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 
ABSTRACT 
 
This paper presents a new nature-inspired metaheuristic 
technique namely Slime Mould Algorithm (SMA) which is 
inspired from the swarming behavior and morphology of 
slime mould in nature to solve a practical optimal power 
flow (OPF) problem. OPF is a highly non-linear complex 
optimization problem in the power system. SLM algorithm is 
used to determine the best values of control variables of 
which a selected objective function is minimized such as 
costs of conventional power generation minimization, active 
power loss reduction and improvement of the voltage profile. 
In the presented paper three case studies of IEEE 30-bus, 
IEEE 57-bus systems and large Algerian electrical test 
system DZ114 to show the effectiveness of this novel 
technique. The results of this research prove that SMA 
outperforms other techniques in terms of fuel cost 
minimization, reduction of active power losses and voltage 
deviation improvement.  
 
Key words: Metaheuristic technique, optimal power flow, 
slime mould algorithm, power system.  
 
1.INTRODUCTION 
 
The optimal power flow (OPF) is currently considered as one 
of the most essential tools for inefficient planning and 
controlling the operation of power systems. The OPF is a 
well-studied problem of optimization in control systems. 
This problem has been introduced by Carpentier in 1962 [1]. 
In general, the OPF is a nonlinear problem that involves the 
procedure of determining the optimal values of the control 
variables of the system to minimize the objective function, 
subject to various equality and inequality constraints [2]. The 
optimal power flow has been formulated and successfully 
applied for several years to various objective functions 
related to the electrical power system, such as in [3]–[6]. In 
OPF optimization, the problem may have a single objective 
function or multi-objective function.  

Several different mathematical techniques were developed 
and applied in the power system for solving the OPF 

                                                        
 

problem. These optimization techniques can be divided into 
two groups; Classical (or conventional) optimization 
algorithms and modern optimization algorithms. Compared 
to classical algorithms, modern optimization algorithms 
converge rapidly into the optimal solution. The modern 
optimization algorithms may be classified into three classes, 
metaheuristic optimization algorithms (MAs), artificial-
intelligence-based optimization algorithms (AI), and a hybrid 
of two or more modern optimization algorithms. In the 
power system, these modern algorithms have been developed 
and proposed to find the optimal solution of the OPF 
problem in small and large-scale systems, particularly 
nonlinear or non-convex complex optimization problems. 

The metaheuristic term was introduced in 1986 by Glover 
[7]. The principle of the metaheuristic algorithms (MAs) is to 
minimize or maximize one or multi-objective functions to 
find the best solutions for difficult and complex optimization 
problems [8]. The MAs represent a major revolution in the 
field of optimization and are therefore widely used to solve 
the optimization problems related to the power system.MAs 
can be categorized into four main categories according to 
their nature-inspired or some of their characteristics such as 
evolution-based algorithms (EAs), physics-based algorithms 
(PAs), human-based algorithms (HAs) and swarm-based 
algorithms (SAs) [9]. Several metaheuristic algorithms are 
implemented in electrical power system for solving the OPF 
problem with different objective functions such as salp 
swarm optimizer [10], Moth Swarm Algorithm [11], 
differential evolution [12],  moth-flame optimizer [13], 
glowworm swarm optimization [14], Sine-Cosine algorithm 
(SCA) [15], Differential search algorithm [16], stud krill 
herd algorithm [17], Artificial bee colony algorithm [18], 
Symbiotic organisms search algorithm [19], improved 
colliding bodies optimization algorithm [20], Firefly 
Algorithm [21], multi-verse optimizer [22]. Ant lion 
optimizer [23]. 

