
Praveen Choudhary et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1069 – 1072

1069

Low-Overhead Minimum-Method Global Snapshot Compilation

Protocol for Deterministic Mobile Computing Systems

Praveen Choudhary1, Parveen Kumar2

1Research Scholar, NIMS University, Jaipur, India, praveenchoudhary0@gmail.com
2Professor, Dept. of Computer Sc. & Engineering, NIMS University, Jaipur, India, parveen.kumar@nimsuniversity.org

ABSTRACT

CGS-accumulation (Consistent Global State
Accumulation) is one of the commonly used method to
provide fault tolerance in distributed systems so that the
system can operate even if one or more components have
failed. However, mobile computing systems are constrained
by low bandwidth, mobility, lack of stable storage, frequent
disconnections and limited battery life. Hence CGS-
accumulation etiquettes which have lesser reinstatement-
points are favored in mobile environment.

In this paper, we propose a minimum-method coordinated
CGS-accumulation etiquette for deterministic distributed
applications on mobile computing systems. We eliminate
useless reinstatement-points as well as blocking of methods
during reinstatement-points at the cost of logging anti-
messages of very few messages during CGS-accumulation.

We also try to minimize the loss of CGS-accumulation
effort when any method miscarries to capture its
reinstatement-point in an instigation. In this way, we take care
of excessive disappointments during CGS-accumulation. We
make logging of anti-messages of very few messages only
during CGS-accumulation. We also strive to minimize loss of
CGS-accumulation effort.

Key words: Anti-message, CGS-accumulation, Deterministic
Systems, Distributed Systems.

1. INTRODUCTION

Reinstatement_point is a way to add fault tolerance into
computing system. It essentially consists of saving a snapshot
of the application state, in order that it is able to restart from
that point in case of failure. A reinstatement_point is a local
state of a method saved on stable storage. By periodically
invoking the CGS-accumulation procedure, one can save the
status of a program at regular intervals [1], [2]. If there is a
disappointment, one may restart computation from the last
reinstatement-points, thereby, avoiding reiterating
computation from the commencement. The method of
recommencing computation by rolling back to a saved state is
called rollback recovery [3]. In a distributed system, since the
methods in the system do not share memory, a global state of
the system is defined as a set of local states, one from each

method. The state of channels corresponding to a global state
is the set of messages sent but not yet received [4].

In deterministic Mobile_DS(Mobile Distributed Systems),
if two procedures start in the identical state, and both receive
the undistinguishable sequence of inputs, they will yield the
duplicate sequence of outputs and will commit in the similar
state. The state of a procedure is thus entirely determined by
its opening state, received communications, and by order of
communications it has method [5], [6]. Johnson and
Zwaenepoel[5] projected sender-based communication-
logging for deterministic systems, where each communication
is registered in volatile memory on the machine from which
the communication is directed. The communication-log is then
autonomously written to the stable storage, without
suspending the computation, as part of the sender’s periodic
resident-reinstatement-point. Johnson and Zwaenepoel [6]
used optimistic communication-logging and CGS-
accumulation to determine the most recent recoverable state,
where every received communication is registered. David R.
Jefferson [7] presented the concept of anti-message. Anti-
message is precisely like an original communication in format
and content except in one field, i.e., sign. Two
communications that are indistinguishable except for opposite
signs are called anti-messages of one another. All
communications directed unambiguously by user programs
have a positive (+) sign; and their anti-messages possessed a
negative sign (-). Whenever a communication and its anti-
message takes place in the same queue, they instantaneously
cancel one another. Thus, the result of adding a
communication to a queue may be to abbreviate the queue by
one communication rather than lengthening it by one. We
portray the anti-message of m by m-1.

In this paper, we suggest a min-method synchronized
CGS-accumulation scheme for deterministic Mobile_DSs. We
eradicate inoperable reinstatement_points as well as hindering
of procedures during CGS-accumulation at the cost of logging
anti-messages of very few communications during CGS-
accumulation.

