
Wirawan Istiono et al., International Journal of Emerging Trends in Engineering Research, 9(10), October 2021, 1336 – 1340

1336

ABSTRACT

In making a path finding algorithm in a 3D game to
determine the direction of the NPC agent towards the
destination, the Djiksra algorithm, Depth First Search,
Breadth First Search and so on, usually the shortest distance
is directly proportional to the travel duration to the target
point. In this study, a test will be made using a list marker
point such as the Djiksra algorithm to get the shortest distance
and fastest time to reach the destination, in making this
algorithm the C# language is used and the Unity software is
used. After experimenting with various list points in different
places in two directions, it was found that the distance
traveled is always directly proportional to duration. So the
selection of the fastest or shortest path can be done with this
list point marker algorithm.

Key words: List point marker, Artificial Intelligence, Non
playable character, Path Finding.

1. INTRODUCTION
To create a realistic 3D game, the implementation of artificial
intelligence on non-playable character (NPC) agents in the
game becomes an important and crucial issue. One of the
common behaviors we know about npc in games is path
finding. The path finding issue in a three-dimensional game
is something that often creates many problems, where there
are many artificial intelligence path finding algorithms such
as the A-Star algorithm, Breadth First Search, Depth First
Search and etc [1]. The most important point in path finding
is how to get to the destination as fast as possible through the
shortest route. But sometimes in the search for the shortest
route, it is not necessarily the fastest route, and vice versa,
where the fastest route is not necessarily the shortest route. So
it is need to make sure in advance in path finding, what do you
want to achieve, is it the fastest route or the shortest route to
reach the destination location [2], [3].

In this path finding algorithm research, a list of point markers
will be used which is useful for the characters can move

according to a predetermined path. The purpose of this study
is to measure the speed of the object to reach the destination.
With the condition that the object must reach the target
destination as fast as possible and also have to do facing
tracking towards to the next predetermined list point, this is
done for the algorithm that has been created can be directly
applied to real project games [4]. In this study, this algorithm
will be applied to the NPC patrol project, and then the NPC
will be able to pursue the target, when the target enters the
scope of the NPC sensor, and the NPC will pursue the target
up to a certain distance, where when the target is too far from
the target. NPC, then the NPC will return to the last list point
the target is located.

2. LITERATURE STUDY

2.1 Non Playable Character (NPC)

An NPC is any character in the game that is not controlled by
the player. The term NPC comes from traditional tabletop
role-playing games where it applies to characters controlled
by the gamemaster or referee rather than by other players. In
video games, this agent NPC usually means a
computer-controlled (not by player) character who has a
predefined set of behaviors that could potentially affect
gameplay, but is not necessarily an actual product of artificial
intelligence [5], [6]. The term non-player character is also
used in video games to describe an entity that is not under the
direct control of a player. The term carries the connotation
that the character is not hostile to the player; Hostile
characters are referred to as enemies, mobs, or creeps. In
video games, NPC is also sometimes used to mean
"unplayable character" or "non-player class" [7], [8].

NPC behavior in computer games is usually written and
automatic, triggered by certain actions or dialogues with the
player character. In certain multiplayer games such as
Neverwinter Nights and Vampire games, or the Masquerade
series games, a player acting as Game Master can have both
player and non-player characters control their actions to
continue the storyline. More complex games [9], [10], such as
the aforementioned Neverwinter Nights games, allow players
to customize the behavior of NPCs by modifying their default

List Point Marker Path Finding for Artificial Intelligence

Movement in 3D Games
Wirawan Istiono1, Alethea Suryadibrata2, Alexander Waworuntu3

1Universitas Multimedia Nusantara, Indonesia, wirawan.istiono@umn.ac.id
2 Universitas Multimedia Nusantara, Indonesia, alethea@umn.ac.id

3 Universitas Multimedia Nusantara, Indonesia, alex.wawo@umn.ac.id

Received Date : September 04, 2021 Accepted Date : September 25, 2021 Published Date : October 07, 2021

 ISSN 2347 - 3983

Volume 9. No.10, October 2021
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter079102021.pdf

https://doi.org/10.30534/ijeter/2021/079102021

Wirawan Istiono et al., International Journal of Emerging Trends in Engineering Research, 9(10), October 2021, 1336 – 1340

1337

scripts or creating entirely new ones. In some online games,
such as MMORPGs, NPCs may be completely scriptless, and
are essentially regular character avatars controlled by game
company employees. These "non-players" are often
distinguished from player characters by the appearance of an
avatar or other visual designation, and often serve as in-game
support for new players. In other cases, these "live" NPCs are
virtual actors, playing ordinary characters who drive a
continuous storyline [11], [12].