The present work aims to apply a new stochastic 
optimization technique, namely slime mould algorithm 
(SMA) to solve our problem and satisfy our imposed 
conditions. The SMA is based on mode of oscillation in 
nature and simulates the swarming behavior and morphology 
of slime mould in foraging. In this work, SMA algorithm has 

 
Optimal Power Flow Control Variables using Slime Mould 
Algorithm for Generator Fuel Cost and Loss Minimization 

with Voltage Profile Enhancement Solution 
R. Kouadri1, I. Musirin2, L. Slimani3, T. Bouktir4, M. M. Othman5 

1, 3, 4 Department of Electrical Engineering, University of Ferhat Abbas Setif 1, Algeria. 
2,5 Department of Electrical Engineering, UniversitiTeknologi MARA (UiTM), 40450 Shah Alam, Selangor, 

Malaysia (s) 

        ISSN  2347 - 3983 
Volume 8. No. 1.1, 2020 

International Journal of Emerging Trends in Engineering Research 
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter0681.12020.pdf 

https://doi.org/10.30534/ijeter/2020/0681.12020 
 

 

 



R. Kouadri  et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020,  36 - 44 
 

37 
 

 

been used to solve the OPF problem for the IEEE 30-bus, 
IEEE 57-bus systems and large Algerian electrical power 
system DZ114 with different objective functions considered 
that have to be optimized, such as the total fuel cost(TFC), 
reduction of active power losses and improvement of the 
voltage deviation. 

2.FORMULATION OF THE OPF PROBLEM 

2.1 Formulation Problem 

The OPF solution gives the optimal value of the control 
variables by minimizing an objective function while 
satisfying various equality and inequality constraints. 
Generally, the mathematical expression of the optimization 
problem may be represented as follows: 

Min                     ,F x u  (1) 

 Subjected to        , 0g x u   (2) 

 , 0h x u   (3) 

whereݔandݑrepresent respectively the vectors of the state 
variables (dependent variables) and control 
variables(independent variables), ݔ)ܨ,  denotes the (ݑ
objective function or optimization goalto be optimized. 

2.2Control variables  

The control variables or independent variables should be 
adjusted to satisfy the load flow equations. The set of control 
variables in the OPF can be expressed by vector u as: 

2 1 1 1, , ,
NG NG NCG G G G C C NTu P P V V Q Q T T        (4) 

where: ܲீ  is the generator active power, ܸீ  is the generator 
voltage, ܳ஼ଵ is the reactive power injected by the shunts 
compensator, ܶ is the tap setting of transformers, ܰܩ is the 
number of generators,ܰܥ is the number of shunts 
compensators units and ܰܶ is the number of regulating 
transformers. 

2.3State variables 

The set of variables which describe the electrical power state 
can be expressed by vector ݔ as follows: 

1 1 1
, , ,

NG NL nlGslack G G L L l lx P Q Q V V S S      (5) 

where, ܲீ ௦௟௔௖௞  is the active power output from the slack bus 
generator, ܳீ is the reactive power produce by the 
generators, ௅ܸ  is the voltage profile at the load busses and ௟ܵ 
is the apparent power flow, ܰீ is the total number of 
generators buses, ௅ܰ is the total number of load buses or ܲܳ 
buses, and ௟ܰ is the total number of transmission lines. 
 
 

2.4Constraints OPF 

In OPF, constraints can be classified into equality and 
inequality constraints. 

2.4.1 Equality constraints 

The equality constraints reflect the power-system physics 
which represents the balanced power load flow equations. 
These constraints can be represented as follows: 

 
1

cos sin
i i i

N

G W d i j ij ij ij ij
j

P P P V V g z 


    (6) 

 
1

s in c o s
i i i

N

G W d i j i j i j i j i j
j

Q Q Q V V g z 


    (7) 

2.4.2 Inequality constraints 

The inequality constraints reflect the limiting of the power 
system operation. These inequality constraints are as follows: 

min max
Gi Gi Gi

min max
Gi Gi Gi
min max

Gi Gi Gi
min max

NTi NTi NTi
max

Li Li

P P P

Q Q Q
V V V

T T T
S S










 

 







 

 (8) 

3.SLIME MOULD ALGORITHM 

A Slime Mould Algorithm (SMA) is a new technique nature-
inspired proposed by Shimin Li et. al in 2020[24], this 
algorithm simulates the swarming behavior and morphology 
of slime mould in foraging, and is based on mode of 
oscillation in nature. One of the most interesting 
characteristic in the slime mould is the unique pattern based 
on the multiple food sources to create a venous network 
connecting them at the same time. This scheme gives the 
high capability of escaping from local optima solutions. The 
algorithm is aroused by slime mold diffusion and foraging 
behavior. Slime mould can approach food, depending on the 
smell in the air. In the SMA algorithm, the proposed 
mathematical model uses the adaptive weight to simulate the 
combination of positive and negative feedback from the bio-
oscillator-based propagation wave that was inspired by slime 
mould to form the optimal pathway to connect food. The 
slime mold morphology varies, with three different forms of 
contraction [24]. Figure 1 shows the morphology of slime 
mould during foraging. 

