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ABSTRACT 

Multi-class classification is a fascinating field to study. 

However, evaluating the classification performance of 

classifiers is difficult. Class indices such as accuracy, 

precision, recall, and F-measure, Kappa and area under the 

curve of receiver operating characteristics (AUC), can be used 

to evaluate classification performance. These indices describe 

the classification results achieved on each modelled class. 

Several measures have been introduced in the literature to deal 

with this assessment, the most commonly used being accuracy. 

In general these metrics were proposed to address binary 

classification tasks, whereas multiclass classification is the 

more difficult and currently active research area in machine 

learning (ML). In this paper, we intended to compare 

classification performance of nine supervised machine 

learning algorithms based on three learner types: statistical 

learner, rule-based learner and neural-base learner by 

considering accuracy, precision, recall and F-measure and 

ROC area achieved on four different datasets from UCI 

machine repository. Among these, Random forest has been the 

best performance in both 10 fold cross validation and 

percentage split with overall average accuracy of predictive 

power of 92.20% and 91.76% respectively, with less 

variability, whereas Naïve Bayes has the worst also in both 10 

fold cross validation and percentage split by average correct 

classification performance of 79.18% and 76.92% 

respectively, and also with higher variability next to Decision 

Table.  

 

Key words: Classifier performance, Multiclass classification, 

neural learner, rule based learner, statistical learner, UCI 

repository dataset  

 

 

1. INTRODUCTION 

Currently, a large amount of information is widely available in 

different formats on various media channels. Machine 

learning, a branch of Artificial Intelligence (AI), is the most 

recent and powerful data mining and representation technique. 

Artificial Intelligence attempts to upgrade computer programs 

to achieve tasks that usually need human involvement, like 

decision-making. Having the right decision for a specific 

problem is a key factor for achieving what we need. Many 

machine learning techniques are used for both classification 

and regression problems. Classification is used when the 

prediction goal is a discrete value or a class label. When the 

prediction goal is continuous, regression is the appropriate 

method [1]. 

Classification plays an important role in areas of gene 

selection [2], image classification, medical diagnosis [3-4], 

economic analysis, risk analysis [5-6], bioinformatics analysis 

[7] and many others [8]. There are only a few extensive 

empirical studies comparing classification performance of 

learning algorithms. Some of these studies are [7 and 9-12] 

which was mainly focused on binary response variables.  

Multiclass-classification is the emerging research area that a 

problems arise in a condition where there are more than two 

levels in the response variable [13]. Currently, there are many 

multi class-classification algorithms. Some of these 

approaches are multinomial logistic regression (MLR), Naïve 

Bayesian methods, neural networks, k-Nearest Neighbors, 

random forest, decision trees, and hierarchical classification 

schemes [14]. MLR is simple to implement, and is very 

effective in handling multi-classification problems in the 

modern era [15]. Support vector machine (SVM) were 

originally developed for binary classification [16-17]. 

However, currently many researches are trying to use SVM to 

solve multiclass classification problems [18].  
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In this paper, we focus on comparing the classification 

performance of the training dataset and the predictive power of 

the unseen dataset of different classifiers such as: J48 (tree 

based), Random Forest (tree based), Multilayer Perceptron 

(MLP) is a class of feed forward artificial neural network 

(ANN), IBK (k-nearest neighbor), sequential minimal 

optimization (SMO) works as of support vector machines, 

Naïve Bayes, PART, Decision Table, and Logistic (it works 

by using Multinomial logistic regression model with ridged 

estimator) were compared in different set of problems, and the 

second objective of our research is distinguishing which 

classifier is best to which type of dataset. To evaluate the 

classification performance and prediction power of the 

classifier we used different metrics such as: accuracy, 

weighted Sensitivities/Recall, weighted Specificities, 

weighted Precision, weighted F-Measures, weighted area 

under ROC and kappa statistic for 6 dataset from UCI machine 

learning repository using R statistical software and WEKA 

data mining tool.  

The computational complexity considers both the model train 

time as well as the test set evaluation time, rather than placing 

emphasis on only one of these, since some of the algorithms 

need more time to classify the test set than training the model. 

The machine configuration was Intel(R) Core(TM) i5-8400 

CPU @ 2.80GHz and 4 GB RAM. 

2.  THE THEORETICAL BACKGROUND OF 

LEARNING ALGORITHMS AND THEIR 

PROCEDURE  

This section briefly describes all the algorithms that we 

considered in the experimental design and their procedure. 

The algorithms are belonging to the category of supervised 

learning methods, but we classify them into statistical learning, 

rule-based and neural algorithms, as described in section 

below. 

In this paper the researcher has been followed the analysis in 

three different categories; named Statistical learner, 

Rule-based learner and Neural-based learner 

 

2.1 Statistical Learner 

Statistical learning theory is based on the machine learning 

framework in the field of statistics and functional analysis 

[19-20] statistical learning theory deals with the problem of 

finding predictive functions based on data. Statistical learning 

theory has been successfully applied in the fields of computer 

vision, speech recognition and bioinformatics. There are some 

statistical learning algorithms working for multiclass 

classification such as: support vector machine, multinomial 

logistic regression, multilayer perceptron and linear 

discriminant analysis are few of them.  

2.1.1  Support Vector Machine (SVM)  

Recently, after Vapnik et al. introduced SVM in the 

mid-1990s, statistical learning theory has received more 

attention from the pattern recognition community. SVM is an 

advanced version of the generalized portrait algorithm, which 

was developed in Russia in the late 1960s [21]. The working 

principle of SVM is similar to NN and C4.5. We can assign 

three work phases to the SVM; the first is the input phase or 

the conversion phase, then the learning phase, and finally the 

decision-making phase. NN and C4.5 did not do any important 

work in the first stage. But SVM has completed its most 

important work, transforming data by mapping the kernel to a 

high-dimensional feature space. The kernel function can be a 

polynomial, a Gaussian function, or many other functions. 