In early and less advanced RPGs, NPCs only had monologues.
The code directs the appearance of a dialog box, floating text,
cutscene, or other means of displaying the NPC's speech or
reaction to the player [13]. These kinds of NPC speeches are
often designed to give an instant impression of the speaker's
character, providing character sketches, but they can also
advance the story or illuminate the world around the PC.
Similar to this is the most common form of storytelling,
non-branching dialogue, in which the NPC's speech is
displayed the same as above, but the player character or avatar
responds or initiates the speech with the NPC. In addition to
the objectives listed above, it allows the development of the
player's character [14].

2.2 Path Finding

Pathfinding or pathing is the plotting, by a computer
application, of the shortest route between two points. This is a
more practical variant of solving a maze. This field of
research is heavily based on Dijkstra's algorithm for finding
the shortest path in a weighted graph. Pathfinding is closely
related to the shortest path problem, in graph theory, which
examines how to identify the path that best meets several
criteria (shortest, cheapest, fastest, etc.) between two points in
a large network [15], [16].

In essence, the pathfinding method searches for a graph by
starting at one vertex and exploring adjacent vertices until the
destination vertex is reached, generally with the intention of
finding the cheapest route. While graph search methods such
as breadth-first search will find a route if given enough time,
other methods, "cruising" the graph, will tend to reach their
destination more quickly [17]. An analogy would be someone
walking across a room; rather than checking every possible
route beforehand, the person will generally walk towards the
destination and only deviate from the path to avoid obstacles,
and make the deviations as small as possible. The two main
problems of pathfinding are, the first to find the path between
two nodes in the graph; and the second is the shortest path
problem, to find the optimal shortest path. Basic algorithms
such as breadth-first and depth-first search solve the first
problem by exhausting all possibilities; starting from a given
node, they repeat all potential paths until they reach the
destination node. This algorithm runs in linear time, where V
is the number of vertices, and E is the number of edges
between vertices [11].
Quadtrees can be used for hierarchical path searches. The

idea was first described by the video game industry, which
requires planning on a large map with a low amount of CPU
time. The concept of using abstractions and heuristics is older
and was first mentioned under the name ABSTRIPS
(Abstraction-Based STRIPS) which is used to efficiently
search the state space of logic games. A similar technique is
the navigation mesh (navmesh), which is used for geometric
planning in games and multimodal transport planning used in
the problem of a salesman's journey with more than one
transport vehicle [2], [12]. A map is separated into groups. At
high-level layers, paths between clusters are planned. After
the plan is found, the second path is planned in a cluster at a
lower level This means that planning is carried out in two
stages, namely guided local searches in the original space.
The advantage is, the number of nodes is smaller and the
algorithm works very well. The disadvantage is that
hierarchical pathplanners are difficult to implement [10],
[15].

3. RESEARCH METHODOLOGY

The first step in testing the application is to make a simple
map by including one object in the form of a 3D capsule as an
NPC agent and also several cube objects for walls that are
shaped like the letter T. Next, a list of point markers is placed
as a path marker that can be traversed by NPC agents. All
mappings can be seen in Figure1.

Figure1: Simple map for agent, wall and list point marker

After creating a map for the NPC agent movement
experiment, the next step is to prepare a list of connected
marker paths and determine the starting point and destination
of the point marker where the NPC agent is, in this case, the
NPC agent will start from point1 and then the target will go to
the target. point6.