 
Figure 1: Foraging morphology of slime mould[24] 
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3.1 Approach food 

The following formulas for imitating the contraction mode is 
proposed to model the behavior of slime mould to 
approaching food according to the odor in the air as a 
mathematical formula: 

 
      

 

* , 
1

 * ,

b A BX t vb W X t X t r p
X t

vc X t r p

  
 







   


   (9) 

where ܺ⃗denotes the slime mould location,ܺ௕ሬሬሬሬ⃗ is the individual 
emplacement with the highest odor concentration currently 
found, ஺ܺሬሬሬሬ⃗  and ܺ஻ሬሬሬሬ⃗  are indicated two randomly selected 
individuals from the swarm,ܾݒሬሬሬሬ⃗ is a parameter with distributed 
in the range of [−ܽ, ሬሬሬሬ⃗ܿݒ ,[ܽ  decreases linearly from 1 to 
shows the current iteration and  ሬܹሬሬ⃗	ݐ,0  represents the slime 
mould weight and given in the Eq (12). ݌	is the parameter 
given by Eq.(10) as follows: 

 tanhp S i DF  (10) 

whereܵ(݅) shows the fitness of ܺ⃗, ݅ ∈ 1,2, … ,  is the ܨܦ ,݊
optimum fitness obtained in all iterations. 
The parameter of ܽ	is given as follows:  

arctanh 1
max _

t
a

t
  

  
  

  
 (11) 

The expression of ሬܹሬሬ⃗  define the location of slime mould and 
is given as follows: 

  

  
  

1 * log 1 ,   

1 * log 1 ,  

bF S i
r condition
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 
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
 










 (12) 

where ܿ݊݋݅ݐ݅݀݊݋	denotes that ܵ(݅) is ranked first half of the 
population，ݎ represents the random value distributed in the 
range of [0,1]，ܾܨ and ܨݓ are represent the optimal and 
worst fitness value obtained in the current iterative process, 
respectively, ݈݈ܵ݉݁ݔ݁݀݊ܫ represents the sequence of fitness 
values sorted as follows: 

( )SmellIndex Sort S  (13) 

3.2Wrap food 

This portion mathematically simulates the mode of 
contraction in the venous tissue structure of slime mould 
while searching. The higher the food concentration reached 
by the vein, the stronger the bio-oscillator-generated wave, 
the quicker the cytoplasm flows and the thicker the vein. The 
following mathematical formula represents updating the 
emplacement of slime mould: 

 

      
 

*

* ,  

* *

*

,

, 

b A B

rand ub lb lb rand z

X X t vb W X t X t r p

vc X t r p

  

  









    

 
(14) 

where݈ܾ and ܾݑ denote, respectively, the lower and upper 
boundaries of the search range, ݀݊ܽݎdenote the random 
valuedistributed in the range of in [0,1]. 

3.3 Grabble food 

Slime mould depends primarily on the propagation wave to 
change the cytoplasmic flow in the veins, so that they appear 
to be in a better food concentration location.  Slime mould 
can approach food more quickly food when the concentration 
and quality of food are high, while if the food concentration 
is lower, approach it more slowly, thus increasing the 
efficiency of slime mould in selecting the optimal source of 
food. 

In the SMA process, the value of ܾݒሬሬሬሬ⃗ parameter oscillates 
randomly in the interval between [−ܽ, ܽ] and progressively 
approaches zero as the iterations increase. The value of ܿݒሬሬሬሬ⃗  
oscillates randomly in the interval between [-1, 1] and finally 
tends to be zero. The flowchart of the implementation of the 
proposed algorithm for solving the OPF problem is shown in 
figure 2. 

