
Hitesh Mohapatra et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 975 - 982

975

ABSTRACT

Pipelines are undoubtedly the most blue-chip concept in
Windows PowerShell (PS). It creates a significant difference
between PowerShell and DOS. The working process of the
pipeline is based on several inputs and single outputs. It
means that the output of one sub-part becomes the input to the
other. Pipeline successively refines the data through several
stages for final filtered output. In this paper, we have studied
the details of the pipeline and presented a tutorial by
considering all the capacities of pipeline in the context of the
shell.

Key words: Input, Output, Pipeline, PowerShell, Windows,
Shell, Scripting.

1. INTRODUCTION

Information technology (IT) has become an integral part of
our life to satisfy the need of society. In the current era,
computer science is a major subject. It has many real-life
applications such as cloud computing [1], artificial
intelligence [2], virtualization environment [3], Internet of
things [4,5,6,7,8,9,10,11], transportation problem [12,13],
shortest path problem [14,15,16,17,18,19,20,21], internet
security [22], uncertainty [23,24,25,26] and so on. IT is the
mode by which users can store, fetch, communicate and
utilize the information. So, all the organizations, industries
and also every individual are using computer systems to
preserve and share the information. Internet security appears
in many real-life applications, e.g., home security, banking,
defence system, education sector, railway and so on.

Figure 1: Pipeline Function

In this manuscript, we have discussed the PS concept which is
normally used by the administrator to reduce the
vulnerabilities and restricting access to the operating system
(OS) [27]. Figure 1 illustrates a real-time demonstration of
pipeline operations.

The Microsoft PowerShell is a by default installed application
in every Windows version. The PS is the integration of
command-line shell and scripting language. It works with the
dot NET framework. It provides the user interface that allows
programmers to interact with OS. The PS provides many
benefits to the administrator like the dynamic generation of
commands, execution from memory, encoding, and obscuring
that helps to make the log files for forensic uses [27].

1.1 PowerShell
In the year of 2006, Microsoft introduced PS for automation
and configuration management. The PS is a highly flexible
scripting technology for the administrator end. This .NET
based framework comprises of two components: one is
command shell and the scripting language through which the
complex functions of PS like windows management
instrumentation (WMI) and component object models (COM)
objects. The compilation of PS is happening through the
.NET framework which allows working with DLL and
assembly functions. These attributes give additional strengths
to the PS like remote content downloading, execution of a
command from memory, and handling of local registry keys
[28].

A Tutorial on PowerShell Pipeline and its Loopholes

Hitesh Mohapatra1, Subarna Panda2*, Amiya Kumar Rath3, SA Edalatpanah4, Ranjan Kumar5

1 Assistant Professor, Jain Deemed to be University, Bengaluru, India
2* Assistant Professor, Jain Deemed to be University, India, subbarna.panda@gmail.com

3 Professor at VSS University of Technology, Odisha, India
4 Associate Professor, Department of Industrial Engineering, Ayandegan Institute of Higher Education, Iran

5 Assistant Professor, Jain Deemed to be University, Bengaluru, India

 ISSN 2347 - 3983

Volume 8. No. 4, April 2020
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter06842020.pdf

https://doi.org/10.30534/ijeter/2020/06842020

Hitesh Mohapatra et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 975 - 982

976

The pipeline concept can be understood by assuming the
in one end and the output comes at the other. This concept is
a new thing to the shell environment but the major difference
is that in the case of PS the whole object can be passed. The
vertical bar (|) is used to denote the pipeline in the syntax
environment. In this process, the user may not see the internal
process in the pipeline but the user can give a direction of
execution through | operator. Consider an example, to
understand the functionalities of the pipeline [29,30].
Example 1, presents the Get-Process cmdlet. Figure 2
illustrates the actual processes of the system.