Theoretically, high-dimensional space can be infinite and 

linear discrimination is almost possible. SVM begins to learn 

data in high-dimensional feature space. In the learning stage, it 

is freed up by minimizing the size of the 

separation-constrained weight vector (based on the optimal 

hyperplane) and by using multiplier parameters (such as 

Lagrange multipliers) problem. At this stage, SVM only 

extracts support vectors. Based on the information in the 

support vector, SVM generates the final output function at the 

decision-making stage. Unlike NN and C4.5, SVM does not 

consider all samples to construct the final decision function 

with. Also, unlike iterative methods or pruning, SVM always 

gets a unique solution for the function of decision. Another 

characteristic of SVM is that it minimizes the structural risk of, 

rather than the empirical risk considered by most classical 

learning algorithms of [22-24]. WEKA considers SVM and 

minimum sequential optimization (SMO) of the polynomial 

kernel as 1 degree as the default configuration [25]. Naive 

Bayes (NB) is a simple classifier based on the classical 

statistical theory "Bayes theorem", it calculates maximum 

posterior probabilities based on the assumption that the 

attributes in training samples are independent and there are no 

hidden or latent attributes in the prediction process [26]. IBK 

is an instance-based learning approach like the k-nearest 

neighbor method. The basic principle of this algorithm is that 

each invisible instance is always compared with the existing 

instance using the distance metric; the most common 

Euclidean distance and the nearest existing instance are used 

to assign classes to the test samples [25]. The default setting of 

WEKA is k = 1. Compared with other algorithms, it takes 

longer to predict the category of test samples.  

Support vector machine, the statistical learning algorithm has 

some advantages over the decision tree and NN algorithm. 

SVM takes the dot product of feature vectors to construct the 

optimal hyper-plane instead of using surfaces, clusters or 

interpolation as NN or decision trees. Therefore, it is less 

likely to lose important information during the modeling 

process [27]. 

2.1.2 Support Vector Machine (SVM) Procedure for   

Multiclass Classifications  

SVMs were originated to perform binary classification [28]. 

However, applications of binary classification are very limited 

especially for more than two classes like remote sensing, land 

use land cover classification and so on. A number of methods 
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proposed by researchers to generate multiclass SVMs from 

binary SVMs are still a continuing research topic. There are 

two main approaches of SVMs for multiclass classification - 

one against one and one against all approach [29]. The 

researcher used pairwise or one – vs – one approach to handle 

multi-classification problem.  

Alternatively, generating many binary classifiers to decide the 

class labels is a method that attempts to directly solve a 

multiclass problem [30-33]. This is attained by adapting the 

binary class objective function and adding a constraint to 

every class. The modified objective function allows 

simultaneous computation of multiclass classification as given 

by [31], 

 
subject to the constraints, 

 for and,  

for  

where {1, . . ., M} are the multiclass labels of the data 

vectors and r ∈{1, . . ., M}\  are multiclass labels excluding 

. 

As
 
[30, 32, 33] mentioned, the results from this method and the 

one-against -all are similar. But, in this method, the 

optimization algorithm has to consider all the support vectors 

at the same time. Therefore, it may be able to handle large data 

sets; but, the memory and resulting computational time may be 

very high. In general, it can be said that the choice of a 

multiclass method depends on the problem in hand. A user 

should consider the accuracy requirement, computational 

time, resources available and nature of the task. For example, 

the multiclass objective function approach may not be suitable 

for a problem that contains a large number of training samples 

and classes due to the requirement of large memory and 

extremely long computational time. 

2.1.3 Multinomial Logistic Regression Model 

Multinomial logistic regression is used to predict categorical 

placement in or the probability of category membership on a 

dependent variable. The independent variables can be 

dichotomous (i.e., binary) or continuous (i.e., interval or ratio 

in scale) [34]. It is a binary logistic regression extension that 

includes native support for multiclass classification issues. By 

default, logistic regression is limited to two-class classification 

tasks. Some extensions, such as one-vs-rest, can be used to 

solve multi-class classification issues with logistic regression, 

but they require the classification problem to be split into 

many binary classification problems first. The multinomial 

logistic regression algorithm, on the other hand, is an 

extension of the logistic regression model that involves 

changing the loss function to cross-entropy loss and the predict 

probability distribution to a multinomial probability 

distribution to support multi-class classification problems 

natively [35]. Compared to logistic regression, it is more 

general since the response variable is not restricted to only two 

categories. As [36] its name is logistic in WEKA to build a 

model it uses multinomial logistic regression model with a 

ridge estimator.  

2.2 Rule-Based Learner 

There are many Rule-based learning algorithms, one of them is 

decision trees, it is also known as classification trees or 

hierarchical classifiers, is a divide and conquer or top-down 

induction method, there are many research have been done 

about decision tree in the Machine learning community. C4.5 

was eventually extended to J48, an open source Java 

implementation of the C4.5 algorithm based on WEKA, which 

was an ID3 extension. J48 also considers missing values, 

decision tree pruning, continuous attribute value range, rule 

derivation, and other functions. The WEKA tool provides a 

variety of tree-pruning choices. The trim can be utilized as a 

precise tool in the event of suspected over-fitting. Other 

algorithms repeat the classification process until each sheet is 

pure, which means the data classification must be as accurate 

as possible. The algorithm develops rules, and the data's 

unique identity is determined by those rules [37]. 

OneR is a very simple and fast single-level decision tree 

algorithm [37]. OneR is selects attribute one by one from the 

data set and generates a different set of rules based on the error 

rate of the training set. Ultimately, it chooses the attributes 

with the smallest error rule and builds the final decision tree 

[38]. PART is a partial decision tree algorithm, which is the 

development version of the C4.5 and RIPPER algorithm. The 

main characteristic of the PART algorithm is that it does not 

require global optimization like C4.5 and RIPPER to generate 

adequate rules [39]. However, decision trees are sometimes 

more problematic because the size of the tree may be too large 

and may not work well for classification problems [40]. 