 

 

 

 

  

    

 

 

 

 

 

 

 

 

 

Figure 2:  Flowchart of the SMA Algorithm 
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4.RESULTS AND DISCUSSIONS 
 
The proposed SMA is implemented to solve the OPF 
problem for the IEEE 30-bus, IEEE 57-bus and Algerian 
114-bus systems with different case studies are investigated. 
In this section, dissimilar objective functions have been 
considered to verify the efficiency and performance of the 
SMA according to the optimal adjustment of control 
variables. All the simulations cases are carried out by using 
MATLAB version 2009b, and computed with specification 
Intel® Core™ i5 CPU@1.80 GHz and 8Go RAM. In this 
work, the SMA population size and the number of iterations 
maximal are 40 and 500 respectively. 

4.1 IEEE 30-bus power system 

The first test is dedicated on the standard IEEE 30-bus power 
system. This system consists of 6 generators, 41 transmission 
lines of which 4 transformers with off-nominal taps ratio 
located on lines 6–9, 4–12, 9–12 and 27–28. In addition, nine 
reactive power sources were installed at buses 10, 12, 15, 17, 
20, 21, 23, 24, and 29. The total load is (2.834 +j0.735) p.u. 
in this test system, the control variables transformers as 
present in Eq. (4). 

Case 1: Minimization of generation fuel cost 

In the first case, the quadratic equation of generation fuel 
cost of thermal generators is formulated as the objective 
function with satisfying all system constraints: 

2

1

) ($/h)( Penalty


   
i i

N

i i G i G
i

FC a b P c P (15) 

whereFC denotes the fuel cost of the ݅th generator, ܲீ ௜ is the 
active power generated by the thermal generators, ܽ௜, ܾ௜ and 
ܿ௜ are the cost coefficients of ݅th generator. 

In this case, the proposed method is tested to find the optimal 
fuel cost according to the optimal power distribution of the 
production units.Table 2 summarizes the optimal settings 
values of control variables, optimum fuel cost, active power 
loss reduction and deviation voltage for SMA as well as 
those obtained by using the Grasshopper Optimization 
Algorithm (GOA). From this table, it can be seen that the 
power generated, the generator voltage, the ratios of the four 
transformers and the reactive power injected by the reactive 
power sources are all within their permissible limits. 
Furthermore, we can also see that the fuel cost and the active 
power losses obtained by using the SMA are to up 798.9709 
$/h and 8.5752 MW respectively, and are better compared to 
those found by GOA algorithm. Also, the fuel cost obtained 
via SMA compared to some other methods available in the 
literature as show in Table 1.The results achieved show that 
SMA gives better value to minimize the fuel cost compared 
to some other methods that prove the effectiveness of the 
proposed algorithm.The convergence characteristics of the 
fuel cost with SMA and GOA over iterations are shown in 
figure 3. It can be seen that the SMA algorithm outperforms 
the GOA algorithm in terms of convergence rate towards the 
global optimum solution. 

Table 1: Comparison of solutions for fuel cost minimization using 
SMA and different methods: Case 1. 

Method Fuel cost 
($/h) 

Method description 

SMA 798.9709 Slime mould algorithm 
GOA 799.1541 Grasshopper optimization algorithm 
MFO [13] 799.072 Moth-Flame Optimizer 
GSO [14] 799.06 Glowworm Swarm Optimization 
MSCA [15] 799.31 Modified Sine-Cosine algorithm 
BHBO [25] 799.921 Black-hole-based optimization 
MSA [11] 800.5099 Moth swarm algorithm 

 
Figure 3: Convergence characteristics of fuel cost minimization via 
SMA and GOA for case 1 

Case 2: Minimization of active power transmission losses. 

In this study, the second case investigated consists of 
minimizing the active power losses, which is formulated as 
follows: 

1 11

) ( )(
i i iloss G DPL P P P Penalty MW

 

    
NN N

i ii

 

where ௟ܲ௢௦௦ denotes the active power transmission losses, ܲீ ௜ 
is the active power generated by the thermal generators, ஽ܲ  is 
the active power demand. 
In this case, the SMA has been applied on the IEEE-30 bus 
system to minimize the active power losses (PL), and the 
results obtained are presented in Table 3 (case 2). For this 
table, it can be seen that the active power losses is reduced 
from 8.5752 MW to 2.8612 MW which is lowered by 33.36 
%. Furthermore, the total fuel cost has increased from 
798.9709 $/h to 967.0437 $/h (21.04 % of increase). In Table 
2, the active power losses achieved via SMA are compared 
to other algorithms in the literature which made sense that 
SMA's results give best values compared to those found by 
GOA, MSA, FPA, MSCA and BHBO. 
Table 2: Comparison of solutions for active power loss 
minimization using SMA and different methods: Case 2. 