Example 1: Get-Process | Where-Object WorkingSet -gt
500kb | Sort-Object -Descending Name
These process objects contain several pieces of information
like Id, process name, CPU usage, etc. The output of
Get-Process cmdlets becomes an input to the Where-Object
cmdlet [31]. The Where-Object cmdlet process this input data
by applying the filter i.e. find the processes which consume
more than 500 KB of memory (Ref: Figure 3). After that, it
passes through Sort-Object cmdlet by which all the name
field is sorted in a descending manner as shown in Figure 2.
Example 1 clearly shows the passing of full-fidelity objects
along the pipe-line, not their texts, through the pipe-line
process. The admin can extract meaningful information from
the output data. The overall objective of the pipelining
method is to tie multiple instructions with a common thread.

Figure 2: Get-Process Execution

Figure 3: Group and Pivot Data by Name

The PowerShell also helps to group objects based on their
properties and attributes (Ref: Figure 3). The command
-AsHash parameter of the Group-Object cmdlet is an
alternative for Where-Object cmdlet. This creates a mapping
between the objects with property interested in. The primary
limitation of this approach is, it is more efficient on the simple
data set rather a complex one [32-33]. The all above examples
clear the basic definitions of the pipeline as; it integrates

several commands through pipeline operators where not only
string can be passed but also the user can pass complex objects
that are the strength of PowerShell cmdlets.

The rest of the paper is organized as follows; Section 2
contains the various usages of the pipeline concept, Section 3
explores the parallel existing technologies, Section 4
discusses the various criticality in using the pipeline, and
Section 5 concludes the paper followed by references.

2. PIPELINE USES IN REAL-TIME

The pipeline is one of the cohesive concepts in remote server
handling. In many real-time applications such as banking
system, health care, etc. where a huge amount of data is
involved. These applications need to be managed through a
central server structure. In such circumstances pipeline helps
to handle complex queries.

2.1 Object-Oriented PipeLine

The chaining of command lines is not a new concept, but on
the contrary, the pipeline in PowerShell takes the
object-oriented (OO) approach for real-time execution.

Example 2: Dir | Sort-Object Length | Select-Object Name,
Length | ConvertTo-Html | Out-File report.htm.\report.htm.

Figure 4: Group and Pivot Data by Name

Figure 5: Pipeline Working

The command of Example 2 returns an HTML page on the
Windows directory with sorted contents. The command
begins with Dir, which passes its results to Sort-Object. These
properties constrained the sorted object coverts the objects
into an HTML by using ConvertTo-Html cmdlets.
This example demonstrates the multiple uses of pipelines in
the OO-environment. In the said example the intermediate
results of pipelines are very rich whereas the final output is
reduced one. Figure 4 illustrates the object-oriented execution
[34]. Figure 5 illustrates the internal working mechanism of
the pipeline. Figure.6 illustrates the basic flow of the

Hitesh Mohapatra et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 975 - 982

977

object-oriented approach where the standard output of a
command is standard input to the other command. Figure 7
illustrates the cmdlets environment of pipeline operations.
Figure 8 illustrates the object transmission over the pipeline
in PowerShell.

Figure 6: Standout and Standard in Over Pipeline

Figure 7: Working of Pipeline

Figure 8: Working of Pipeline

2.2 Example
The use of pipeline brings a notable advantage like conserve
memory. In the process of memory conservation, the pipeline
concept helps to break the whole huge file into memory which
helps to read the file concurrently. Because without the
pipeline concept it becomes difficult to have such a huge
memory to read the total file [35]. The second advantage of
the pipeline is the concurrent execution of several tasks
through a single processor. It means when one process
working upon reading operation with a huge file, the other
process of pipeline helps to do another module of the same
work. The third advantage of the pipeline is to enhance the
end-user experience. It means that if the task is about to take 1
minute then in traditional execution the end-user has to wait
for 1 minute to get the result whereas, in under pipelining
execution the user may start getting output after a few second
intervals. This helps to enhance the user experience. Figure 8
clearly shows that the functions or the filters transform the fed
input into various intermediary results. The performed
operations are deliberately simple and nonsensical. The
following commands presents:

double the input
Function f1($x) {$x * 2}

concatenate the nth letter to the input where n is half
the input values
Function f2($x) {“$x" + [char]([byte][char] "A" + $x/2 - 1)}

reverse the 2-character string
Function f3($x) {$x [1...0] -join '}

3. SCENARIOS OF PIPELINE EXECUTION

This section presents various scenarios of pipeline execution.
The scenarios are

3.1 Pipeline with Individual Output

In this case, we just loop the pipeline data, calculating the
output, and displaying the output. Even if the data flows
smoothly through the pipeline, it dries up the pipeline
completely then only it forwards the data to the next pipeline.
Example 3 clearly illustrates the execution of the pipeline
through completely dries up. In this Example 3, it dries up the
entire line input until the pipeline is empty.

Example: 3

function showInputs
{
 $output = @ ()
 foreach ($data in $input) {$output += $data}
 Write-Host $output
 Write-Output $output
}
function f1Runner
{
 $output = @ ()
 foreach ($data in $input) {$output += f1 $data}
Write-Host $output
 Write-Output $output
}

function f2Runner
{
 $output = @ ()
 foreach ($data in $input) {$output += f2 $data}
 Write-Host $output
 Write-Output $output
}
function f3Runner
{
 $output = @ ()
 foreach ($data in $input) {$output += f3 $data}
 #Write-Host $output
 Write-Output $output
}}

3.1 Pipeline with Individual Output

The previous Example.3 can be fixed by emitting each value
as soon as it gets calculated. In the Example.4, emitting value
at a time. (Ref: Figure 9)

Hitesh Mohapatra et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 975 - 982

978

Figure 9: Output without Pipeline

Example: 4

Function showInputs
{
 $input | ForEach-Object {
 $output = $_
 Write-Host $output
 Write-Output $output
 }
}
Function f1Runner
{
 $input | ForEach-Object {
 $output = f1 $_
 Write-Host $output
 Write-Output $output
 }
}
Function f2Runner
{
 $input | ForEach-Object {
 $output = f2 $_
 Write-Host $output
 Write-Output $output
 }
}
Function f3Runner
{
 $input | ForEach-Object {
 $output = f3 $_
 # Write-Host $output
 Write-Output $output
 }
}

In the given output (Ref: Figure 9) the output is not being
pipelined. Here the declared functions emitting results. The
example explicitly shows that it is not aggravating the results.

3.1 Process Inputs Promptly After Receiving

In this said Ex. 5, the process block runs for each input
without loop. It does not mean that the execution happens
without loop but that loop management is done by the
PowerShell itself. $_ is used to access the current value. (Ref:
Figure 10).

Figure 10: Output with Pipeline

Example: 5

Function show Inputs
{
 process
 {
 $output = $_
 Write-Host $output
 Write-Output $output
 }
}
Function f1Runner
{
 process
 {
 $output = f1 $_
 Write-Host $output
 Write-Output $output
 }
}
Function f2Runner
{
 process
 {
 $output = f2 $_
 Write-Host $output
 Write-Output $output
 }
}
Function f3Runner
{
 process
 {
 $output = f3 $_
 # Write-Host $output
 Write-Output $output

Figure 11 demonstrates the output which is obtained through
by using the pipeline concept of PowerShell. These previously
given instances explain the reality of pipeline uses, it means
that user expectation typically behaves in two ways, either it
waits to get all the inputs before processing or it processes all
given inputs before sending output.

Hitesh Mohapatra et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 975 - 982

979

Figure 11: Pipeline Process

5, 6, 7, 2, 3, 0, 9 |% -begin {$v = @ ()} {$v += $_} -end
{[array]: Sort($v); $v}

So, to avoid this waiting state from the end-user end, the
pipelining in PowerShell is the key to that. For example,
sorting is the best example of pipelining operations [36].