2. SYSTEM MODEL FOR PROPOSED ETIQUETTE

In this paper we used the system model presented in [8]. In
this model, a mobile computing system consists of n mobile
hosts (Mob_Nodes), and m mobile support stations (Mob-
Supp-Sts), where n > m. A cell is a logical or geographical

 ISSN 2347 - 3983
Volume 9. No. 8, August 2021

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter06982021.pdf

https://doi.org/10.30534/ijeter/2021/06982021

Praveen Choudhary et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1069 – 1072

1070

coverage area under a Mob-Supp-St. A Mob_Node can
directly communicate with a Mob-Supp-St Mi only if it is
present in the cell serviced by Mi. At any time, a Mob_Node
belongs to only one cell or may be disengaged. The static
network provides reliable First-In-First-Out (FIFO) delivery of
messages between any two Mob-Supp-Sts with arbitrary
message latency. Similarly, the wireless network within a cell
ensures reliable FIFO delivery of messages between a Mob-
Supp-St and a Mob_Node.

In our paper, we consider a distributed computation in a
mobile computing system that consists of N methods, running
contemporaneously on different Mob_Nodes or Mob-Supp-
Sts. For simplicity, we assume that each Mob_Node runs one
method. Message passing is the only way of communication.
The computation is asynchronous. The methods do not share
memory or clock. Each method progresses at its own speed
and messages are exchanged through reliable channels, whose
transmission delays are finite but arbitrary. A method in the
cell of Mob-Supp-St means the method is either running on
the Mob-Supp-St or on a Mob_Node supported by it. It also
includes the methods of Mob_Nodes, which have been
disengaged from the Mob-Supp-St but their reinstatement-
point related information is still with this Mob-Supp-St.

We also assume that the methods are deterministic. The ith
CI (CGS-accumulation interval) of a method denotes all the
computation performed between its ith and (i+1)th

reinstatement_point, including the ith reinstatement_point but
not the (i+1)th reinstatement_point.

3. BRIEF DESCRIPTION OF THE PROPOSED
ETIQUETTE ALONG WITH ANEXAMPLE

Our CGS-accumulation etiquette method is represented
with the help of figure 1. In this Figure, at time t1, PC initiates
CGS-accumulation procedure. cvC[B]=1 due to m1; and
cvB[E]=1 due to m2. On the receipt of m0,PCdoes not set
cvC[D] =1, because, PD has captured its committed resident-
reinstatement-point after sending m0. We assume that PB and
PCare in the cell of the same Mob-Supp-St, say Mob-Supp-
Stin. Mob-Supp-Stin computes int_vect (subset of least-
interacting-set) on the basis of cv vectors maintained at Mob-
Supp-Stin, which in case of Figure 1 is {PB, PC, PD}. Therefore,
PCsends interim resident-reinstatement-pointappeal to PB and
PE and captures its own interim resident-reinstatement-point.
After taking its interim resident-reinstatement-point, PBsends
m4 to PE. PElogs m4

-1. In this case, PB has captured its
resident-reinstatement-point before sending m4, at the time of
receiving m4, PE has not captured its resident-reinstatement-
point for the current instigation. If PE captures resident-
reinstatement-point after receiving m4, the m4 will become
orphan. Therefore, PElogs m4

-1.On reclamation, PE will receive
m4 as duplicate communication because the procedures are
deterministic and m4 will be annihilated by m4

-1. Hence
receive of m4 as duplicate communication will not cause any
inconsistency. It should be noted that this scheme is not
captured for non-deterministic systems. After taking its
interim resident-reinstatement-point CE1, PE also finds that it
was dependent upon PF before taking the resident-

reinstatement-point due to m6 and PFis not in the least-
interacting-set computed so far. Therefore, PE sends interim
resident-reinstatement-pointappeal to PF. On receiving the
resident-reinstatement-pointappeal, PF captures its interim
resident-reinstatement-point. At time t2, PC obtains responses
from all relevant procedures and sends the partially-committed
resident-reinstatement-pointappeal along with the least-
interacting-set [{PB, PC, PE, PF}] to all procedures. When a
procedure, in the least-interacting-set, obtains the partially-
committed resident-reinstatement-pointappeal, it converts its
interim resident-reinstatement-point into partially-committed
one. Finally, at time t3, PC sends the commit communication to
all concerned procedures. In this example, {CA0, CB1, CC1,
CD0, CE1, CF1, m4

-1} constitute a reclamation line. It should be
noted that, in the recorded global state, m4 is an orphan
communication and its anti-message is also recorded at the
receiver end.