2.2.1 Random Forest  

Breiman was the first to introduce Random Forests (Rf) [41] 

motivated by the previous work of Amit and Geman [42]. As 

Breiman mentioned, Random Forests can be used for either a 

categorical response variable for “classification,” or a 

continuous response, referred to as “regression.” Similarly, the 

predictor variables can be either categorical or continuous. 

From a computational point of view, Random Forests are 

appealing because they naturally handle both regression and 

(multiclass) classification. They are relatively fast to train and 

use for prediction, depend only on one or two tuning 

parameters, have a built in estimate of the generalization error, 

can be used directly for high-dimensional problems and can be 

easily implemented in parallel. Statistically, Random Forests 

are appealing because of the additional features they provide, 

such as: measures of variable importance, differential class 

weighting, missing value insertion, visualization, outlier 

detection and unsupervised learning. 

In machine learning community, random forest is popular and 

it can be used in ecological classification [43], land-cover land 

usage [44],
 
and medical data analysis [45], [46]. As Breiman 
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explanation random forest is an ensemble of tree structured 

classifiers. Each tree of the forest gives a unit vote, assigning 

each input to the most probable class label. It is a fast method, 

robust to noise and is a successful ensemble which can identify 

non-linear patterns in the data. It can easily handle both 

numerical and categorical data [46]. One of the major 

advantages of a random forest is that it does not suffer from 

over fitting, even if more trees are appended to the forest. 

In this paper, we focus on comparing the classification 

performance of the random forest model and other selected 

models. 

2.3 Neural-Based Learner 

During the 1960s, Nilsson introduced pattern recognition 

artificial intelligence based on Neural, as a threshold unit 

called a neural network (NN). Neural networks have become a 

method after the development of new algorithms, such as the 

multilayer perceptron (MLP), the radial basis function 

network, SOM, and BP. The MLP architecture consists of 

three layers of neurons, namely the input layer, the hidden 

layer, and the output layer, all connected by feedback weights. 

After receiving the input pattern, the NN passes the signal 

through the network to predict the output of the output layer. 

The NN then compares the predicted target value with the 

actual target and estimates the error to modify the weight. 

Minimize the scalar error function of the weights by repeating 

the learning process until the network produces the correct 

response to each input [46 - 47]. WEKA uses BP algorithm to 

train the model. BP uses gradient descent to minimize the error 

function. The main disadvantage of the BP algorithm is that it 

is slower than some other popular machine learning 

techniques, and it is easy to fall into the local minimum of the 

error function [48]. 

3. MATERIALS AND METHODS 

3.1 Data and Experiment  

Table 1: The details of datasets from UCI machine learning 

repository 

S/N Dataset  No. of 

Instance 

No. of 

Attribute 

No. 

of 

Class 

Type of 

Attribute 

1.  Page Blocks  5,473 11 5 Integer, 

Real 

2.  Dry_bean  13,611 17 7 Integer, 

Real 

3.  Letter 

Recognition  

20,000 17 26 Integer  

4.  Connect-4 67,557 43 3 Categorical 

In this paper we have used four multi-classification problem 

dataset. All the dataset in Table 1 has been taken from UCI 

machine learning repository [49], we can find the detail 

description of attributes and instance from the respective site. 

3.2 Evaluation of Classifiers Methodology 

3.2.1 Weighted Performance Measure 

There are various measures for evaluating the classifier 

performance of classification problem. No single measure can 

give us the whole story about the classifier performance. We 

used the most common two measures, accuracy and 

computational time on training dataset and test dataset for 

classifier performance evaluation. First, we use weighted TPR, 

weighted TNR, weighted precision, weighted recall, weighted 

ROC curve area and weighted F-measure, as suggested by [48] 

is help to minimize the impact of the imbalanced dataset. 

Secondly, we measure performance through a 10-fold 

cross-validation, since it is powerful to measure due to 

different reasons [48]. Finally, we try to minimize the impact 

of the imbalance between the distribution of the minority and 

the majority class by using the weighted F- measurement 

method, F-measure considers the weighted distribution of the 

data set as of [50] and then computing the weighted average 

area under the receiver operating characteristic (AUC-ROC). 

Each of the methods was trained (estimated) and tested using 

the 10-fold cross validation procedure and holdout methods as 

mentioned above, so that the results could be compared by 

using the same subsets of data for training and testing. 

The total classification rate (i.e. the proportion of correctly 

classified cases in the test set) is used to measure the 

performance of all models on each of the test samples, and a 

10-fold cross-validation procedure was used to test the models' 

generalization ability. In this paper, the cross-validation 

procedure (or leave k cases out, where k =1/10 of the total 

sample) is used, because it produces no statistical bias of the 

result because each tested sample is not a member of the 

training set [48]. Extensive tests on numerous datasets, 

according to [51], have shown that 10 is a sufficient value for 

 in the -fold cross validation. Following the 10-fold 

cross-validation procedure, the average of the total 

classification rate is computed and used to estimate a model's 

generalization error. Also, the classification rates of each class 

were observed in order to compute the sensitivity and 

specificity of the models. The sensitivity and specificity ratios 

were computed according to Simon and Boring [52]. 

  ,        

where  is the number of instance correctly predicted to have 

output class-1,  is the number of instances accurately 

predicted to have output other than class-1,  is the number 

of false negatives (the number of instances falsely predicted to 

have output of class-1), and  is the number of false positives 

(the number of instances falsely predicted to have output other 

than class-1). The type I error (α =1-specificity) and type II 

error (β =1-sensitivity) were calculated in order to compare the 

cost of misclassification produced by each of the models, 

whereas the likelihood for positives and likelihood for 

negatives in classification is computed according to: 

,          
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where  is likelihood for being class-1,while  is the 

likelihood for not being class-1, this is directly working for 

Adult and Mushroom dataset whereas for Connect-4 dataset 

  is being class-1 and  is not being class-1 or in other word 

the likelihood being class-2 or class-3, and so for other 

datasets.  