4. LOOPHOLES WITH POWERSHELL

The PS provides easy accessibility to the major
components of the work station like access to the OS,
server, etc. The PS is vulnerable to the attacks for the
following reasons:

 All Windows by default installed with PS.
 The payloads can be executed directly from

memory.
 PS generates traces which creates difficulties to

track attacks.
 It has remote access capabilities.
 The script part of this creates obfuscation and

traditional security tools are fails to catch it.
 Defenders often overlook it during hardening their

computer.
 It has the capacity to bypass application-whistling

tools.
 Gateways are not enough capable to handle

script-based malware.
 The ready availability of scripts.
 Permission from the administrator end for

working with PS malware.

These causes make the PS most vulnerable. In the next
sub-section, we have presented a few attacks on PS.

4.1 Powershell Sensor Issues

According to the [37] report, the PS mostly used by the IT
people to restrict access and to reduce the vulnerabilities. The
major weakness with PS is, it invokes external commands and
modules for dynamic defined environment variables. This
short of execution does not produce visibility for detecting
attacks on PS. One such instance of PS attack is "IEX
\env:iu7Gt" environmental behaviour. This malicious script
invokes a log that shows the command before its dynamic
interpretation [13]. In PS 5.0 the Microsoft improved the
logging capabilities by introducing Anti-Malware Scan
Interface (AMSI) [14] These malicious activities can be
handled through many ways one of those is deep neural

network-based attack handling. According to the report
published by the [37] in 2016, 49,127 PowerShell scripts were
submitted to the Symantec. The deep analysis of those scripts
concludes that, out 100%, 95.4% of scripts are malware.
Through the manual investigation of these scripts by the
Symantec, brings out 4,782 recent distinct samples of
malware. This malware belongs to 111 malware families. The
deep study also says that the malware "W97M" is the most
prevalent malware of 9.4%, "Kotver" came second with 4.5%
and the "JS. Downloader" came third with 4%. Figure 12,
illustrates the malicious PS script of the year 2016.

Figure 12: Malware Based Scripts in PS in the Year 2016

4.2 Execution Policy

In this sub-section, we have put light on the various phases of
the PS attack and its consequences. Microsoft has set a few
policies for PS script execution. By default, in every window
there are five options are available such as Restricted,
AllSigned, Bypass, RemoteSigned, Unrestricted.

These policies are not providing any security to the system
rather it prevents the user from the accidental running of
scripts. The default policy that is set is Restricted except
Windows Server 2012 R2 where it is RemoteSigned.
Organizations select these policies based on several scopes
like Machine Policy, User Policy, Process, Current User or
Local Machine. Despite all these policies, the attackers have
several methods for attacks. The few notes methods are:
Pipe the script into the standard-in of powershell.exe, such as
with the echo or type command.
TYPE myScript.ps1 | PowerShell.exe -noprofile -

 Use the command argument to execute a single command
powershell.exe -command “iex(New-Object Net.
WebClient).DownloadString(‘http://[REMOVED]/myScript.ps1’)
”

Use the Encoded Command argument to execute a single
Base64-encoded command.
powershell.exe -enc [ENCODED COMMAND]

Use the execution policy directive and pass either
“bypass” or “unrestricted” as argument.
powershell.exe -ExecutionPolicy bypass -File myScript.ps1

Hitesh Mohapatra et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 975 - 982

980

These problems with PS may invite the interferences of
attackers to modify the interactive PS sessions where the
attackers can run the codes on a compromised computer.