Figure 1: Low Overhead Minimum Method Global Snapshot

4. THE PROCESS OF PROPOSED CGS-
ACCUMULATION ALGORITHM

In our proposed algorithm when a Mob_Node sends an
application communication, it needs to first send to its local
Mob-Supp-St over the wireless cell. The Mob-Supp-St can
piggyback appropriate information onto the application
communication, and then route it to the appropriate
destination. When the Mob-Supp-St obtains an application
communication to be forwarded to a local Mob_Node, it first
updates the relevant vectors that it maintains for the
Mob_Node, strips all piggybacked information from the
communication, and then forwards it to the Mob_Node. Thus,
a Mob_Node sends and obtains application communications
that do not contain any additional information; it is only
responsible for CGS-accumulation its local state appropriately
and transferring it to the Mob-Supp-St. Each procedure Pi can
initiate the CGS-accumulation procedure.

Praveen Choudhary et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1069 – 1072

1071

An Originator-procedure Mob-Supp-St(say Mob-Supp-
Stin) initiates and coordinates CGS-accumulation procedure on
behalf of Mob_Nodei. It computes int_vect (subset of the
least-interacting-set on the basis of direct dependencies
maintained locally); and sends provisional resident-
reinstatement-point invitation (say ad-req) along with int_vect
to a Mob-Supp-St, if the later supports at least one procedure
in the int_vect. It also updates its tint_vect on the basis of
int_vect.

We assume that contemporaneous invocations of the
algorithm do not occur. On receiving the ad-req, along with
the int_vect from the originator-procedure Mob-Supp-St, a
Mob-Supp-St, say Mob-Supp-Sti, captures the following
actions-

(i) It updates its tint_vect on the basis of int_vect.

(ii) It sends the ad_req to Pi if the following conditions are
met:

(a) Pi is running in its cell

(b) Pi is a member of the int_vect and

(c) ad_req has not been directed to Pi.

If no such procedure is found, Mob-Supp-St i ignores the
ad_req. Otherwise, on the basis of tint_vect, cv vectors of
procedures in its cell, initial cv vectors of other procedures, it
computes tnp_int_vect. If tnp_int_vect is not empty, Mob-
Supp-St i sends ad_req along with tint_vect, tnp_int_vect to a
Mob-Supp-St, if the later supports at least one procedure in the
tnp_int_vect. Mob-Supp-Sti updates np_int_vect, tint_vect on
the basis of tnp_int_vect and initializes tnp_int_vect.

On receiving ad_req along with tint_vect, tnp_int_vect
from some Mob-Supp-St, a Mob-Supp-St, say Mob-Supp-Stj,
captures the following actions-

(i) It updates its own tint_vect on the basis of received
tint_vect, tnp_int_vect and finds any procedure Pk such
that Pk is running in its cell, Pk has not been directed
ad_req and Pk is intnp_int_vect.

(ii) If no such procedure exists, it simply ignores this
invitation. Otherwise, it sends the provisional resident-
reinstatement-point invitation to Pk.

(iii) On the basis of tint_vect, cv[] of its procedures and initial
cv[] of other procedures, it computes tnp_int_vect. If
tnp_int_vect is not empty, Mob-Supp-Stj sends the
resident-reinstatement-point invitation along with
tint_vect, tnp_int_vect to a Mob-Supp-St, which supports
at least one procedure in the tnp_int_vect.

