
Vanessa Ardelia Layustira et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1064 – 1068

1064


ABSTRACT

The development of information that continues to develop
causes an explosion of information which certainly has a very
complex impact on information storage management. This
also impacts on companies that have several data that
continues to grow every day. Therefore, there is a needs to
have a search engine algorithm that can do a search system
quickly with the development of information that continues to
increase every day. Search engine applications or search
engines in a computer system make it easy for users to find a
variety of information. To facilitate its use, search engines
add search features or better known as word suggestion,
which in designing this application requires string matching
algorithms that can be used to solve these problems. Many
strings matching algorithms are available and therefore, the
need for an analysis of the search algorithm to be able to help
determine which search system is appropriate for use in word
suggestion search. The result comparing brute force and
boyer moore algorithm, it was found that as much as 79.05%
showed that the Boyer Moore algorithm has a better time
efficiency compared to the Brute Force.

Key words: Word Suggestion, Brute Force Algorithm, Boyer
Moore Algorithm, Comparison of Algorithms.

1. INTRODUCTION

The presence of search engines or better known as Search
Engines in 1990 has made it easier for computer users to find
various information. The American Heritage Dictionary
defines the Search Engine as a software program that traces,
nets, and displays information from a database. To carry out
its functions, this application requires a suggestion search
feature closest to the search keyword. This feature is then
better known as Word Suggestion [1].
In its design, Word Suggestion needs an algorithm to solve
string matching problems. String Matching Algorithm is an
algorithm that can match a word with the word you want to
find. There are several kinds of String-Matching algorithms
that have existed until now. One of them is the Brute Force
Algorithm and Boyer Moore's Algorithm [2], [3]. The two

algorithms have different ways of working so that when
applied in a Word Suggestion search it will produce different
search speeds and different efficiency factors as well.
With these differences, it will need an analysis that can
compare the two String Matching Algorithms in a Word
Suggestion search. This analysis is considered important to
determine which algorithm is more effective in doing String
Matching and which algorithm is faster, so users can access
various information available more efficiently and faster [4].
Some efficiency factors that will be discussed in this journal
are the results of each algorithm resulting, time efficiency,
feasible solutions, optimal results, ease of implementation,
and simplicity of the algorithm being tested [5][6].

2. LITERATURE REVIEW

2.1 Word Suggestion

Word Suggestion comes from English, which means
"Suggestion of Words". And if the word is describe according
to the Indonesian dictionary, "word" has any meaning that is
born with speech; talk; competent. While "Suggestions" are
suggestions, influences that can move people's hearts [7], [8].
Word Suggestion is a function of the Auto Text Application
that is used to provide suggestions for words that are typed or
searched for. By typing a few letters or all the letters, the
system will look into the database if there is a word that meets
the criteria of the letters entered. If a word that meets the
criteria contained in the database, then a list will appear that
shows the existing word suggestions. Checking itself is based
on matching letters of words entered by users with a list of
words in the database [9], [10].

2.2 String Matching Algorithm

String Matching Algorithm is an algorithm to find the search
for all possible short strings (patterns) that appear in the text.
The pattern is a string of length m characters (m <n). Text is
a long string whose length is n characters [11][12]. This
string matching algorithm can also be classified into 3
sections according to the search direction, including:
a. From left to right, which is the direction to read,

algorithms that fall into this category are the Brute Force

Comparative Analysis of Brute Force and Boyer Moore

Algorithms in Word Suggestion Search
Vanessa Ardelia Layustira 1, Wirawan Istiono2

1Universitas Multimedia Nusantara, Indonesia, vanessa.layustira@student.umn.ac.id
2Universitas Multimedia Nusantara, Indonesia, wirawan.istiono@umn.ac.id

 ISSN 2347 - 3983
Volume 9. No. 8, August 2021

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter05982021.pdf

https://doi.org/10.30534/ijeter/2021/05982021

Vanessa Ardelia Layustira et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1064 – 1068

1065

Algorithm and the Knuth-Morris – Pratt Algorithm
b. From right to left, which is the direction that usually

produces the best results, the Algorithm that falls into
this category is the Boyer Moore Algorithm

c. And the last category is from the direction determined
specifically by the Algorithm, this direction produces
the best results theoretically, Algorithms included in
this category are the Colussi Algorithm and the
Crochemore-Perrin Algorithm.

.
3. METHODOLOGY

Brute Force Algorithm or better known as Brute-Force
Searching Algorithm is a string-matching algorithm written
without thinking for improving performance [13]. Brute
Force algorithm is an approach to solving a problem with a
simple way of thinking, it does not require any special
abilities and thought to be able to solve a particular problem.
For the reasons above, this algorithm was chosen in solving a
simple problem.