4.3 Script Execution
Normally, in the PS environment, the Restricted mode does
not allow the attacker to execute the malicious code whereas,
the attackers use the following methods to evade detection
and to bypass the local restrictions.
1 -NoP/-NoProfile (ignore the commands in the profile file)

2 -Enc/-EncodedCommand (run a Base64-encoded command)

3 -W Hidden/-WindowStyle Hidden (hide the command window)

4 -Exec bypass/-ExecutionPolicy Bypass

5 -NonI/-NonInteractive (do not run an interactive shell)

6 -C/-Command (run a single command)

7 -F/-File (run commands from a specified file)

In malicious PS script, there are few commands which are
frequently used such as;
1 (New-Object System.Net.Webclient).DownloadString()

2 (New-Object System.Net.Webclient).DownloadFile()

3 -IEX / -Invoke-Expression

4 -Start-Process

4.3 Email Vector
Email is one of the primary commuters for deliver vector for
PS. The attacker sends the malicious codes in the .zip
formats. These malicious files have following extensions:
.lnk, .wsf (Windows Script file), .hta, .mhtml, .html, .doc, .docm,
.xls, .xlsm, .ppt, .pptm, .chm (compiled HTML help file), .vbs
(Visual Basic script), .js (JavaScript), .bat, .pif, .pdf, .jar

Upon receiving such files, the injected malicious PS script
runs aromatically. The report produced by [38] says that
during their investigation they are blocking around 466,028
malicious emails per day. These malicious JavaScript-based
attachments mostly have the extensions of .html, .vbs and
.doc type.

5. CONCLUSION

In this paper, we have exploited the PowerShell concept in
Windows environment. The first part of the paper has
explored the advantages and limitations of the pipeline
concept. In the second part, we have concentrated on the
loopholes of PS based on possible attacks. It focuses on assault
bunches that utilizes PowerShell. There are immense
networking contents for PowerShell entrance analyzers. It
can be predicted that cybercriminals may begin to utilize the
PowerShell in the later stages. Additionally, it is conceivable
to have full secondary passage Trojans or ransomware coded
in PowerShell. This paper can be extended by analyzing
several real-time attacks through PS in advanced
environments.

This paper in prospect to future advancement would
concentrate upon an open and ubiquitous cross-platform of PS
in core support and adaptation in the cloud, REST or any
first-party scenarios. It would also enable in implantation of
large and trusted artefacts such as Azure compliance
requirements, Azure-based power shell services pertinent to
the hybrid cloud. Availability of ConvertFrom-String cmdlet
would be a boost to the administrator to convert the output
into objects in Linux, macOS commands for the second-class
citizens in the PowerShell world.

REFERENCES

1. BWK Malubaya and G Wang, Real-time parking
information system with cloud computing open
architecture approach, International Journal of
Emerging Trends in Engineering Research, vol. 8, pp.
18-22, 2020
https://doi.org/10.30534/ijeter/2020/04812020

2. DA Petrosov, RA Vashchenko, AA Stepovoi and NV
Petrosova, Application of artificial neural networks
in genetic algorithm control problems, International
Journal of Emerging Trends in Engineering Research,
vol. 8, pp. 177-181, 2020.
https://doi.org/10.30534/ijeter/2020/24812020

3. H Mohapatra, "HCR using neural network," Biju
Patnaik University of Technology, PhD dissertation
2009.

4. H Mohapatra and AK Rath, "Detection and avoidance
of water loss through municipality taps in India by
using smart tap and ICT, IET Wireless Sensor
Systems, vol. 9, pp. 447-457, 2019
https://doi.org/10.1049/iet-wss.2019.0081

5. H Mohapatra and AK Rath, Fault tolerance in WSN
through PE-LEACH protocol," IET Wireless Sensor
Systems, vol. 9, pp. 358-365, 2019

6. H Mohapatra, S Debnath, and AK Rath, Energy
management in wireless sensor network through
EB-LEACH, International Journal of Research and
Analytical Reviews (IJRAR), pp. 56-61, 2019.

7. VN. Nirgude, H Mahapatra, and SA. Shivarkar Face
recognition system using principal component
analysis & linear discriminant analysis method
simultaneously with 3d morphable model and neural
network BPNN method, Global Journal of Advanced
Engineering Technologies and Sciences, vol. 4, pp. 1-6,
2017.

