more data 

transmission to take place. 

4.2.2 Sub 6 GHZ CSI 

The channel gains of the mmWave and sub-6 GHz interfaces 

exhibit spatial correlation in line-of-sight situations, as per the 

experimental results in [53]. In [35], this correlation was 

utilized to obtain fingerprints for UE by acquiring a power 

delay profile from sub-6 GHz CSI. During the training phase, 

an EBS is performed shown in Figure 1, then using a DNN 

technique that estimates the correlation between the best beam 

in the mmWave link and the sub-6 GHz power delay profile. 

After training, with sub-6 GHz CSI as input, DNN was used 

to indicate the optimal beam indices for the mmWave link. 

Simulation results show that compared to other traditional BT, 

this approach achieves a higher probability for predicting 

optimal narrow beam. In [36], a similar method was 

suggested, where a CNN was applied to a multi-classification 

task for forecasting the mmWave optimal beam. In [37], a 

novel approach was introduced that leverages previously 

obtained sub-6 GHz CSI instead of instantaneous low 

frequency CSI. Additionally, an LSTM model was employed 

to predict the best beam between two sub-6 GHz CSI 

estimation instances, aiming to enhance the accuracy for beam 

alignment and beamforming gain. According to simulation 

results, this method results in an overall enhancement of the 

beamforming gain. 

4.2.3 Sensors/Camera Information 

To reduce the overhead of beam management in the 

mmWave/THz bands, environmental sensing/camera 

information can be used.  In [38], a technique is introduced 

that predicts the best narrow beam index using a residual 

network. This network employs visual data acquired from 

cameras installed in mmWave base BS to make this 

prediction. Likewise, in [39], cameras mounted on drones 

were utilized to gather visual data, which enabled rapid beam 

prediction in mmWave frequency bands. The authors 

validated their approaches by testing them on publicly 

available datasets [53] and found that they were able to 

accurately predict the best beams. 

4.3 Reinforcement Learning (RL) 

The methods discussed in sections 4.1 and 4.2 require 

significant training and are supervised, meaning they may not 

perform well in untrained situations, which limits their 

usefulness. To address this issue, RL, which involves online 

learning, is better suited to more general scenarios. In this 

section, we will have a brief discussion of mmWave/THz BT 

techniques using RL. 

4.3.1 Deep Q-Networks and Q-Learning 

Q-Learning is an ML algorithm employed in RL to determine 

the best policy for an agent in a given environment. It is a 

model-free approach that updates a Q-function (quality) 

iteratively, which estimates the expected future reward for 

each state-action pair. The Q-function is updated utilizing the 

Bellman equation, and the agent selects the action with the 

highest Q-value in each state to optimize its total expected 

reward. Q-Learning is valuable in complicated and dynamic 

environments where it is difficult to define a mathematical 

model of the system. However, it often requires multiple 

iterations before it can converge to the optimal solution, which 

can limit its usefulness in fast-moving UE scenarios. To speed 

up the beam-tracking process in such scenarios, researchers 

have proposed running multiple Q-learning agents in parallel, 

as described in the reference [40]. Additionally, a BT method 

based on deep Q-networks (DQN) was suggested in [41]. This 

approach can adapt to changes in the environment by adjusting 

the range of beam probing, making it suitable for UE with high 

speed. The assessment of this approach, considering both 

slow- and fast-moving UE, shows that it converges and learns 

faster than Q-learning. 

4.3.2 Multi-Armed Bandits (MAB) 

Multi-armed bandit (MAB) is a type of ML algorithm 

commonly used in decision-making scenarios that involve a 

trade-off between exploration and exploitation. It is named 

after a hypothetical scenario where a gambler is faced with a 

row of slot machines, referred to as one-armed bandits, and 

must decide which one to play. The initial research studies that 

presented BT as a multi-armed bandit problem can be found 

in references [42] and [43]. In these studies, researchers 

proposed using MAB algorithms for BT solutions in different 

scenarios, such as utilizing auxiliary information and high-

speed scenarios. However, these approaches may lead to beam 

misalignment in mmWave channels that frequently change. 

To overcome this issue, the authors of reference [44] proposed 

a new approach that combines the beam scanning subspace 

and the beam index difference as an arm. This approach can 

better adapt to fast-changing channels and reduce the BT 

overhead. 

 

5. OPEN RESEARCH PROBLEMS 

5.1 Machine Learning 

By utilizing its abundant spectrum resources, mmWave 

communication can achieve data rates of Gbps through the use 

of large antenna arrays. However, due to the rapid changes in 

the channels in high speed scenarios, beam tracking can result 

in excessive overhead that is not desirable. Unlike traditional 

methods of beam training and tracking, ML aims to equip 

algorithms with the ability to gather and use relevant data 

automatically, thereby reducing the need for extensive beam 

search. Leveraging ML capabilities results in achieving fast 
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and efficient establishment of mmWave connections, while 

also acquiring situational awareness. Specifically, DL has 

enormous potential in acquiring situational awareness, 

including capturing channel responses and identifying unused 

spectrums. DL can also be utilized in tasks like classification 

and optimal beam selection. However, it causes huge 

complexity in identifying beam weight. In contrast, RL is 

advantageous in addressing problems that involve sequential 

decisions. By combining DL and RL, beam training and 

tracking technologies can become intelligent, flexible, and 

capable of efficiently adapting to rapidly changing 

environments. 

5.2 THz Bands Beam Tracking 

As wireless communication systems experience a rapid 

increase in data traffic, the frequency range (0.1-10) THz band 

is being considered for future cellular as one of the possible 

solutions to support data rates of up to 10 Gbps. In THz 

communications, implementing the beamforming technique is 

critical to counteract signal fading and distortion that occur 

due to the loss of signal strength and the multi-path effect 

during wireless transmission. So, one of the future challenges 

for THz wireless communication includes the effective 

beamforming design strategies, where more robust and 

accurate beam tracking techniques utilization will be required 

implementing AI and ML can effectively solve these 

problems. As beamforming depends on CSI, information 

about the AoD and AoA is critical. However, due to the higher 

frequencies and larger antenna arrays used in THz 

communication, information about AoA, AoD, and beam 

tracking require significant computational complexity. 

Developing efficient, accurate, and reliable beam tracking 

techniques is an urgent problem that needs to be addressed. 

 

6. CONCLUSION 

 

The demand for wireless communication with high capacity 

and data rates has grown rapidly, and mmWave/Thz 

frequency bands are seen as a solution for 5G and beyond. 

However, due to the small wavelength of these frequencies, 

directional communication using beamforming is necessary to 

overcome path loss. If the beam is not tracked properly, it may 

result in significant training overhead, which is not desirable. 

In conclusion, beam tracking is a crucial aspect of mmWave 

/THz communication systems that aims to maintain high data 

rates and improve system reliability. Various BT techniques 

have been proposed, including supervised learning and 

reinforcement learning. The use of auxiliary information, such 

as location, sub-6 GHz CSI, and sensor-based information, 

can significantly reduce the overhead of BT. Reinforcement 

learning, especially MAB, and DQN, can adapt to changes in 

the environment and are better suited for general scenarios. 

However, the effectiveness of each technique depends on the 

specific scenario, and further research is necessary to develop 

more robust and efficient BT methods for mmWave and THz 

communication systems. 
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