Some additional performance evaluations of classifiers 

considered in this paper are: 

i) Accuracy  

The accuracy of an algorithm is the measure of how correctly 

the algorithm classifies the unseen instances. It can be 

computed by the following formula: 

 

ii) Confusion matrix 

Accuracy is not the only way of evaluating the performance. 

Occasionally, we may need a more detailed picture of the 

performance of the classifier. One approach is a table called 

Confusion Matrix as shown in the following table [50]. 

Table 2: Confusion matrix for two classes 

Predicted Class 

Actual 

Class 

Positive Rate Negative Rate Total 

Positive True Positive 

Rate (TPR) 

False Negative 

Rate (FNR) 

p 

Negative False Positive 

Rate (FPR) 

True Negative 

Rate (TNR) 

n 

Total p‟ n‟ N 

The following rules can be extracted from the table above: 

Sensitivity = recall= TPR =   =  =  FNR 

Specificity = TNR =   =  FPR 

Accuracy =  =  

Error rate = 1- Accuracy =  

According to Visa, Sofia, et al, Sensitivity is the ratio of the 

positive examples that are correctly classified, whereas 

Specificity is the ratio of the negative examples that are 

incorrectly classified. Higher is better for accuracy, specificity 

and sensitivity. But, for the error rate, lower is better. A good 

classifier should be sensitive and specific with a higher degree. 

Table 3: Confusion matrix for multi classes (say  - class) 

 Actual number 

Class 1 Class 1 
 

Class  

P
re

d
ic

te
d

 

N
u

m
b

er
 

Class 1 
    

Class 2 
    

     

Class 

     

In this paper we used the following procedures to compute the 

weighted average precision (P), recall (R), and specificity (Sp) 

and Sensitivity (Ss) for each class , since all of our dataset is 

multiclass type of data. 

 

 

 
Overall accuracy =   

Where, the total numbers of false positive (TFP), false 

negative (TFN), and true negative (TTN) and true positive 

(TTP) for each class i will be calculated as follow: 

 

 

 

 
Finally, we can formulate the hold-out and cross-validation 

estimation by following [47]. Suppose the unlabelled sample 

space is , with corresponding labels . The labeled sample 

space χ = X  Y and S = { , , . . ., } is a dataset, which 

consists of  labeled samples, where  = { . 

The inducer (S, ) will denote the label assigned to an 

unlabelled sample   by the classifier built by the inducer on 

dataset S, i.e., (S, ) = (S) ). The cross-validation and 

hold-out estimation consider the dataset is independent and 

identically distributed and equal misclassification costs using 

a 0/1 loss function.  

The cross-validation method [48] is estimates the correct 

classification of average percentage for all folds. The 10-fold 

cross-validation method is splits a dataset by 10-fold. Each 

fold contains 90% of the samples to construct a model and the 

remaining is used to evaluate the model performance. Lastly, 

we estimate the accuracy is the overall number of correct 

classification averaged across all 10-fold.  

Suppose,  is the test set that contains sample  

and the cross-validation accuracy estimation is defined as: 

 

The hold-out method [50] is called the test sample estimation 

method. The very common procedure is 70% samples for the 

training set and the remaining for test set. Let us consider a 
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hold-out set  be a subset of  of size , and let  be \ . 

Now the hold-out estimation (HOE) is defined as [50]:  

 

We follow [50] to find the combined performance of the 

cross-validation and hold-out accuracy estimation for all given 

problems of a given classifier „percentage of correct 

classification‟ in our weighted performance measure 

methodology. 

iii) Receiver operating characteristics (ROC) curve and 

AUC 

In machine learning, performance measurement is an essential 

task. The area under a receiver operating characteristic 

(ROC) curve, abbreviated as AUC, is a single scalar value 

that measures the overall performance of a binary classifier 

[54]. We can use weighted AUC to check or visualize the 

performance of a multi-class classification problem. It is one 

of the most important evaluation metrics for checking any 

classification model‟s performance. It is also written as Area 

under the Receiver Operating Characteristics (AUROC). The 

AUC value is in the range [0.5–1.0], where the minimum 

value represents the performance of a random classifier and 

the maximum value corresponds to a perfect classifier (i.e., 

with a classification error rate equivalent to zero, or AUC = 

1). AUC is a robust overall measure to evaluate the 

performance of score classifiers because its calculation relies 

on the complete ROC curve and thus involves all possible 

classification thresholds. ROC is a probability curve and 

AUC represents the degree or measure of separability. It 

indicates how much the model is capable of distinguishing 

between classes [55]. 

iv) Kappa Statistic 

Cohen's kappa [56] was introduced as a consistency metric, 

which avoided the problem by adjusting the observed 

proportional consistency to, taking into account the amount of 

consistency expected by chance. For the last three decades, 

Kappa statistics have been mainly used in social sciences, 

biology and medical sciences [57]. However, in the context of 

expert systems, machine learning, and data mining 

communities, Cohen's Kappa has not received much attention 

as an accuracy measure. There are some research have been 

done in machine learning [58-60], in which the Cohens Kappa 

statistics are calculated as one of the measures of accuracy. 

Although it has some criticisms of the Kappa metric, it is 

statistically robust [61]. The Kappa Statistic measures the 

performance of a classifier compared to the classifier that 

makes predictions based only on random guessing. According 

to Viera and Garrett, the better the classifier, the closer the 

kappa statistic value is to one [62]. 