8. M Panda, P Pradhan, H Mohapatra, and NK Barpanda,
Fault-tolerant routing in a heterogeneous
environment, International Journal of Scientific &
Technology Research, vol. 8, pp. 1009-1013, 2019.

9. H Mohapatra, and AK Rath, Fault-tolerant
mechanism for wireless sensor network, IET Wireless
Sensor Systems, vol. 10, pp. 23-30, 2020.
https://doi.org/10.1049/iet-wss.2019.0106

Hitesh Mohapatra et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 975 - 982

981

10. D. Swain, G. Ramkrishna, H. Mahapatra, P. Patra, and
PM. Dhandrao, A novel sorting technique to sort
elements in ascending order, International Journal of
Engineering and Advanced Technology, vol. 3, pp.
212-126, 2013.

11. R Kumar, SA Edalatpanah, S Jha, and R Singh, A
Pythagorean fuzzy approach to the transportation
problem, Complex and Intelligent System, vol. 5, pp.
255-263, 2019.
https://doi.org/10.1007/s40747-019-0108-1

12. J Pratihar, R Kumar, A Dey, and S Broumi,
Transportation problem in neutrosophic
environment, in Neutrosophic Graph Theory and
Algorithms, F. Smarandache and S. Broumi, Eds.:
IGI-Global, 2019, ch. 7, pp. 176-208.

13. S Broumi, A Dey, M Talea, A Bakali, F Smarandache,
D Nagarajan, M Lathamaheswari and R Kumar,
Shortest path problem using Bellman algorithm
under neutrosophic environment, Complex &
Intelligent Systems, vol. 5, pp. 409-414, 2019.

14. R Kumar, SA Edalatpanah, S. Jha, S Broumi, R Singh,
and A Dey, A multi-objective programming
approach to solve integer-valued neutrosophic
shortest path problems, Neutrosophic Sets and
Systems, vol. 24, pp. 134-149, 2019.

15. R Kumar, A Dey, F Smarandache, and S Broumi, "A
study of neutrosophic shortest path problem," in
Neutrosophic Graph Theory and Algorithms, F.
Smarandache and S. Broumi, Eds.: IGI-Global, 2019,
ch. 6, pp. 144-175.
https://doi.org/10.4018/978-1-7998-1313-2

16. R Kumar, SA Edalatpanah, S Jha, and R Singh, A novel
approach to solve gaussian valued neutrosophic
shortest path problems, Int J Eng Adv Technol, vol. 8,
pp. 347-353, 2019b.

17. R Kumar, SA Edalatpanah, S Jha, S Gayen, and R
Singh, Shortest path problems using fuzzy weighted
arc length, International Journal of Innovative
Technology and Exploring Engineering, vol. 8, pp.
724-731, 2019.

18. R Kumar, SA Edaltpanah, S Jha, S Broumi, and A Dey,
Neutrosophic shortest path problem, Neutrosophic
Sets and Systems, vol. 23, pp. 5-15, 2018.

19. R Kumar, S Jha, and R Singh, A different approach
for solving the shortest path problem under mixed
fuzzy environment, International Journal of fuzzy
system Applications, vol. 9, pp. pp.132-161, 2020.

20. R Kumar, S Jha, and R Singh, Shortest path problem
in network with type-2 triangular fuzzy arc length,
Journal of Applied Research on Industrial Engineering,
vol. 4, pp. 1-7, 2017.