Method Real power 
losses (MW) 

Method description 

SMA 2.8612 Slime mould algorithm 
GOA 2.8761 Grasshopper optimization algorithm 
MSA [11] 3.1005 Moth swarm algorithm 
FPA [13] 3.115 Flower Pollination Algorithm 
MSCA [16] 2.9334 Modified moth swarm algorithm 
BHBO [25] 3.503 Black-Hole-BasedOptimization 
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Table 3: Comparative results of the OPF solution for three first cases via SMA and GOA (IEEE 30-bus system) 
Control 

Variables 
Limits Case 1 Case 2 Case 3 

Min Max SMA GOA SMA GOA SMA GOA 
ீܲଵ(ܹܯ) 175.8887 176.6000 51.2761 51.2614 176.9284 177.5784 200 50 

ீܲଶ(ܹܯ) 48.5933 48.7151 80.0000 80.0000 48.6125 48.6770 80 20 
ீܲହ(ܹܯ) 21.3365 20.6913 50.0000 50.0000 21.2930 21.2668 50 15 
 22.1339 24.0425 35.0000 34.9999 21.4706 21.2316 35 10 (ܹܯ)଼ܲீ
ீܲଵଵ(ܹܯ) 13.2896 11.1974 30.0000 30.0000 11.7344 12.0890 30 10 
ீܲଵଷ(ܹܯ) 12.0132 12.0000 40.0000 40.0000 12.0000 12.0000 40 12 
ܸீ ଵ(ݑ.݌) 1.0360 1.0386 1.1000 1.1000 1.10000 1.1000 1.1 0.95 
ܸீ ଶ(ݑ.݌) 1.0211 1.0215 1.0977 1.0979 1.08731 1.0879 1.1 0.9 
ܸீ ହ(ݑ.݌) 1.0096     1.0120 1.0806 1.0793 1.06018 1.0618 1.1 0.9 
ܸீ  1.0078     1.0012 1.0874 1.0876 1.06820 1.0701 1.1 0.9 (ݑ.݌)଼
ܸீ ଵଵ(ݑ.݌) 0.9994     1.0743 1.1000 1.1000 1.08632 1.1000 1.1 0.9 
ܸீ ଵଷ(ݑ.݌) 1.0039     0.9967 1.1000 1.1000 1.10000 1.1000 1.1 0.9 
ଵܶଵ(ݑ.݌) 0.9701     1.0922 0.9528 1.0331 1.02124 1.0259 1.1 0.9 
ଵܶଶ(ݑ.݌) 0.9637     0.9000 1.0650 0.9193 0.92514 0.9010 1.1 0.9 
ଵܶହ(ݑ.݌) 0.9597     0.9533 1.0019 0.9870 1.03081 0.9803 1.1 0.9 
ଷܶ଺(ݑ.݌) 0.9748     0.9716 0.9989 0.9834 0.98510 0.9568 1.1 0.9 
ܳ஼ଵ଴ 0 5 4.3806 0.46076 1.0281 2.8301 1.1213     4.8940 
ܳ஼ଵଶ 0 5 4.7790 0.65000 0.2155 4.9053 0.1221     0.0000 
ܳ஼ଵହ 0 5 4.8272 0.00973 4.7108 0.8276 5.0000     3.7480 
ܳ஼ଵ଻ 0 5 4.9942 3.95461 2.4109 4.9996 2.8105     2.8491 
ܳ஼ଶ଴ 0 5 2.5651 0.47622 4.9982 4.1987 5.0000     4.9998 
ܳ஼ଶଵ 0 5 2.8396 4.98415 4.9042 4.8385 4.9967     4.9998 
ܳ஼ଶଷ 0 5 3.4609 5.00000 0.3454 4.0771 4.9518     4.9996 
ܳ஼ଶସ 0 5 4.9957 4.77304 4.9181 4.9993 4.5074     4.8556 
ܳ஼ଶଽ 0 5 1.1562 3.81110 2.8276 4.6776 3.3481     4.9913 

