
José W. Cifuentes S et al., International Journal of Emerging Trends in Engineering Research, 10(2), February 2022, 59 – 66

59

ABSTRACT

This document shows a solution to deploy and centralize
inside an enterprise architecture a monolith (a specific
development that doesn't use any integration with the
elements of the enterprise architecture ecosystem such as
LDAP or ESB or legacy systems inside a company). Usually,
the monoliths have been rejected because they don't conserve
the cross applications' structure, but what if the company
needs this software for missional goals? This paper will show
how to implement and manage these elements using a tool
designed in new technologies and open source languages.

Key words: Deploy, Enterprise Architecture, Manage
Software, Monolith, Open Source

1. INTRODUCTION

Within the Enterprise Software Architecture, the
development of systems outside the proposed guidelines or
having a structure that is not easily embeddable with the
ecosystem of applications defined by the entities' architecture
area is avoided as much as possible. In response to this
position, which are tailor-made developments that generally
have specific functionalities but are not easily integrated
within an ecosystem of applications.

Thus, the industry has defined application integration
elements within more robust solutions called portals, but
these portals have different limitations; one of them is that all
deployed applications must share the same dependencies and
in some cases, the same language. In this regard, the
challenge arises when integrating custom applications that do
not contain the dependencies or the capacities to be absorbed
by a portal [1].

These applications usually belong to systems that preserve the
main characteristics of the high cohesion and low coupling
software architecture, where cohesion is understood as "The

measure of how strongly the elements are functionally related
within a module … and the elements within a module can be
instructions, groups of instructions, data definition, callings
from another module, etc., and the goal is always for
functions that are strongly related.

Therefore, the expectation is that everything within the
module is connected, where the focus is on the task and these
strong relationships reduce modules and minimize coupling"
[2].

On the other hand, coupling within a software development
environment is defined as follows:

 "Coupling is the degree to which the modules of a program
depend on each other.
If it is necessary to make changes in a different module to
adjust a module of the program, there is a coupling between
both modules.
In Object-Oriented Programming, if class X uses a class Y,
it is said that X depends on Y. That is, X cannot do its work
without Y, therefore there is a coupling between classes X
and Y.
As it can be seen, the coupling is directional, there may be
a coupling of class X with class Y, but this does not imply
that it happens in the opposite direction" [3].

2. MONOLITHIC ARCHITECTURE IN ENTERPRISE
ARCHITECTURE

2.1 Monolithic architecture
Monolithic architecture is a style of software architecture. "In
summary, it can be said that in monolithic architecture, the
software is structured so that all its functional aspects are
coupled and subject to the same program. From this type of
construction, characteristics such as the maximum degree of
coupling of all the necessary information for the performance
of any program or the creation of highly layered work
environments that do not present too high a flexibility are
derived.

Implementation of Monoliths within Enterprise Architectures
using Disruptive Technologies in Docker Containers

José W. Cifuentes S.1, Julián R. Camargo L.2, César A. Perdomo Ch.3

1 Engineering Faculty, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
2 Engineering Faculty, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
3 Engineering Faculty, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

Received Date : December 31, 2021 Accepted Date : January 27, 2022 Published Date : February 07, 2022

 ISSN 2347 - 3983

Volume 10. No.2, February 2022
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter071022022.pdf

https://doi.org/10.30534/ijeter/2022/071022022

José W. Cifuentes S et al., International Journal of Emerging Trends in Engineering Research, 10(2), February 2022, 59 – 66

60

All in all, the required information to work with this type of
system is stably hosted on a single server. Due to this, there is
no division between modules of any kind, so the different
strata of a program depend entirely on the rest of the set" [4].

Therefore, since monoliths are a series of applications that do
not depend on another system and are self-sufficient, they are
considered stand-alone applications, which means isolated
environments that function without external integrations,
which is not necessarily bad within a series of missionary
functionalities of a given entity.
In other words, they fulfill unique and isolated functions that
are part of a great "whole". that is, the missionary duty of an
entity or company is an adequate description of synergy,
where there are independent components but that advance
towards the same end without necessarily being dependent on
each other.

The use of this style of architecture has been challenging due
to the multiple disadvantages that this approach presents:
 It isn't easy to work in parallel in the same code base.
 No matter how small it is, any change requires the

implementation of a new version of the entire
application.

 Refactoring potentially affects the whole application.
 The only solution to scale is usually to create multiple

copies of the monolith, which are resource-intensive.
 Integration can be complex when systems are expanded

or acquired by other methods.
 It may not be easy to test due to the need to configure the

entire monolith.
 Code reuse is challenging, and other applications often

have their code copies.