21. J Sakhnini, H Karimipour, A Dehghantanha, RM
Parizi, and G Srivastava, Security aspects of Internet
of Things aided smart grids: A bibliometric survey,

Internet of Things, pp. 100-111, 2019. http://www.scie
ncedirect.com/science/article/pii/S2542660519302148
https://doi.org/10.1016/j.iot.2019.100111

22. S Gayen, F Smarandache, S Jha, and R Kumar,
Interval-valued neutrosophic subgroup based on
interval-valued triple t-norm, in Neutrosophic Sets in
Decision Analysis and Operations Research, M.
Abdel-Basset and F. Smarandache, Eds.: IGI-Global,
Dec. 2019c, ch. 10, p. 300.
https://doi.org/10.4018/978-1-7998-2555-5.ch010

23. S Gayen, F Smarandache, S Jha, MK Singh, S Broumi
and R Kumar, Introduction to Plithogenic Subgroup,
in Neutrosophic Graph Theory and Algorithm, F
Smarandache and S Broumi, Eds.: IGI-Global, 2020,
ch. 8, pp. 209-233.
https://doi.org/10.4018/978-1-7998-1313-2.ch008

24. S Gayen, S Jha, M Singh, and R Kumar, On a
generalized notion of anti-fuzzy subgroup and some
characterizations, International Journal of
Engineering and Advanced Technology, vol. 8, pp.
385-390, 2019.

25. V Lyashenko, SK Mustafa, I Tvoroshenko and MA
Ahmad, Methods of using fuzzy interval logic during
processing of space states of complex biophysical
objects, International Journal of Emerging Trends in
Engineering, vol. 8, pp. 372-377, 2020
. https://doi.org/10.30534/ijeter/2020/22822020

26. D Hendler, S Kels, and A Rubin Detecting malicious
powershell commands using deep neural networks,
in Proceedings of 2018 on Asia Conference on
Computer and Communications Security, New York,
NY, USA, 2018, pp. 187–197. https://doi.org/10.1145
/3196494.3196511

27. D Ugarte, D Maiorca, F Cara, and G Giacinto,
PowerDrive: accurate deobfuscation and analysis of
powershell malware, in Detection of Intrusions and
Malware, and Vulnerability Assessment, Cham, 2019,
pp. 240-259.

28. A Rubin, S Kels, and D Hendler, AMSI-Based
detection of malicious powershell code using
contextual embeddings, pp.1-17, May 2019., https://
arxiv.org/ pdf/1905.09538.pdf

29. A Rousseau, Hijacking.NET to defend Powershell,
Sep. 2017.

30. G Rusak, A Al-Dujaili, and UM O'Reilly AST-Based
deep learning for detecting malicious Powershell,
Oct. 2018.
https://doi.org/10.1145/3243734.3278496

31. X Sun, J Lin, and B Bischl, ReinBo: machine learning
pipeline search and configuration with bayesian
optimization embedded reinforcement learning, pp.
1-17, Apr. 2019. https://arxiv.org/abs/ 1904.05381

32. A Hamidinekoo, E Denton, and R Zwiggelaar,
Automated mammogram analysis with a deep

Hitesh Mohapatra et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 975 - 982

982

learning pipeline, July 2019.
33. J Gao, Z Yang, and R Nevatia, Cascaded boundary

regression for temporal action detection, May 2017.
https://doi.org/10.5244/C.31.52

34. K Papaioannou, M Theobald, and M Böhlen,
Generalized lineage-aware temporal windows:
supporting outer and anti joins in
temporal-probabilistic databases, Feb. 2019.

35. W Fuhl, T Santini, G Kasneci, and E Kasneci,
PupilNet: convolutional neural networks for robust
pupil detection, Jan. 2016.

36. H Deshev, PowerShell Community Extensions," in Pro
Windows PowerShell. Berkeley, CA: Apress, 2008,
pp. 417-448.
https://doi.org/10.1007/978-1-4302-0546-3_21

37. S Talaat, Getting started with azure powershell, in
Pro PowerShell for Microsoft Azure. Berkeley, CA:
Apress, 2015, pp. 9-17.
https://doi.org/10.1007/978-1-4842-0665-2_2

38. X Xu, From cloud computing to cloud
manufacturing, Robotics and Computer-Integrated
Manufacturing, vol. 28, pp. 75-86, 2012.
http://www.sciencedirect.com /science/article/pii/
S0736584511000949
https://doi.org/10.1016/j.rcim.2011.07.002