Fuel cost ($/h)  798.9709 799.1541 967.0437 967.0793 803.6474 803.8743 
Power losses (MW) 8.5752 8.6389 2.8612 2.8761 9.8464 9.8552 
Voltage deviation (p.u.) 1.4494 1.5172 1.9139 1.8681 0.1045 0.1160 

The convergence characteristics of the active power losses 
with SMA and GOA are shown in figure 4. This figure show 
that active power losses are reduced with a few numbers of 
iterations using SMA compared with the GOA. 

 
Figure 4: Convergence characteristics of active power loss 
minimization via SMA and GOA for case 2 

Case 3: Voltage profile improvement 

In the third case, the objective function is to improve the 
voltage profile by reducing the cumulative voltage deviation 

(TVD) of load buses (PQ) from the nominal value of 1.0 
p.u.Bus voltage is known as the most significant and 
important safety and service quality indices [26].The 
expression of the cumulative VD is presented as follows: 

1

1.0iTVD V


 
N

i

 (17) 

Thus, the objective function which represents the sum of the 
total fuel cost and improves the total TVD can be given as 
follows: 

2
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a b P c P w * TVD  

whereݓ௏஽  is a suitable weighting factor for balancing target 
function values and preventing the dominance of an 
objective over another.  In this study ݓ௏஽is selected as 100. 
For case 3 of minimizing the fuel cost and improve voltage 
profile, SMA and GOA algorithms lead to VD of 0.1045 p.u 
and 0.1160 p.u, respectively as shown in Table 2. Moreover, 
the comparison of voltage deviation achieved by SMA and 
different algorithms is shown in Table 4 which displays that 
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the results achieved by SMA are better than GOA, MSA, 
MFO, PSO, FPA, and BHBO. 

Table 4: Comparison of solutions for voltage deviation 
minimization using SMA and different methods: Case 3. 

Method TVD (p.u.) Method description 
SMA 0.1045 Slime mould algorithm 
GOA 0.1160 Grasshopper optimization algorithm 
MSA [11] 0.1084 Moth swarm algorithm 
MFO [14] 0.1065 Moth-Flame Optimizer 
PSO [13] 0.1506 Particle Swarm Optimization 
FPA [13] 0.1845 Flower Pollination Algorithm 
BHBO [25] 0.1262 Black-Hole-BasedOptimization 

The convergence characteristics of the voltage deviation with 
SMA and GOA over iterations are shown in figure 5. It 
allows us to notethat the algorithm SMA converges towards 
the optimum value at the iteration 250. 

 
Figure 5: Convergence characteristics of voltage deviation 
minimization via SMA and GOA for case 3 

4.2IEEE 57-bus power system 

The second scenario is carried out on an IEEE-57 bus power 
system, involves the following characteristics, 7 generators 
at the buses 1, 2, 3, 6, 8, 9 and 13, 80 transmission lines, 15 
transformer under off-nominal taps ratio and 3  reactive 
compensators are installed on buses 18, 25 and 53. The total 
load demand of this system is 1250.8 MW +j 336.4 MVar 
The system data and variable limits are given in ref [27].  

Case 4: Minimization of generation fuel cost 

In this case, the objective function is to optimize the total 
fuel cost in the IEEE-57 bus system and is described by Eq. 
(16). Table 6 lists the optimal values of control variables 
considering fuel cost by the proposed algorithm. From this 
results obtained, the best value of fuel cost and active power 
losses by the proposed method are 41612.2484 $/h and 
13.6737 MW respectively. 

Table 5 show that the best fuel cost is obtained by SMA and 
to some different algorithms in literature. Therefore, the 
results show the ability of the proposed algorithm to reach 
the global optimum better for IEEE 57-bus system than the 
other algorithms previously reported in this table. 

Table 5: Comparison of solutions for fuel cost minimization 
using SMA and different methods: case 4. 