In practice, this algorithm is very rarely used but is useful
in comparative studies and other studies. Systematically, the
steps were taken by the Brute Force Algorithm when
matching strings are:
1. The Brute Force Algorithm starts to match the pattern at

the beginning of the text.
2. From left to practice, this algorithm is very rarely used but

is useful in comparative studies and other studies. This
algorithm will match the characters per character pattern
with the characters in the corresponding text until one of
the following conditions is met:
a. Characters in the pattern and the text being

compared do not match (mismatch).
b. All characters in the pattern match. Then the

algorithm will notify the discovered position.
3. The algorithm then continues to shift the pattern by one to

the right and repeats step 2 until the pattern is at the edge
of the text.

The main idea of Boyer Moore's Algorithm is to do a
matching from the far right of the search string. By using this
algorithm, on average the search process will be faster than
other search processes. The idea behind this algorithm is that
by starting the character matching from the right, and not
from the left, more information will be obtained [14]–[16].
Boyer Moore's algorithm uses a string matching method from
right to left which is scanning character patterns from right to
left starting from the rightmost character. Boyer Moore's
algorithm uses two-shift functions namely good-suffix shift
and bad-character shift to take the next step after there is a
mismatch between character patterns and text characters that
are matched to increase search speed [17]–[19]. The workings
of the Boyer Moore algorithm it shown in Figure 1, where the
step can describe as follow:

1. Run preBmBc and preBmGs procedures to get
initialization. And then Run the preBmBc procedure. The
function of this procedure is to determine how much shift
is needed to reach a particular character in the pattern of
the last/right character pattern. The results of the
preBmBc procedure are saved in the BmBc table. Case in
point: Pattern: MANAMAN

Figure 1: Trial Phase1 Boyer Moore Algorithm

2. Run the preBmGs procedure. Before running the contents

of this procedure, the suffix procedure is run first in the
pattern. The function of the suffix procedure is to check
the compatibility of several characters starting from the
last/right character with several characters starting from
each character that is more left than the right character
earlier. The results of the suffix procedure are saved in the
suff table. So suff[i] records the length of suffix that
matches the segment of the pattern ending in the i
character. Case in point: Pattern: MANAMAN, the trial
phase2 can be seen in Figure 2.

Figure 2: Trial Phase2 Boyer Moore Algorithm

Vanessa Ardelia Layustira et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1064 – 1068

1066

3. With the preBmGs procedure, it can be seen how many
steps in the pattern from a segment to the same other
segment are located more left with characters to the left of
different segments. The preBmGs procedure uses the suff
table to find out all pairs of the same segment. The string
search process is performed using the results of the
preBmBc and preBmGs procedures, namely the BmBc
and BmGs tables. With sample case pattern is
MANAMAN and the value sentence sample text is
NAMANANAMMANAMAN, the result can be seen in
Figure 3.

Figure 3: Final Phase and result Boyer Moore Algorithm

In this step, Brute Force and Boyer Moore algorithms will be
implemented according to the test parameters that you want to
analyze. These parameters include the results generated by
the algorithm, algorithm time efficiency, feasible solutions,
optimal results, ease of implementation, and simplicity of the
algorithm tested to solve string matching problems in
searching for word suggestions or information. Algorithm
testing is performed using the C ++ programming language
on Asus A442U laptops with Intel® Core ™ i5-8250U CPU
@ 1.60GHz 1.80 GHz. In testing this algorithm, researchers
conduct tests with the same input data and each test is carried
out twice as much with four different input inputs. The testing
steps for each algorithm are by entering a string of text that
you want to test with a different length of text or string.
In Figure 4 shows Brute Force algorithm to test string
matching in the first text. The input that was included in this
initial test was the string "Vanessa Ardelia" with the keyword
searched for "lia".
#include <bits/stdc++.h>
#include <time.h>
using namespace std;

void search(char* pat, char* txt) {
 int M = strlen(pat);
 int M = strlen(txt);

 for (int i=0; i<=N-M; i++) {
 int j;

 for(j=0; j<M; j++) {
 if(txt[i+j] != pat[j]) {
 break;
 }
 }
 if(j==M) {
 cout<<"pattern fount at index "<<i<<endl;

 }
 }
}

int main() {
 clock_t t;
 t = clock();
 char txt[] = "Vanessa Ardelia";
 char pat[] = "lia";
 search(pat,txt);
 t = clock() - t;
 printf("It took me %d second (%f
seconds).\n,t,((float)t)/CLOCKS_PER_SEC");
 return 0;
}
Figure 4: Brute force algorithm code to test string matching in the

first text

From the algorithm above, we get the results for the string
"Vanessa Ardelia" with the search keyword "lia", found in the
12th index with the total time needed to execute the Brute
Force algorithm by 47 seconds, it shown in Figure 5.