[SerializeField] Transform[] way1;
[SerializeField] Transform[] way2;

void Start() {
 start_point = GameObject.Find("point1").transform.position;
 finish_point = GameObject.Find("point6").transform.position;
 this.transform.position = start_point;
}

Figure2: Code preparation setting begin and target points

Wirawan Istiono et al., International Journal of Emerging Trends in Engineering Research, 9(10), October 2021, 1336 – 1340

1338

In figure 2 it can be seen that there are two ways or paths to get
to the destination. Then the start way point and finish way
point are determined, and also will determined the placement
of NPC agents in the starting position. Because there are two
paths that may be traversed by the NPC agent to the
destination, each list point marker will be included in an
object array or dictionary array.

Dictionary<string, float> listDistanceWay = new Dictionary<string,
float>();
listDistanceWay.Add("Way1", calc_distance_destination("way1",
way1));
listDistanceWay.Add("Way2", calc_distance_destination("way2",
way2));

Figure3: Dictionary array to marking and calculate distance

The value that inserted into the dictionary array that has been
shown in Figure3 is the street name, namely “way1” and
“way2” and also the calculation of the distance from the
starting point to the destination point to get the shortest
distance, this calculation is not based on the number of points,
but based on the distance from each point, the function to
perform the calculation that has been shown in Figure3 is
calc_distance_desitination.

float calc_distance_destination(string wayname, Transform[]
pathchoosen) {
 float distFromStartToFinish = 0f;
 for (int a = 0; a < pathchoosen.Length-1; a++) {
 Vector3 posCurrent = pathchoosen[a].transform.position;
 Vector3 posTarget = pathchoosen[a + 1].transform.position;
 distFromStartToFinish += Vector3.Distance(posCurrent,
posTarget);
 }
 return distFromStartToFinish;
}
Figure4: Function for calculating distance for every points marker

After getting the results of calculating the distance between
the two paths, the next step is sorting the dictionary array to
get the shortest list, but because the dictionary function does
not have a sorting facility, then each item in the dictionary list
needs to be inserted into the Array List first, so the sorting can
be done. based on the value of the items in the dictionary
array, how to insert the dictionary array into the Array List,
can be seen in Figure5.

List<KeyValuePair<string, float>> myList = new
List<KeyValuePair<string, float>>(listDistanceWay);
myList.Sort(
 delegate (KeyValuePair<string, float> firstPair,
 KeyValuePair<string, float> nextPair) {

 return firstPair.Value.CompareTo(nextPair.Value);
 }
);
Figure5: Dictionary Array in Array List for sorting based on Value

Next step is to insert the results of sorting the first serial
number, namely the items that have the shortest distance to
the destination into a variable called "choosen_way", and
then in the update loop function, the NPC agent will move
from the starting point to the destination point. The NPC
agent movement update function can be seen in Figure6.

void Update() {
 if (chosen_way == 1) {
 npc_move(way1);

} else {
 npc_move(way2);

}
}

Figure6: Update function for moving Agen NPC

For the movement of the NPC agent from the initial point to
the destination point, it is done with the moveTowards
function, where in that function has been calculated and
calculated the movement of the distance from the starting
point to the destination point. And then after the NPC agent
moves, a distance check will be carried out using the
Vector3.Distance function, which serves to measure the
distance between ObjectA and ObjectB, if the two objects are
closer, the return value will decrease, and when the return
value has reached a certain distance , then the transfer target
point will be changed, so that the NPC agent can move to the
next point. And after the NPC agent has moved from one
point to another, it will check whether the point is the last
point, if not, then the target point will move to the next point,
but if the target point is a finish point, it will display the
calculation of the travel time from the start point to the finish
point. The movement and time display when the NPC agent
reaches the finish can be seen in Figure7.

void npc_move(Transform[] pathchoosen) {
 Vector3 curPos = this.transform.position;
 Vector3 targetPos = pathchoosen[point_no].transform.position;
 this.transform.position = Vector3.MoveTowards(curPos,
targetPos, npc_speed * Time.deltaTime);

 Vector3 posWOy = this.transform.position;
 posWOy.y = pathchoosen[point_no].transform.position.y;
 if (Vector3.Distance(posWOy, targetPos) < 0.1f) {
 if (point_no < pathchoosen.Length - 1) {
 point_no++;
 } else if (point_no == pathchoosen.Length-1) {
 if(!Finished) {
 float finishTime = Time.time - StartTime;
 Debug.Log("Finish Time: " + finishTime);
 Finished = true;
 }
 }
}