4. EXPERIMENTAL RESULTS OF REAL DATASET 

4.1 Performance Analysis 

 

Based on the analysis and observations from the Table 4, 10 

fold cross validation is relatively better than percentage split. 

The average correct classification performance of Random 

Forest in both 10 fold cross validation and percentage split is 

92.20% and 91.76% respectively; and followed by IBK.  

 
Table 4: Percentages of correctly classified instance for 6 dataset on 10 fold cross validation and percentage split using nine classifiers 

Dataset J48 Random 

Forest 

Multilayer 

Perceptron 

SMO IBK Naïve 

Bayes 

PART Decision 

Table 

Logistic 

10 

Fold 

CV 

% 

Split 

10 

Fold 

CV 

% 

Spli

t 

10 

Fold 

CV 

% 

Spli

t 

10 

Fol

d 

CV 

% 

Spli

t 

10 

Fol

d 

CV 

% 

Spli

t 

10 

Fol

d 

CV 

% 

Spli

t 

10 

Fol

d 

CV 

% 

Spli

t 

10 

Fol

d 

CV 

% 

Split 

10 

Fold 

CV 

% 

Split 

Page 

block 

96.88 97.44 97.50 97.

62 

96.1

3 

96.

41 

92.

93 

92.

08 

96.

02 

95.

68 

90.

85 

82.

16 

97.

00 

97.

02 

95.

63 

95.4

3 

96.46 96.95 

Dry 

Bean 

91.32 91.38 92.55 91.

92 

92.4

9 

91.

80 

92.

20 

91.

92 

90.

30 

90.

06 

89.

71 

89.

52 

91.

31 

90.

77 

88.

02 

87.3

6 

92.60 92.11 

Letter 

recognit

ion 

87.92 86.4 96.37 95.

67 

82.2

1 

82.

15 

82.

44 

81.

73 

95.

96 

95.

20 

64.

01 

64.

22 

89.

02 

87.

40 

64.

90 

63.3

2 

77.43 76.98 

Connect

-4 

80.90 80.58 82.36 81.

83 

81.8

8 

81.

77 

75.

86 

75.

76 

80.

90 

80.

25 

72.

14 

71.

77 

79.

27 

78.

26 

75.

27 

75.0

2 

75.75 75.72 

Ave. 

89.26 88.95 92.20 

91.

76 

88.1

8 

88.

03 

85.

86 

85.

37 

90.

80 

90.

30 

79.

18 

76.

92 

89.

15 

88.

36 

80.

95 

80.2

8 85.56 85.44 

Whereas Naïve Bayes for both 10 fold cross validation and 

percentage split is the worst, 79.18% and 76.92% respectively. 

Moreover, we can explain each classifier performance with the 

respective dataset accordingly, we can deduced for Page 

Block dataset, the performance of percentage split is relatively 

better except SMO, IBK, Naïve Bayes and Decision Table. 

But in the case of Dry_Bean, Letter recognition and Connect-4  

 

dataset 10 fold cross validation is relatively perform better 

than percentage split.  

Both Table 5 and Fig.2 shows that Random Forest is relatively 

outperform for all dataset except Dry_Bean dataset. But Naïve 

Bayes has least performance. Logistic is the better for 
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Dry_Bean dataset whereas Decision Table is the worst 

classifier.  

As we seen from Fig.1, the average value of 10 fold cross 

validation is relatively higher than the percentage split. 

Moreover that, Random forest is outperform over the other in 

both 10 fold cross validation and percentage split, whereas, 

Naïve Bayes has worst classification performance as compare 

as the rest eight classification algorithms.   

 

 

 
Figure 1: 10 Fold cross validation versus percentage split of average 

correct classification performance of instances for four dataset.  

 
Figure 2: Correct classification for10 fold cross validation using 

four dataset 
 

Table 5: Percentages of correctly classified instance of 10 fold cross validation using six dataset 

Dataset                                           Types of Classifiers  

J48 Random Forest MLP SMO IBK Naïve Bayes PART Decision Table Logistic 

Page Blocks  96.88 97.50 96.13 92.93 96.02 90.85 97.00 95.63 96.46 

Dry_Bean 91.32 92.55 92.49 92.20 90.30 89.71 91.31 88.02 92.60 

Letter Recognition 87.92 96.37 82.21 82.44 95.96 64.01 89.02 64.90 77.43 

Connect-4 80.90 82.36 81.88 75.86 80.90 72.14 79.27 75.27 75.75 

 

As we seen from Table 6, F-Measure (0.975), Roc area 

(0.991), and Kappa Statistic (0.866) of Random Forest is 

better than the others classifiers. The more the Kappa statistic  

value close to 1 is the better the classifier. The time taken to 

build a model of classifier multilayer perceptron (MLP) is 

(4.57 seconds) higher than the rest classifiers, so MLP need 

more time and space to build a model. 

Table 6: Weighted measure for each metrics and time taken to build model of 10 fold cross validation using 9 classifiers for page Block dataset 

Accuracy Metrics J48 Random Forest MLP SMO IBK Naïve Bayes PART Decision Table Multinomial Logistic 