2.2 Enterprise Software Architecture
Nowadays, businesses are increasingly complex and require
flexible business processes, and information technology (IT)
systems must effectively support these processes. To capture
the complete view of all dimensions and complexity of the
business system, the concept of enterprise architecture
emerged, it identifies the main components of the
organization and the relationships between them to achieve
business objectives. Likewise, it integrates between the
business plan, commercial operations, and technical aspects.

New technologies that change in response to the needs of the
company. Enterprise architecture implementation is based on
establishing a set of architectural guidelines that can ensure
the coordinated development between the model and the
company's requirements and between business processes and
information technology.

These IT strategy guidelines should start from the mission of
the company and the understanding of the business strategies

and activities that support it, followed by obtaining the
necessary information related to the organization's
operations, the necessary technology to support the
organization, and the implementation process.

The success in the missionary work of a company or entity
and the costs related to the fulfillment of said purposes are
increasingly dependent on the information systems
implemented. These systems require a framework in which
they can be managed. Within the context of business
architecture, a reference environment or framework refers to
specialized components that act based on the structuring and
assembly of more significant or more complex components or
buildings; that is, a business architecture framework
determines in what terms the architecture is defined and
documented.

Table 1 below lists the most widespread enterprise
architecture frameworks used in the industry.

Table 1: Enterprise architecture frameworks [5]
Framework Description/Information
Zachman Zachman Framework for Enterprise

Architecture (http://www.zifa.com)
E2AF Extended Enterprise Architecture

Framework
(http://www.enterprice-architecture.info)

TOGAF The Open Group Architecture Framework
(http://www.opengroup.org/togaf)

GEAF Gartner Enterprise Architecture
Framework (http://www.gartner.com)

FEAF Federal Enterprise Architecture
Framework US (http://www.cio.gov)

BTEP GC Enterprise Architecture and Standards.
CANADA
(http://www.tbs-sct.ca/inf-inf/index_e.asp)

2.3 What is enterprise architecture?
"Enterprise architecture in an organization corresponds to the
way of representing the company integrally, allowing to cover
and consider each one of the elements that are part of it.

This leads to a clear vision of the objectives, goals and lines of
business in the company being established, starting from the
strategic perspective (mission, vision, guidelines and
strategic indicators), until reaching a current and future
structure for the organization processes; which incorporates
some of the components that are considered critical for its
operation:
 The processes: business models and processes.
 The organizational structure: people and administrative

structures.
 Information technologies: applications, information,

technological infrastructure, and computer security.

José W. Cifuentes S et al., International Journal of Emerging Trends in Engineering Research, 10(2), February 2022, 59 – 66

61

As a result, the necessary tools and mechanisms will be
available for the proper operation and functioning of the
company, and therefore, support the fulfillment of its strategic
objectives" [6].

3. GUIDELINES FOR MONOLITH INTEGRATION

Given the contextualization above, it can be concluded that
within enterprise architecture, monoliths are not correctly a
good practice for the reasons previously stated. That said, it is
necessary to generate some guidelines to integrate monoliths
within enterprise architecture; in other words, a way must be
found to comply with the fundamental guidelines of
enterprise architecture (systems that can be managed under a
discipline or defined framework).

The implementation was carried out within the LASER
research group (Automation, Embedded Systems, Robotics
and Intelligent Systems Laboratory) of the Universidad
Distrital Francisco José de Caldas. This is a group in which,
given its investigative orientation, many technological
developments and implementations are generated (usually
independent from other components) to make them available
to users via the Internet.

In this context, there is a need for creating a tool that complies
with enterprise architecture standards and at the same time
allows the coexistence of monoliths within a corporate
environment.

For presenting these developments or monoliths, the
following guidelines have been developed:
 The applications must be data processing.
 The applications must be delivered in docker-type

containers.
 The applications must not generate dependency on

transactional databases.
 The calls to the applications are request-response types.

Fire and Go applications must be carefully validated so
that their tasks are part of a superior system but not of
other monoliths.

 The applications should not be placed on database
containers; this is not a good practice since data changes
over time and a container is designed to maintain a static
image of development.

As for the languages that can be used to generate the different
developments, a solution is conceived to generate no type of
barrier. On the other hand, working with rest API
(Application Programming Interface) is proposed to evolve
the project, although the industry has business solutions such
as API manager. For this case, as the implementation
environment in which the developments are to be centralized
is merely educational, it is expected that these integrations
can be executed in the second phase of evolution.