(iv) Mob-Supp-Stj updates np_int_vect, tint_vect on the basis
of tnp_int_vect. It also initializes tnp_int_vect.For a
disengaged Mob_Node, that is a member of least-
interacting-set, the Mob-Supp-St that has its disengaged
resident-reinstatement-point, converts its disengaged
resident-reinstatement-point into the required one.

(v) When a Mob-Supp-St learns that all of its relevant
procedures have captured their provisional reinstatement-

points successfully or at least one of its procedures has
failed to capture its provisional resident-reinstatement-
point, it sends the response communication along with the
np_int_vect to the originator-procedure’s Mob-Supp-St.

(vi) If, after sending the response communication, a Mob-
Supp-St obtains the resident-reinstatement-point
invitation along with the tnp_int_vect, and learns that
there is at least one procedure in tnp_int_vect running in
its cell and it has not captured its partially-committed
resident-reinstatement-point, then the Mob-Supp-St
invites such procedure to capture resident-reinstatement-
point. It again sends the response communication to the
originator-procedure Mob-Supp-St.

(vii) When the originator-procedure Mob-Supp-St obtains a
response from some Mob-Supp-St, it updates its int_vect
on the basis of np_int_vect, received along with the
response.

(viii) Finally, originator-procedure’s Mob-Supp-St sends
partially-committed resident-reinstatement-point
invitation to all the procedures of the least-interacting-set.
In this case, if some procedure fails to capture provisional
resident-reinstatement-point in the first phase, then
concerned Mob_Nodes need to abort their provisional
reinstatement-points only. The effort of taking a
provisional resident-reinstatement-point is insignificant as
compared to the partially-committed one. In this way, the
loss of CGS-accumulation effort, in case of an abort of
the CGS-accumulation procedure, is significantly low.

When a procedure in the least-interacting-set obtains the
partially-committed resident-reinstatement-point invitation, it
converts its provisional resident-reinstatement-point into
partially-committed one.

In the third phase, originator-procedure Mob-Supp-St sends
commit or abort to all procedures. On receiving abort, a
procedure discards its partially-committed resident-
reinstatement-point, if any, and undoes the updating of data
structures. On receiving commit, procedures, in the int_vect[],
convert their partially-committed reinstatement-points into
committed ones. On receiving commit or abort, all procedures
update their dependency vectors and other data structures.

5. CONCLUSIONS

We have projected a minimum method non-intrusive CGS-
accumulation etiquette for deterministic Mobile_DSs, where no
inoperable reinstatement_points are captured and no hindering of
procedures take place. In minimum methodCGS-accumulation
etiquettes, some inoperable reinstatement_points are captured or
hindering of procedures takes place; we are success to eliminate
both by logging anti-messages of selective communications at
the receiver side only during the CGS-accumulation period. The
overheads of logging a few anti-messages may be negligible as
compared to taking some inoperable reinstatement_points or
hindering the procedures during CGS-accumulation, especially
in Mobile_DS.

Praveen Choudhary et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1069 – 1072

1072

We also try to condense the loss of CGS-accumulation effort
when any procedure fails to capture its resident-reinstatement-
point in coordination with others in the first phase. In case of a
disappointment during CGS-accumulation in the first phase, all
applicable procedures need to abort their interim
reinstatement_points only. The cost of taking an interim
resident-reinstatement-point is negligibly small as compared to
the partially-committed one especially in case of Mobile_DSs.
In case, some procedure fails to convert its interim resident-
reinstatement-point into partially-committed one, then we follow
the selective commit mechanism, in which a procedure commits
its resident-reinstatement-point if none of the procedure, it
causally depends upon, fails to capture its partially-committed
resident-reinstatement-point. We disallow contemporaneous
executions in spite of contemporaneous instigations of the
proposed etiquette.

REFERENCES
[1] Cao G. and Singhal M., “On Coordinated Checkpointing in

Distributed Systems”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 9, No.12, pp. 1213-1225, Dec 1998.

[2] Cao G. and Singhal M., “On the Impossibility of Min-process
Non-blocking Checkpointing and an Efficient Checkpointing
Algorithm for Mobile Computing Systems”, Proceedings of
International Conference on Parallel Processing, pp. 37-44,
August 1998.