TP Rate 0.969 0.975 0.961 0.929 0.960 0.908 0.970 0.956 0.965 

FP Rate 0.148 0.117 0.220 0.600 0.199 0.234 0.140 0.260 0.198 

Precision 0.967 0.974 0.959 0.932 0.959 0.938 0.969 0.953 0.963 

Recall 0.969 0.975 0.961 0.929 0.960 0.908 0.970 0.956 0.965 

F-Measure 0.968 0.975 0.959 0.909 0.959 0.919 0.969 0.954 0.963 

ROC Area 0.939 0.991 0.968 0.737 0.880 0.940 0.949 0.970 0.987 

Kappa Statistic 0.832 0.866 0.781 0.467 0.782 0.577 0.840 0.749 0.803 

Time in second 0.18 1.21 4.57 0.23 0 0.02 0.09 0.33 0.66 

From Table 7 we can deduced that 4863of 4913 instances (or 

98.98%) of the actual were correctly classified as class of text, 

22of 4913 were wrongly classified as class of horiz. line, 9 of 

4913 were also incorrectly classified as class of vert. line, 13 

of 4913 are also wrongly classified as class of picture and 6 

were incorrectly classified as graphic class. Similarly 296 of 

4913 instance (89.97%) were correctly classified as horiz.line,  

whereas 27 out of 329 instances were wrongly classified as 

text class. And 4 of 329 and 2 of 329 are wrongly classified as 

vert.line as picture classes respectively.  
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Table 7:  10 fold cross validation confusion matrix of Random 

Forest for Page Block dataset 

 

As we have seen from Table 8, logistic (multinomial logistic 

regression with ridge estimator) is performing better than the 

other classifiers relatively in all metrics for Bry_Bean dataset. 

And from confusion matrix of Table 9, we can see that 1912 of 

2027 instances which is about 94.33% were correctly 

classified as SEKER class and the rest were wrongly classified 

to different classes, 1214 of 1322 instances, about 91.83% 

were correctly predicted as BARBUNYA class and the rest are 

wrongly classified to different classes. 521 of 522 which are 

about 99.81% were correctly classified as BOMBAY class, 

whereas 1 out of 522 was incorrectly predicted to the class of 

CALL. And the rest can be interpreted in similar way. 
 

 

 

 

 

 

 

 

 

 

Table 8: Weighted measure for each metrics and time taken to build model of 10 fold cross validation using 9 classifiers for Dry_ Bean dataset 

Accuracy Metrics J48 Random Forest MLP SMO IBK Naïve Bayes PART Decision Table Multinomial Logistic 

TP Rate 0.913 0.926 0.925 0.922 0.903 0.897 0.913 0.880 0.926 

FP Rate 0.020 0.018 0.018 0.019 0.023 0.022 0.021 0.027 0.018 

Precision 0.913 0.926 0.925 0.923 0.903 0.898 0.913 0.880 0.926 

Recall 0.913 0.926 0.925 0.922 0.903 0.897 0.913 0.880 0.926 

F-Measure 0.913 0.925 0.925 0.922 0.903 0.897 0.913 0.880 0.926 

ROC Area 0.967 0.992 0.991 0.976 0.941 0.990 0.977 0.984 0.994 

Kappa Statistic 0.895 0.910 0.910 0.906 0.883 0.876 0.895 0.855 0.911 

Time in second 0.65 5.7 23.65 0.49 0.01 0.08 1.67 1.23 137.13 

Table 9:  Logistic classifier confusion matrix of 10 fold cross validation for Dry_Bean dataset 

As we seen from Table 5 and 10 Random Forest is relatively 

better classifier followed by multilayer perceptron by 

comparing different metrics that has been used in this paper, 

but SMO is costs much time (21386.83 seconds) to build the 

model followed by Multilayer perceptron (3532.99 seconds). 

Moreover, the confusion matrix Table 11 shows that 43,307 of 

44,473 of the instances (97.38%) were correctly assigned as an 

actual class of win, whereas 119 of 44,473 and 1,047 of 

44,473  

were wrongly assigned as the class of draw and loss 

respectively. And only 636 of 6,449 were (9.86%) correctly 

predicted as draw class but 4,456 of 6,449 which is about 

69.10% were wrongly assigned as win class and 1,357 of 

6,449 instances (21.04%) were incorrectly classified as loss 

class. Similarly, 11,700 of 1,6635 instances, about 70.33% 

were correctly classified as loss class and 4,648 of 16,635 

instances (27.94%) were wrongly assigned as win class and 

the rest 287 of 16,635 were also draw class. 
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Table 10: Weighted measure for each metrics and time taken to build model of 10 fold cross validation using 9 classifiers for Connect-4 dataset 

Accurac

y Metrics 

J48 Random 

Forest 

MLP SMO IBK Naïve 

Bayes 

PART Decision 

Table 

Multinomi

al Logistic 

TP Rate 0.809 0.824 0.819 0.759 0.809 0.721 0.793 0.753 0.758 

FP Rate 0.213 0.272 0.202 0.340 0.326 0.426 0.206 0.343 0.338 

Precision 0.791 0.806 0.793 0.720 0.800 0.681 0.781 0.719 0.729 

Recall 0.809 0.824 0.819 0.759 0.809 0.721 0.793 0.753 0.758 

F-Measu

re 

0.797 0.792 0.798 0.717 0.771 0.681 0.786 0.724 0.717 

ROC 

Area 

0.868 0.937 0.899 0.722 0.935 0.807 0.861 0.823 0.856 

Kappa 

Statistic 

0.595 0.596 0.613 0.448 0.545 0.333 0.571 0.436 0.448 

Time in 

second 

1.98 26.39 3532.99 21386.83 0.02 1.18 165.5 40.77 28.95 

Table 11:  The Random Forest classifier confusion matrix of 10 fold cross validation for Connect-4 dataset 

 

For Letter Recognition dataset of all metrics on Table 12 

confirm that Random Forest classifier was outperform except  

the cost of time to build a model, whereas multilayer 

perceptron were costs much time than the other. 