3.1 Docker as a deployment component
Docker is an Open Source project defined as a container
creation technology that allows the creation and use of Linux
containers; it is promoted by the company Docker Inc. which
"develops the work of the Docker community, making it more
secure and sharing these advances with the rest of the
community. It also supports enhanced and hardened
technologies for business customers" [7].

Due to the arrival of disruptive technologies that within
business environments presuppose an improvement of
existing resources, large software providers and architectural
parts manufacturers have designed a whole line of products
under the Docker EE standard, in such a way that it is already
possible to find in the Docker hub cloud images of versions of
enterprise servers such as WebLogic, WebSphere and JBoos,
which are commonly for business use.

Deployment on containers has two benefits: on the one hand,
reproducibility since it is possible to generate instances of the
same application and, on the other hand, scalability, since a
container can be thought of as a software package that
contains its libraries, services and the application itself
[8]-[11].

Having the applications and all their dependencies packaged
in the same container allows to execute and deploy in any
system that uses the container engine or container
specifications, and thus reproducibility is achieved.

On the other hand, scalability is achieved to the extent that it
can be deployed in multiple systems when network traffic is
high or provide redundancy when the system requires
updating. All you have to do is configure it correctly to run on
various systems and adjust the load balancer to redirect
traffic. Tools like Docker swarm make it easy to scale
containers across the host [12].

Therefore, a container can be defined as "a standard unit of
software that packages the code and all its dependencies so
that the application runs quickly and reliably from one
computing environment to another" [13].

An image of a container is a lightweight, independent and
executable package that contains enough dependencies for
executing an application: binaries (obfuscated or compiled
code), execution environment, system tools, additional
libraries and required configurations.

Images are stored in a Docker registry as
registry.hub.docker.com. Because images can be pretty
significant, they are designed to be composed of layers from
other images, which allows an infinite amount of data to be
sent when images are transferred over the network" [14].

José W. Cifuentes S et al., International Journal of Emerging Trends in Engineering Research, 10(2), February 2022, 59 – 66

62

On the other hand, container images become containers at
runtime; in the case of Docker, images become containers
when they are run on the Docker Engine. This engine is
available for applications based on Linux and Windows and
runs in the same way, independent of its environment or
infrastructure [16], [17]. An essential characteristic of
containers is that they can isolate their environment to
guarantee homogeneous execution regardless of the
differences, such as development and organization [18].

Figure 1 shows a Docker container containing a basic web
runtime environment, based on stacked images of an
operating system and a web application server and defined by
a name and a label with the specific version of the image.

Figure 1: Architecture of a Docker image [15]

In this way, an image is defined as follows: "An image is an
inert, immutable file, which is essentially a snapshot of a
container. Images are created with the "comstackción"
command and will produce a container when the execution
starts.

3.2 Docker architecture
Within the Docker architecture (Figure 2), the following
definitions can be found:

DOCKER HOST: The virtual or physical machine in which
both Docker services and containers are deployed is called the
"Docker Host". The Docker service is in charge of creating,
running, and monitoring containers and storing the images.
The execution of the Docker service is a task commonly
assigned to the operating system of the machine or host
system.

DOCKER CLIENT: The Docker client communicates with
the service using a RESTfull API to write user commands to
control the "Host", create images, publish, control, execute
and in general manage containers, which are instances of the
images inside the machine. The client communicates using
bi-directionally HTTP services to allow and facilitate remote
connections to the Docker service. Both the "Docker Client"
and the "Docker Host" make up what is known as the "Docker
engine" [15].

Figure 2: Docker architecture [15]

Features of Docker containers running on Docker Engine:
 Standard: Docker defined and introduced the standard

type for containers to the industry, which means they
can be portable anywhere.

 Lightweight: Containers share the kernel of the
machine's operating system and therefore do not require
an operating system per application; this increases
server efficiency and reduces both physical

José W. Cifuentes S et al., International Journal of Emerging Trends in Engineering Research, 10(2), February 2022, 59 – 66

63

infrastructure and licensing costs.
 Security: Applications are more secure when

containerized, as Docker provides the most robust
isolation capabilities in the industry [19].

3.3 Advantages of using Docker containers
Since the project is aimed at monoliths and in the industry,
until the arrival of containers, a solution has not been
provided to the unknown of how to integrate monoliths within
enterprise architecture, the use of Docker containers offers the
following advantages:
 Modularity: In a contextualized approach by

technologies, Full Stack Docker focuses on taking small
parts of an extensive application to update or repair it
without taking the entire application. In the proposed
approach, this modularity is helpful because the
monoliths can be repaired and/or updated without
impacting an entire application system.