[3] Chandy K. M. and Lamport L., “Distributed Snapshots:
Determining Global State of Distributed Systems”, ACM
Transaction on Computing Systems, Vol. 3, No. 1, pp. 63-75,
February 1985.

[4] Elnozahy E. N., Alvisi L., Wang Y. M. and Johnson D. B., “A
Survey of Rollback-Recovery Protocols in Message-Passing
Systems”, ACM Computing Surveys, Vol. 34, No. 3, pp. 375-
408, 2002.

[5] Johnson, D. B., Zwaenepoel W., “Recovery in Distributed
Systems using Optimistic Message Logging and
Checkpointing”, Journal of Algorithms, Vol. 11, No. 2, pp.
462-491, 1990.

[6] Johnson, D.B., Zwaenepoel W., “Sender-based Message
Logging”, In Proceedings of 17th International Symposium on
Fault-Tolerant Computing, pp. 14-19, 1987.

[7] David R. Jefferson, “Virtual Time”, ACM Transactions on
Programming Languages and Systems, Vol. 7, No.3, pp. 404-
425, July 1985.

[8] Pushpendra Singh and Gilbert Cabillic, “A Checkpointing
Algorithm for Mobile Computing Environment”, LNCS, No.
2775, pp. 65-74, 2003.

[9] Acharya A. and Badrinath B. R., “Checkpointing Distributed
Applications on Mobile Computers”, Proceedings of the 3rd
International Conference on Parallel and Distributed
Information Systems, pp. 73-80, September 1994.

[10] Baldoni R., Helary J. M., Mostefaoui A. and Raynal M., “A
Communication-Induced Checkpointing Protocol that Ensures
Rollback-Dependency Trackability”, Proceedings of the
International Symposium on Fault-Tolerant-Computing
Systems, pp. 68-77, June 1997.

[11] Cao G. and Singhal M., “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing Systems”,

IEEE Transaction on Parallel and Distributed Systems, Vol.
12, No. 2, pp. 157-172, February 2001.

[12] Koo R. and Toueg S., “Checkpointing and Roll-Back
Recovery for Distributed Systems”, IEEE Trans. on Software
Engineering, Vol. 13, No. 1, pp. 23-31, January 1987.

[13] Parveen Kumar, Lalit Kumar, R. K. Chauhan and V. K. Gupta
“A Non-Intrusive Minimum Process Synchronous
Checkpointing Protocol for Mobile Distributed Systems”,
Proceedings of IEEE ICPWC-2005, pp. 491-495, January
2005.

[14] Prakash R. and Singhal M., “Low-Cost Checkpointing and
Failure Recovery in Mobile Computing Systems”, IEEE
Transaction on Parallel and Distributed Systems, Vol. 7, No.
10, pp. 1035-1048, October1996.

[15] J. L. Kim, T. Park, “An efficient Protocol for Checkpointing
Recovery in Distributed Systems”, IEEE Trans. Parallel and
Distributed Systems, pp. 955-960, Aug. 1993.

[16] Silva, L. M. and J. G. Silva, “Global checkpointing for
distributed programs”, Proceeding, 11thSymp. Reliable
Distributed Systems, pp. 155-162, Oct. 1992.

[17] Parveen Kumar, Lalit Kumar and R. K. Chauhan, “A Non-
intrusive Hybrid Synchronous Checkpointing Protocol for
Mobile Systems”, IETE Journal of Research, Vol. 52 No.
2&3, 2006.

[18] Parveen Kumar, “A Low-Cost Hybrid Coordinated
Checkpointing Protocol for Mobile Distributed Systems”,
Mobile Information Systems, IOS Press, Vol. 4, pp. 13–32,
2008.

[19] Lalit Kumar Awasthi and P. Kumar, “A Synchronous
Checkpointing Protocol for Mobile Distributed Systems:
Probabilistic Approach”, International Journal of Information
and Computer Security, Vol. 1, No. 3, pp. 298-314.