Table 12: Weighted measure for each metrics and time taken to build model of 10 fold cross validation using 9 classifiers for Letter Recognition 

dataset 

Accuracy 

Metrics 

J48 Random 

Forest 

MLP SMO IBK Naïve 

Bayes 

PART Decision 

Table 

Multinomial 

Logistic 

TP Rate 0.879 0.964 0.822 0.824 0.960 0.640 0.890 0.649 0.774 

FP Rate 0.005 0.001 0.007 0.007 0.002 0.014 0.004 0.014 0.009 

Precision 0.879 0.964 0.827 0.831 0.960 0.655 0.890 0.680 0.773 

Recall 0.879 0.964 0.822 0.824 0.960 0.640 0.890 0.649 0.774 

F-Measure 0.879 0.964 0.820 0.826 0.960 0.637 0.890 0.658 0.773 

ROC Area 0.954 0.999 0.955 0.980 0.982 0.957 0.954 0.953 0.981 

Kappa 

Statistic 

0.874 0.962 0.815 0.817 0.958 0.626 0.886 0.635 0.765 

Time in 

second 

0.74 6.67 130.46 6.74 0.02 0.09 9.71 8.73 49.94 

The confusion matrix in Table 13 is revealed that of Random 

Forest classifier classifies 785 of 796 instances (98.62%) were 

correctly classified as letter T class, the rests are wrongly 

assigned to different classes (refer the Table 12 below). 714 of 

796 instances (89.97%) were correctly classified as letter I 

class and the rests are wrongly classified to different letter 

classes. Similarly, 783 of 796 instances (98.37%) were  

correctly assigned as letter D class, the rest about 1.63% were 

wrongly assigned to different classes. And 800 out of 813 

instances, about 98.40% were correctly classified as an actual 

class of letter U; whereas the rest 13 instances were wrongly 

assigned to 5 different classes (see Table 12). We can interpret 

the rest all letters classification in similar condition.  
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Table 13:  The Random Forest classifier confusion matrix of 10 fold cross validation for Letter recognition dataset 

 

The statistical significance of the difference in accuracy of the 

tested classifier was tested by the mean difference of multi 

comparison. Table14 shows that the standard deviation (5.75) 

and standard error (2.35) of Random Forest were the least as 

compare as the other classifier, whereas, Decision Table 

classifier results with the highest standard deviation (13.63) 

and standard error (5.56). The results of the t-test are shown in 

Table 15, the p-value is only for the difference between 

Random Forest and Naïve Bayes model is (0.028) significant  

at the 5% level. But all the other pairs were not statistically 

significant. But the p-value of the mean difference between 

Random Forest and Decision Table is (0.064) statistically 

significant at 10% level of significance. 

Also as we have seen from Fig. 3 mean plot, it visualize that 

the mean difference among Random Forest (RF) and Naïve 

Bayes (NB) was higher than the others. And also the mean 

difference between random forest (RF) and Decision Table 

(DT) is relatively higher next to RF Vs NB. 

Table 14: Average descriptive Statistics 

Types of 

Classifiers 

Mean Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for Mean 

Lower Bound Upper Bound 

J48 90.28 7.49 3.06 82.41 98.14 

RF 95.13 5.75 2.35 89.10 101.17 

MLP 89.12 8.31 3.39 80.40 97.84 

SMO 87.90 8.74 3.57 78.73 97.07 

IBK 90.17 8.70 3.55 81.04 99.30 

NB 82.71 12.23 4.99 69.87 95.54 

PART 89.89 7.98 3.26 81.52 98.27 

DT 84.70 13.63 5.56 70.39 99.00 

ML 87.86 10.16 4.15 77.20 98.53 

Total 88.64 9.39 1.28 86.10 91.20 
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Table 15: Statistical Comparison of the Average Classification Rates of nine Algorithms 