 Image and layer version control: Each Docker image file
is made up of a series of layers. These layers are
combined into a single image. A layer is created when
the image changes. Every time a user specifies a
command, such as run or copy, a new layer is created.
Docker reuses these layers to build new containers,
which makes the build process much faster.
Intermediate changes are shared between images, thus
improving speed, size and efficiency. Version control is
inherent in creating layers. Every time a new change
occurs, you have a built-in changelog - complete control
of your container images.

 Restoration: With Docker, you can restore an image or
any of its layers, this is possible because as mentioned
above each change to an image generates a version of the
container, and if at any time an unwanted event occurs
on the container, it can be restored to its desired version.

 Rapid implementation: Because the proposal is based on
monolithic architecture, the execution is done under the
free selection of both the implementation technologies
and the languages. Taking into account the nature of the
monoliths that will be deployed, the deployment
technology must facilitate publication tasks and be
transparent to the selected language, to reduce
implementation times and coupling between tools,
which at this point would be non-existent.

4. PYTHON AND ITS API DOCKER

One of the great challenges that the planning and execution of
an administrative tool for containers lay on the table is
precisely accessing, managing and manipulating Docker
objects such as containers, images, clusters, swarms, etc.

The Dicker Inc. development group has published a library
for Python language which allows executing different actions

on these objects [20].

To use the API library for Docker it is necessary to install the
docker-py package, this action can be performed using the pip
command or for current versions of Python using the pip3
command.

pip3 install docker−py

to execute docker commands within a Python script, it is
necessary to connect to the docker "daemon" (docker
Daemon), this can be done with the following commands:

#import client
from docker import client
#create a client object to connect to the daemon
myClient =
client.Client(base_url='unix://var/run/docker.sock')

The previous command will give us a list of the existing
containers in the entire local machine in which the script is
executed, with this data it is possible to obtain information on
the ID, associated image and image ID, labels, ports, status,
etc.

The creation of a new container can be executed with the
following command:

myContainer=myClient.create_container(image='ubuntu:la
test',command='/bin/bash')

Using the previous example, you can create a container for the
ubuntu image and provide a command to open bash or any
other command you want.

Additionally, to validate the created container, the following
command can be executed

print(myContainer['Id'])

In this sense, if you want to create a volume, you must specify
its name, as well as the unit and its options if desired.

volume=myClient.create_volume(name='myVolume1',
driver='local', driver_opts={})

to validate if the volume was created correctly the following
option can be executed:

print(volume)

to perform inspections on the volume, from the client object
you can run

myClient.inspect_volume('myVolume1')

The following example shows how you can create a container
with a volume.

mounted_container = myClient.create_container(
'ubuntu', 'ls',
volumes=['/var/lib/docker/volumes/myVolume1'],

José W. Cifuentes S et al., International Journal of Emerging Trends in Engineering Research, 10(2), February 2022, 59 – 66

64

host_config=myClient.create_host_config(binds=[
'/var/lib/docker/volumes/myVolume1:/usr/src/app/myVolum
e1'
,])
)

The previous command creates a container based on the
Ubuntu image and identifying the entry point as "ls", and
mounting a volume located in the path of the local machine
"/var/lib/docker/volumes/myVolume1" for
“/usr/src/app/myVolume1” in the docker container [20]

5. PROPOSED ARCHITECTURE

5.1 Frontend Tool
After validating the available tools, an application that has a
Frontend structure based on TypeScript language (javascript)
is implemented using the react framework, which was
developed by Facebook. The most important characteristics of
reacting are listed below:

 A. Component composition
As in functional programming, functions can be sent as

parameters to solve complex problems, ReacJS applies this
pattern by composing components.
"The applications are made with the composition of several
components. These components encapsulate a behavior, a
view, and a state. They can be very complex, but it is
something that we do not need to worry about when we are
developing the application because the behavior remains
within the component and we do not need to complicate it
once it has been done " [21].

B. Declarative Vs Imperative Development
Traditional forms of frontend web programming often use

libraries like jQuery or "Vanilla JavaScript" with an
imperative programming style, that is, scripts that report
step-by-step on the changes that need to be executed in the
DOM are made. On the other hand, the React style is
declarative, that is, in this style, there is an application state
and the components react to its change. "Components have a
given functionality and when one of their properties changes
they produce a change" [21].