Method Fuel cost ($/h) Method description 
SMA 41612.2484 Slime mould algorithm 
IHDE [28] 41667.9900 Improved Hybrid Differential 

Evolution Algorithm 
DSA [16] 41686.8200 Differential search algorithm 
MSA [11] 41673.7231 Mothswarmalgorithm 

The convergence characteristics of the fuel cost with SMA 
over iterations are shown in Figure 6. It can be seen that the 
SMA algorithm convergence rate towards the global 
optimum solution with few iteration. 

Table 6: Comparative results of the OPF solution for cases four and five via SMA (IEEE 57-bus system) 
Control 

Variables 
Case 4 Case 5 Control 

Variables 
Case 4 Case 5 

SMA SMA SMA SMA 
ீܲଵ 142.970 160.146 ଶܶସିଶହ 1.0378 1.0378 
ீܲଶ 85.4620 56.9513 ଶܶସିଶହ 0.9156 0.9156 
ீܲଷ 43.6867 122.634 ଶܶସିଶ଺ 1.0643 1.0643 
ீܲ଺ 87.4800 94.2250 ଻ܶିଶଽ 0.9756 0.9756 
ீ଼ܲ 461.251 315.843 ଷܶସିଷ଺ 0.9309 0.9309 
ீܲଽ 83.8414 99.9517 ଵܶଵିସଵ 0.9162 0.9162 
ீܲଵଶ 360.611 409.995 ଵܶହିସହ 0.9001 0.9001 
ܸீ ଵ 1.0927 1.0999 ଵܶସିସ଺ 0.9000 0.9000 
ܸீ ଶ 1.0909 1.0982 ଵܶ଴ିହଵ 0.9000 0.9000 
ܸீ ଷ 1.0857 1.0996 ଵܶଷିସଽ 0.9000 0.9000 
ܸீ ଺ 1.0981 1.0985 ଵܶଵିସଷ 0.9382 0.9382 
ܸீ ଼ 1.1000 1.0988 ସܶ଴ିହ଺ 1.0619 1.0619 
ܸீ ଽ 1.0787 1.0831 ଷܶଽିହ଻ 1.0268 1.0268 
ܸீ ଵଶ 1.0822 1.0887 ଽܶିହହ 0.9681 0.9681 
ସܶିଵ଼ 0.9398 0.9650 ܳ஼ଵ଼ 21.239 21.239 
ସܶିଵ଼ 1.0495 0.9173 ܳ஼ଶହ 14.328 14.328 
ଶܶଵିଶ଴ 1.0508 0.9978 ܳହଷ 15.444 15.444 

 Case 4 Case 5 
Fuel cost ($/h)  41612.2484 43827.00 
Power losses (MW) 13.6737 8.9471 
Voltage deviation (p.u.) 6.2852 6.9302 
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Figure 6: Convergence characteristics of fuel cost minimization via 

SMA for case 4 

Case 5: Minimization of active power transmission losses. 

This objective function of this case is to minimize the active 
power transmission losses for the IEEE 57-bus system. The 
simulation result obtained by SMA is presented in Table 6. 
The active power losses obtained by SMA is decreased from 
13.6737 MW to 8.9471 MW which is lowered by 34.57 %. 
In Table 7, SMA can get less active PL than other methods 
reported in the literature. 

Table 7: Comparison of solutions for active power loss 
minimization using SMA and different methods: case 5. 

Method Real power 
losses (MW) 

Method description 

SMA 8.9471 Slime mould algorithm 
AMO [29] 10.51031 Animal Migration Optimization 
ABC [30] 12.63 Artificial bee colony algorithm 
IABC [30] 11.16 Improved artificial bee colony  
TSA [31] 12.473 Tree-seedalgorithm 

The convergence characteristics of the active power losses 
with SMA over iterations are shown in figure 7. This figure 
illustrates that active power losses are reduced with a few 
numbers of iterations using SMA. 

 
Figure 7: Convergence characteristics of active power loss 
minimization via SMA for case 5 

4.3Algerian 114-bus power system 
In this scenario aims to test proposed MSA on the large-scale 
power system Algerian 114-bus. This system consists of 15 
generators, 175 transmission lines of which 16 transformers 
with off-nominal taps ratio are located from line 160 to line 
175, and 99 load bus. The total load demand of this system is 
3,727 MW +j 2070 MVar. 