**significant at 0.05 level and 

*significant at 0.1 level 

Source: Authors‟ work 

 
Fig. 3: The mean plot of correct classification in percentage 

Hypothesis Mean Difference P-value Hypothesis Mean Difference P-value 

H0 : J48=RF - 4.860 0.381 H0 : IBK=NB 7.458 0.181 

H0 : J48=MLP 1.153 0.834 H0 : IBK=PART 0.275 0.960 

H0 : J48=SMO 2.375 0.667 H0 : IBK=DT 5.472 0.324 

H0 : J48=IBK 0.108 0.984 H0 : IBK=Logistic 2.303 0.677 

H0 : J48=NB 7.567 0.175 H0 : NB=J48 -7.567 0.175 

H0 : J48=PART 0.383 0.945 H0 : NB=RF -12.423
**

 0.028 

H0 : J48=DT 5.580 0.315 H0 : NB=MLP -6.413 0.249 

H0 : J48=Logistic 2.412 0.662 H0 : NB=SMO -5.192 0.349 

H0 :  RF=J48 4.857 0.381 H0 : NB=IBK -7.458 0.181 

H0 :  RF=MLP 6.010 0.279 H0 : NB=PART -7.183 0.197 

H0 :  RF=SMO 7.232 0.194 H0 : NB=DT -1.987 0.719 

H0 :  RF=IBK 4.965 0.370 H0 : NB=Logistic -5.155 0.352 

H0 :  RF=NB 12.423
**

 0.028 H0 : PART=J48 -0.383 0.945 

H0 :  RF=PART 5.240 0.345 H0 : PART=RF -5.240 0.345 

H0 :  RF=DT 10.437* 0.064 H0 : PART=MLP 0.770 0.889 

H0 :  RF=Logistic 7.268 0.192 H0 : PART=SMO 1.992 0.718 

H0 : MLP=J48 -1.153 0.834 H0 : PART=IBK -0.275 0.960 

H0 : MLP=RF -6.010 0.279 H0 : PART=NB 7.183 0.197 

H0 : MLP=SMO 1.222 0.825 H0 : PART =DT 5.197 0.349 

H0 : MLP=IBK -1.045 0.850 H0 : PART=Logistic 2.028 0.713 

H0 : MLP=NB 6.413 0.249 H0 : DT=J48 -5.580 0.315 

H0 : MLP=PART -0.770 0.889 H0 : DT=RF -10.437* 0.064 

H0 : MLP=DT 4.4267 0.424 H0 : DT=MLP -4.427 0.424 

H0 :MLP=Logistic 1.258 0.820 H0 : DT=SMO -3.205 0.562 

H0 : SMO=J48 -2.375 0.667 H0 : DT=IBK -5.472 0.324 

H0 : SMO=RF -7.232 0.194 H0 : DT=NB 1.987 0.719 

H0 : SMO=MLP -1.222 0.825 H0 : DT=PART -5.197 0.349 

H0 : SMO=IBK -2.267 0.681 H0 : DT=Logistic -3.168 0.566 

H0 : SMO=NB 5.192 0.349 H0 : Logistic=J48 -2.412 0.662 

H0 : SMO=PART -1.992 0.718 H0 : Logistic=RF -7.268 0.192 

H0 : SMO=DT 3.205 0.562 H0 : Logistic=MLP -1.258 0.820 

H0 : SMO=Logistic 0.037 0.995 H0 : Logistic=SMO -0.037 0.995 

H0 : IBK=J48 -0.108 0.984 H0 : Logistic=IBK -2.303 0.677 

H0 : IBK=RF -4.965 0.370 H0 : Logistic=NB 5.155 0.352 

H0 : IBK=MLP 1.045 0.850 H0 : Logistic=PART -2.028 0.713 

H0 : IBK=SMO 2.267 0.681 H0 : Logistic=DT 3.168 0.566 
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4.2 Discussion  

This paper compares the classification performance of 

supervised machine learning algorithms in high dimensional 

problems. The execution of the algorithms was observed by 

the classification rates gotten in a 10-fold cross validation 

method and percentage split. The 10 fold cross validation is 

relatively outperform over percentage split. The algorithms 

used to compare were, J48 (tree based), Random Forest (tree 

based), Multilayer Perceptron (MLP) is a class of feed forward 

artificial neural network (ANN), IBK (k-nearest neighbour), 

sequential minimal optimization (SMO) works as of support 

vector machines, Naïve Bayes, PART, Decision Table and 

Logistic (it works by using Multinomial logistic regression 

model with ridged estimator) techniques were trained and 

tested. The results showed that the Random Forest classifier 

provides the most efficient model and outperforms other 

machine learning methods according to criteria of 

classification performance used in this paper: accuracy, 

precision, recall, F-Measure, ROC Area, kappa statistic and 

time to execution of the model. However, the accuracy of 

Random Forest is significantly higher at 5% level as compare 

with Naïve Bayes classifier, while the difference between the 

Random Forest and other tested methods is not found to be 

statistically significant. The reason for effectiveness of 

Random Forest model could be found in its ensemble nature 

usually trained with “bagging” method and the ability to 

minimize the error in the iterative procedure of optimizing its 

parameters such as learning rate. The "forest" it builds, is an 

ensemble of decision trees. The general idea of the bagging 

method is that a combination of learning models increases the 

accuracy. Most of the time, Random Forest is generating 

random subsets of the features and constructing smaller trees 

by using these subsets. Afterwards, it combines the sub trees. 

But this doesn‟t works in every occasion and it also makes the 

computation slower, depending on how many trees the random 

forest builds. The main drawback of random forest is that a 

huge number of trees can make the algorithm too slow and 

ineffective for real-time predictions. In general, this algorithm 

is fast to train, but quite slow to create predictions once it 

trained. A more accurate prediction requires more trees, which 

results in a slower model. In most real-world situations, the 

Random Forest algorithm is fast enough but there can certainly 

be conditions where run-time performance is vital and other 

methods would be chosen. Both J48 and IBK were closely 

followed, but IBK has been taken more time to build the model 

as compare as the others. The J48, however, also learn fast and 

by providing a slightly lower classification average rate than 

Random Forest, are a very strong candidate for an efficient 

tool in these datasets after the Random Forest. 

Although the above results cannot directly compared to earlier 

research outcomes, because of the reality that different authors 

used distinct datasets and have been mostly evaluating some 

limited classifiers used on this research, sure similarities and 

variations may be identified. Our results were consistent with 

the findings of [67, 68], even though, it were comparing 

different supervised machine learning algorithms for disease 

prediction, Random Forest were perform better than the other 

in the respective problems. However,   our findings differ from 

the results of [69] who found that SVM (SMO) had best 

performed over NB, KNN, QDC and even the combined 

classifiers used in this study. But in our result KNN (IBK) was 

relatively better than SVM (SMO). Our findings show that 

accuracy of J48 was not significantly different from the 

accuracy of KNN (IBK), but confirm that J48 method 

produces the model with less variability, next to Random 

Forest. 

4.3 Conclusion  

Classification accuracy in a high-dimensional problem is still 

research area. Specially, using many and combined algorithms 

is a best way to see the highly accurate classifier. The objective 

of this paper was to provide a wide research by comparing the 

accuracy of nine supervised machine learning methods in 

order to analyze their classification efficiency in recognizing 

different set of problems with a large number of input 

variables. Our results show that all nine tested methods: J48, 

Random Forest, Multilayer Perceptron, SMO, IBK, Naïve 

Bayes, PART, Decision Table and Logistic regression are 

generally able to learn fast and achieve high classification 

accuracy even with a high-dimensional problems. The 

Random Forest outperformed other methods in classification 

accuracy, although the difference was significant at 5% level 

of significance only between the Random Forest and the Naïve 

Bayes model; and significant at 10% level between Random 

Forest and Decision Table classifier. The obtained findings 

partially confirm, and somewhat differ from previous research 

findings. Our t-test of mean difference results shows that 

except Random Forest versus Naïve Bayes and Random Forest 

versus Decision Table, the other pair was not significantly 

differ in their performance at 5% and 10% level of significant 

respectively, in fact, when we see the average classification 

performance, one is relatively better than the other. Our 

findings were differing from previous research in showing that 

Random Forest outperforming over J48, SMO, IBK and 

Multilayer Perceptron. 
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