C. One-way data flow
This feature, despite not being exclusive to React, makes it

a very versatile tool when programming, since this model
focuses on communication between higher-order and
lower-order components, propagating data to them.
Subsequently, the lower-order components work with such
data and as a result, they disseminate events to the
higher-order components or states.

D. Performance through Virtual DOM
React architecture operates on a virtual DOM that it owns.

This does not mean that it does not use the browser's own

DOM, what it means is that by using a virtual component to
execute operations before reaching the real DOM, it makes its
performance optimal, so that the virtual DOM takes care of
memory and thanks to the differentiation tools between
virtual and real, the browser updates more quickly, achieving
updates of up to 60 frames per second, which as a result
produces more fluid applications with smoother movements.

E. Isomorphism
This quality is the framework's ability to execute the code

of both the client and the server. In this case, only the
client-side will be used without forgetting that the
applications can be extended.

F. Elements and JSX
React does not properly return HTML code, its code is a

form of JavaScript with its expressions implemented by the
manufacturer which are called JSX and produce elements in
memory but not in the DOM in a traditional way, allowing
heavy browser objects to be produced in less time.

G. Stateful and stateless components
React allows you to create stateless and stateful objects, the

difference is described below:
 Stateless: these are the components that have no state,

that is, they do not store data in their memory. That
doesn't mean they can't receive property values, but
those properties will always bring them into views
without producing a state inside the component.

 Stateful: They are slightly more complex components
because they are capable of saving a state and
maintaining the usual business logic. Their main
difference is that they are written in the code in a more
complex way, generally using an ES6 class (JavaScript
with ECMAScript 2015), which means that you can
have attributes and methods to perform all kinds of
operations.

H. Component life cycle
React implements a life cycle in the form of methods that

are executed when common things happen to the component,
which allows subscribing to actions when an initialization
occurs, a promising return is received, etc.

5.2 Backend layer
For the Backend application, it was thought of using an
object-oriented language that would allow easy and structured
use of the information that comes from the Front layer. For
this purpose, it was considered to use Java exposing
microservices that controlled access to databases, but due to
the nature of the Docker control and management API, it was
decided to use Python as the Backend language.
Not only should this layer carry out the management of the
containers, but it also has the responsibility of managing the
access to the information in the database and exposing as
microservices each of the methods of the tables that are part of

José W. Cifuentes S et al., International Journal of Emerging Trends in Engineering Research, 10(2), February 2022, 59 – 66

65

the database layer.

5.3 Database layer
In this case, a MySQL database was used because it is robust
and open-source, so for the educational purpose of the project,
it does not generate additional costs. This database stores the
information of the applications (monoliths) and users that are
part of the research group's developments [22].

Figure 3 shows the final architecture implemented for the
solution to the proposed problem for educational purposes.

Figure 3: Solution architecture

6. CONCLUSIONS

Enterprise architecture can accommodate monoliths in its
design without them becoming isolated applications and
without constant monitoring, it is only enough to have correct
use of tools that allow their orchestration and administration.

Containers represent a modern era of IT transformation,
similar to the era of virtualization. However, unlike
virtualization, containers exceed IT operations and require
detailed input from multiple organizations. As a result,
companies must change the way these organizations work
together. Successful container adoption is as dependent on
people and processes as it is on technology.

A good container performance strategy starts with its
application specifications and user SLA guarantees, which
should include processes such as container and code
definition reviews, container-specific and stress testing, user
testing and loading, in addition to the operating system,
network and hardware metrics. Future performance
expansion strategies should also include hardware support,
continuous integration, and testing, as well as release
automation and container runtime modeling to help predict
performance issues before they are detected by customers.
This must be supported by the correct tools to aid monitoring.

The use of containers in monoliths is a strategy that reduces
administrative, operational and infrastructure costs because
with the use of containers they can be made scalable so that

resources are not underused and can be correctly assigned to
different applications.

In terms of infrastructure, having containers facilitates
administration, since they can be stored on a single machine
(as proposed in this paper) and resources are shared
optimally.
Containers ensure business success because the rate of return
on the software investment and the investment itself is done
accurately and quickly. Additionally, it detaches itself from
the platform dependencies that usually bring higher costs to
the day-to-day operation.

ACKNOWLEDGEMENT

The authors would like to thank the Universidad Distrital
Francisco José de Caldas and the LASER research group that
supported the development and testing of the project.