Case 6: Minimization of generation fuel cost 

In the last case, the objective function is to optimize the 
total fuel cost given by Eq. (16).The values of fifteen 
generator cost coefficients are taken from Ref. [32]. To 
illustrate the performance and effectiveness of the SMA 
algorithm, results obtained by SMA are compared to 
GOA. The optimal value of control variables for the 
SMA and GOA of case 6 are given in Table 8. The total 
fuel cost and active power losses by the proposed 
method are 19170.205 $/h and 74.9442 MW 
respectively, these optimal solutions are better than 
GOA solution.  

Table 8 : Comparative results of the OPF solution for case six via 
SMA and GOA (ALG 114-bus system) 

Control 
Variables 

Limits Case 4 
Min Max SMA GOA 

ீܲସ(ܹܯ) 448.1932 453.8747 1350 135 

ீܲହ(ܹܯ) 447.9109 453.5975 1350 135 

ீܲଵଵ(ܹܯ) 99.9885 100.0000 100 10 

ீܲଵହ(ܹܯ) 212.7919 193.4539 300 30 

ீܲଵ଻(ܹܯ) 448.1112 450.2094 1350 135 
ீܲଵଽ(ܹܯ) 200.2757 197.3511 345 34.5 

ீܲଶଶ(ܹܯ) 193.6903 193.5089 345 34.5 

ீܲହଶ(ܹܯ) 192.1776 191.6327 345 34.5 

ீ଼ܲ଴(ܹܯ) 188.3100 190.8255 345 34.5 

ீ଼ܲଷ(ܹܯ) 185.3476 188.2240 300 30 

ீܲଽ଼(ܹܯ) 185.2582 189.2664 300 30 

ீܲଵ଴଴(ܹܯ) 600.0000 600.0000 600 60 

ீܲଵ଴ଵ(ܹܯ) 200.0000 200.0000 200 20 

ீܲଵ଴ଽ(ܹܯ) 100.0000 100.0000 100 10 

ீܲଵଵଵ(ܹܯ) 100.0000 99.9999 100 10 

Fuel cost ($/h)  19170.205 19178.818 
Power losses (MW) 74.9442 75.0552 

SMA stands competitively regarding total fuel cost 
minimization to several algorithms as presented in 
Table 9. This archive's results by the proposed 
algorithm show the ability of SMA to find a better 
solution for large scale power systems. 
Table 9:Comparison of solutions for fuel cost minimization 
using SMA and different methods: case 6. 

Method Fuel cost ($/h) Method description 
SMA 19170.205 Slime mould algorithm 
GOA 19178.818 Grasshopper optimization 

algorithm 
DE [32] 19203.340 Differential evolution 
GWO [33] 19171.958 Grey wolfoptimizer 
GA-ED-PS [34] 19199.444 Hybrid GA-DE-PS 
MOALO [35] 19355.859 Multiobjectiveant lion 

algorithm 
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The convergence characteristics of SMA and the GOA for 
case 6 which minimize the TFC are shown in Figure 8. In the 
first place, the SMA algorithm converges towards the 
optimum value at the iteration 80 compared to GOA, that the 
convergence towards the optimal value is reached at the 
iteration 160. From this figure, SMA superior and robust to 
get the best solution in the few iterations compared to GOA. 

 
Figure 8: Convergence characteristics of fuel cost minimization via 
SMA and GOA for case 6 

5. CONCLUSION 
A new metaheuristic technique, called a slime mould 
algorithm (SMA) has been proposed in this paper to solve 
the OPF problem. The SMA has been successfully 
implemented and applied to the IEEE 30-bus, IEEE 57-bus 
systems and validated on large scale 114-bus Algerian power 
system under various test cases in order to minimize the fuel 
cost, reduce the active power losses and improve the voltage 
profile. In order to verify the effectiveness and performance 
of the SMA algorithm, the obtained results via SMA are 
compared with grasshopper optimization algorithm (GOA) 
and to some methods reported in the literature. The 
optimization results achieved by using the SMA algorithm 
given the best values in the all cases study based on the 
optimal setting values of control variables. Based on the 
results for all cases studies, it can be concluded that the SMA 
algorithm is capable to solve the OPF problem for a small 
system and large-scale power system.  
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