Figure7: Agen NPC moving code

The next step is to make the NPC agent face forward to the
next target point, it is necessary to rotate the NPC agent
object. The rotation of the NPC agent is carried out using the

Wirawan Istiono et al., International Journal of Emerging Trends in Engineering Research, 9(10), October 2021, 1336 – 1340

1339

LookRotation function from Quaternion, this code will be
entered along with the movement of the NPC agent, namely
in the npc_move function, and in Figure 8 is an example of
rotation using the LookRotation function.
Vector3 posTarget = targetPos - curPos;
this.transform.rotation = Quaternion.LookRotation(posTarget);

Figure8: Rotation agen NPC with LookRotation

4. RESULT

After experimenting with the movement of the NPC agent on
the mapping in Figure1, where the starting point, namely
point1 goes to the target point, namely point6, with the
application of two paths, where the first path to be traversed
by the NPC agent is point1, point2, point3 and point6 then for
the second path, namely point1, point2, point4, point5,
point6, with the speed of the NPC agent running is 2px/frame
where the frame rate per second is between 120 to 130 fps. It
found the result the number of paths and path distances and
speeds as shown in Table1.

Table1: Result Table Distance and duration

Path Point list Number of
Point Distance Duration

1 1,2,3,6 4 14.38 7.09 sec
2 1,2,4,5,6 5 20.73 10.19 sec

As can be seen in Table1, the farther the distance traveled and
the greater the number of points that must be passed, it will
have an impact on the distance and length of time for NPC
agents to reach their destination. But what if the point list is
changed to be as shown in Figure9, by changing the number
of points to be the same.

Figure9: Simple map for agent with difference distance list point

As can be seen in Figure9, the mapping made places the start
point and target point still the same, namely point1 for start
point and point6 for target point, but the difference is the
distance between points to the target point and also the
number of points between path1 and path2 is the same . The
results of the experiment as can be seen in Table2

Table2: Result Table Distance and duration with difference point
distance and number of point

Path Point list Number of
Point Distance Duration

1 1,2,3,6 4 15.28 7.59 sec
2 1,4,5,6 4 19.56 9.6 sec

As can we seen in Table 2, it can be concluded that the
mileage is always matching with duration, even though the
list points are fewer, but if the distance is large, the time
needed to get to the destination can be longer. But what if
there are more number of points but shorter distances, will the
duration of the trip stay longer, in figure10 is an example of
mapping where the number of points is more but the distance
is closer than the one with fewer number of points but more
distance much as shown in Figure10.

Figure10: Simple map for agent with difference distance list point

In Figure10, the direction of path1 is from point1, point2,
point3, point4 and point6, while for path2 it is point1, point5
and point6, and the starting point and target point are still the
same, namely point1 for start point and point6 for target
point, if done testing with the mapping results above, it will be
found the results as shown in Table 3.

Table3: Result Table Distance and duration with difference
mapping

Path Point list Number of
Point Distance Duration

1 1,2,3,4,6 5 12.68 6.24 sec
2 1,5,6 3 14.91 7.35 sec

As can be seen in Table3, a small number of points does not
always make the distance shorter and the duration of the trip
faster.

5. CONCLUSION

From the three experimental results, which are shown in
Table1, Table2 and Table3, it can be concluded that the
distance traveled is always directly proportional to duration.
So the selection of the fastest or shortest path can be done with

Wirawan Istiono et al., International Journal of Emerging Trends in Engineering Research, 9(10), October 2021, 1336 – 1340

1340

this list point marker algorithm. So by using this algorithm,
selecting the fastest or shortest path at the start of the game or
the beginning of the movement of the NPC agent's action will
produce the same result.

ACKNOWLEDGEMENT

Thank you to the Universitas Multimedia Nusantara,
Indonesia which has become a place for researchers to
develop this journal research. Hopefully, this research can
make a major contribution to the advancement of technology
in Indonesia..

REFERENCES
1. X. Cui and Hao Shi, “Direction Oriented Pathfinding In

Video Games,” International Journal of Artificial
Intelligence & Applications, vol. 2, no. 4, pp. 1–11,
2011.