REFERENCES
1. E. Srbinovska and P. Mitrevski. Web Services

Deployment in Microsoft Azure Cloud Computing
Platform, Conference: XLIX International Scientific
Conference on Information, Communication and Energy
Systems and Technologies (ICEST 2014), 2014.

2. J. Likness. Aplicaciones sin servidor: Arquitectura,
patrones e implementación de Azure. [Online].
Available:
https://docs.microsoft.com/es-es/dotnet/architecture/serv
erless/

3. J. R. Pascual. Acoplamiento y Cohesión, [Online].
Available:
https://www.disrupciontecnologica.com/acoplamiento-y
-cohesion/

4. Viewnext. Arquitectura de microservicios vs
arquitectura monolítica, [Online]. Available:
https://www.viewnext.com/arquitectura-de-microservici
os-vs-arquitectura-monolitica/

5. E. M. Cordova and Y. J. Maldonado. Propuesta de
arquitectura empresarial para un centro de servicios
compartidos dentro de un grupo empresarial privado,
Bachelor thesis. Universidad Peruana de Ciencias
Aplicadas. [Online]. Available:
https://repositorioacademico.upc.edu.pe/bitstream/handl
e/10757/624305/CORDOVA_ME.pdf?cv=1

6. Evaluando Software. Arquitectura empresarial ¿qué
es y para qué sirve?, [Online]: Available:
https://www.evaluandosoftware.com/arquitectura-empre
sarial/

7. RedHat. Contenedores de Software: ¿Qué es Docker?,
[Online]: Available:
https://www.redhat.com/es/topics/containers/what-is-do
cker

8. J. Cito, V. Ferme and H. Gall. Using Docker Containers
to Improve Reproducibility in Software and Web

José W. Cifuentes S et al., International Journal of Emerging Trends in Engineering Research, 10(2), February 2022, 59 – 66

66

Engineering Research, International Conference on
Web Engineering, 2016.

9. V. Nedu and A. R. Megalapete. A survey on Docker and
its significance in cloud, 2016.

10. B. B. Rad, H. J. Bhatti and M. Ahmad. An Introduction
to Docker and Analysis of its Performance,
International Journal of Computer Science and Network
Security, vol. 17, no.3, pp. 228-235, 2017.

11. C. D. Boettige. An introduction to Docker for
reproducible research, with examples from the R
environment, ACM SIGOPS Operating Systems Review,
vol. 49, no. 1, 2014.

12. D. Bartoletti and C. Dai. The Forrester New Wave™:
Enterprise Container Platform Software Suites, Q4
2018, [Online]: Available:
https://www.redhat.com/rhdc/managed-files/cm-forreste
r-new-wave-enterprise-container-platform-software-suit
es-q42018-analyst-paper-f14768-201810-en.pdf

13. C. Fetzer. Building Critical Applications Using
Microservices, IEEE Security & Privacy, vol. 14, no. 6,
pp. 86-89, 2016.

14. Dorky Desarrollo. ¿Cuál es la diferencia entre una
imagen Docker y un contenedor?, [Online]: Available:
https://www.dokry.com/31180

15. L. A. Iñiguez. Arquitectura tecnológica para la
entrega continua de software con despliegue en
contenedores, M.S. thesis, Universidad de Cuenca.
[Online]: Available:
http://dspace.ucuenca.edu.ec/handle/123456789/28529
2017

16. S. Singh and N. Singh. Containers & Docker:
Emerging roles & future of Cloud technology, 2016
2nd International Conference on Applied and
Theoretical Computing and Communication Technology
(iCATccT), 2016.

17. K. Kharbanda and K. Kaur. Performance Study of
Applications Using Dockers Container, Proceedings
of the International Conference on Advances in
Electronics, Electrical & Computational Intelligence
(ICAEEC), 2019

18. Docker. What is a Container?, [Online]: Available:
https://www.docker.com/resources/what-container

19. J. Stubbs, W. Moreira and R. Dooley. Distributed
Systems of Microservices Using Docker and
Serfnode, 2015 7th International Workshop on Science
Gateways, 2015.

20. R. Jain. Python Library API for Docker, [Online]:
Available:
https://www.tutorialspoint.com/python-library-api-for-d
ocker

21. D. García. Características de React, [Online]:
Available:
https://desarrolloweb.com/articulos/caracteristicas-react.
html

22. E. Bacis S. Mutti, S. Capelli and S. Paraboschi.
DockerPolicyModules: Mandatory Access Control

for Docker Containers, Conference: IEEE Conference
on Communications and Network Security (CNS), 2015.