2. M. Mangeruga, A. Casavola, F. Pupo, and F. Bruno,
“An underwater pathfinding algorithm for optimised
planning of survey dives,” Remote Sensing, vol. 12, no.
23, pp. 1–17, 2020.

3. N. H. Barnouti, S. S. M. Al-Dabbagh, and M. A. Sahib
Naser, “Pathfinding in Strategy Games and Maze
Solving Using A* Search Algorithm,” Journal of
Computer and Communications, vol. 04, no. 11, pp.
15–25, 2016.

4. S. B. Linek, D. Schwarz, G. Hirschberg, M. K. Rust, and
D. Albert, “Designing the Non-player Character of an
Educational Adventure-game: The Role of Personality,
Naturalism, and Color,” Proceedings of the
International Technology Education and Development
Conference INTED, no. January, 2007.

5. D. Asha, “Gamification : ‘ The System Beats Human
Huge Critical T hinking ,’” International Journal of
Emerging Technologies in Engineering Research, vol.
4, no. 8, pp. 72–75, 2016.

6. I. Mabruroh and D. Herumurti, “Adaptive Non Playable
Character in RPG Game Using Logarithmic Learning
For Generalized Classifier Neural Network
(L-GCNN),” Kinetik: Game Technology, Information
System, Computer Network, Computing, Electronics,
and Control, vol. 4, no. 2, pp. 127–136, 2019.

7. E. V. Soboleva and N. V. Shalaginova, “Simulation of
artificial intelligence in a computer game,” Journal of
Physics: Conference Series, vol. 1399, no. 3, 2019.

8. T. Wibowo, “Studi Faktor Pendukung Popularitas
Multiplayer Online Battle Arena dengan Pendekatan
Kuantitatif,” Ultima InfoSys : Jurnal Ilmu Sistem
Informasi, vol. 12, no. 1, pp. 1–7, 2021.

9. A. El Rhalibi, K. W. Wong, and M. Price, “Artificial
intelligence for computer games,” International Journal
of Computer Games Technology, vol. 2009, no. 1, 2009.

10. R. Rismanto, R. Ariyanto, A. Setiawan, and M. Elinggar
Zari, “Sugeno Fuzzy for Non-Playable Character
Behaviors in a 2D Platformer Game,” International

Journal of Engineering & Technology, vol. 7, no. 4.44,
p. 222, 2018.

11. M. B. Nendya, S. Gandang, R. G. Santosa, J. T. Elekto,
and F. T. Industri, “Pemetaan Perilaku Non-Playable
Character Pada Permainan Berbasis Role Playing Game
Menggunakan Metode Finite State Machine,” Journal
of Animation & Games Studies, vol. 1, no. 2, pp.
185–202, 2015.

12. G. Mutaqin, J. N. Fadilah, and F. Nugroho,
“Implementasi Metode Path Finding dengan Penerapan
Algoritma A-Star untuk Mencari Jalur Terpendek pada
Game ‘Jumrah Launch Story,’” Walisongo Journal of
Information Technology, vol. 3, no. 1, pp. 43–48, 2021.

13. Y. T. Mo and S. K. Kim, “Research on the influence of
randomness of non-player character interaction
behavior on game experience,” International Journal of
Engineering Research and Technology, vol. 12, no. 11,
pp. 1986–1991, 2019.

14. H. Warpefelt, The Non-Player Character: Exploring the
believability of NPC presentation and behavior, no. 16.
2016.

15. A. Suryadibrata, J. C. Young, and R. Luhulima,
“Review of Various A* Pathfinding Implementations in
Game Autonomous Agent,” IJNMT (International
Journal of New Media Technology), vol. 6, no. 1, pp.
43–49, 2019.

16. F. Dignum, J. Westra, W. A. Van Doesburg, and M.
Harbers, “Games and agents: Designing intelligent
gameplay,” International Journal of Computer Games
Technology, vol. 2009, no. 1, 2009.

17. J. B. Clempner, “A shortest-path Lyapunov approach for
forward decision processes,” International Journal of
Computer Games Technology, vol. 2009, no. 1, 2009.