Figure 5: Brute force algorithm code to test string matching in the

first text result

In Figure 5 shows Boyer Moore algorithm to test string
matching in the first text. The input that was included in this
initial test was the string "Vanessa Ardelia" with the keyword
searched for "lia".
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <time.h>

define NO_OF_CHARS 256

int max(int a, int b) { return (a,b)?a:b;}

void badCharHeuristic(char *str, int size, int
badchar(NO_OF_CHARS))
{
 int i;
 for(i=0; i<NO_OF_CHARS; i++) {
 badchar[i] = -1;
 }
 for(i=0; i<size; i++) {
 badchar[(int)str[i]] = i;
 }
}

Figure 6: Boyer Moore algorithm code to test string matching in
the first text

From the algorithm that shown in Figure 6, the results for the
string "Vanessa Ardelia" with the search keyword "lia", found
in the 12th index with a total time required for Boyer Moore's
algorithm execution by 42 seconds shown in Figure 7.

Vanessa Ardelia Layustira et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1064 – 1068

1067

Figure 7: Boyer Moore algorithm code to test string matching in the

first text result

4. RESULT AND DISCUSSION

From the methodology and trying phase brute force and Boyer
Moore's algorithm that shown in Figure 5 and Figure 7, the
next step is to conduct an experiment to ensure the results of
the two algorithms, an experiment will be carried out to
search for words from several sentences. and here are some
sentences and words that will be tested, namely the string
"ABCDSNJNNNABDUA" to search for the keyword "NAB",
and the string "Ayam goreng kremes" to search for the
keyword "Duck" and the string "adadsdad" to search for the
keyword "ada", and the last string that will be tried is
"ADADAKSNASASASASSASASASSASASASASSAFDK
MDLNLNDSNALK" to search for the keyword "NALK".
And from all the sentence and pattern that already tried with
same code or algorithm that already tried in methodology
step, obtained results as shown in Table1.

Table 1: Table result from various string and keyword
Algo
rithm

String Keyword Length Time

Brute
Force

ABCDSNJN
NABDUA

NAB 14 0,00004
1

Ayam Goreng
Kremes

Bebek 16 0,00000
2

adadsdad ada 8 0,00005
8

ADADAKSN
ASASASAS

SASASASAS
SASASASAS
SAFDKMDL

NLNDSNALK

NALK 56 0,00006
7

Boyer
Moore

ABCDSNJN
NABDUA

NAB 14 0,00003
2

Ayam Goreng
Kremes

Bebek 16 0,00000
4

adadsdad ada 8 0,00004
9

ADADAKSN
ASASASAS

SASASASAS
SASASASAS
SAFDKMDL

NLNDSNALK

NALK 56 0,00005
0

Based on the test result that shows in Table 1, if the result time
complexity both algorithm is compared, it will get result that
shown in table 2.

Table 2: Compare time complexity result between brute force and
boyer moore algorithm

Brute
force Time
complexity

Boyer
Moore Time
complexity

Found
keyword

Compare
Result

0,000041 0,000032 Found 78,04878049
0,000002 0,000004 Not found 200
0,000058 0,000049 Found 84,48275862
0,000067 0,00005 Found 74,62686567

Average Compare Result 109,2896012
Average found keyword 79,05280159

From the result comparison that shown in Table 2, it was
found that as much as 79.05% showed that the Boyer Moore
algorithm has a better time efficiency compared to the Brute
Force whether the keyword was found or not. Besides, other
factors such as feasible solutions, optimal results, ease of
implementation, and simplicity of the tested algorithm can be
seen in the Table 3.

Table 3: Simplicity of the tested brute force and boyer moore
algorithm

 Brute Force Boyer Moore
feasible solutions √ √

optimal result √ √
ease of

implementation √ √

simplicity dari
algoritma √

Based on testing the two algorithms between brute force and
boyer moore, can provide feasible solutions for string
matching problems in word suggestion, both of these
algorithms are also able to provide optimal results, although
there are differences in time in the execution of the algorithm.
Both the Boyer Moore and Brute Force algorithms are equally
easy to implement into coding, the Brute Force algorithm
seems simpler than the Boyer Moore algorithm which has its
conditions for executing string matching.

5. CONCLUSION
Based on the results and elaboration of the above test, the
conclusion is that the Brute Force and Boyer Moore
algorithms can overcome the word suggestion problem in
searching for keywords using string matching. However, both
of these algorithms have advantages and disadvantages of
each, where the Brute Force algorithm is more suitable for
string matching with keywords and strings that are not too
long, while the Boyer Moore algorithm is suitable for all types
and conditions of the string and keyword being searched.

Vanessa Ardelia Layustira et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1064 – 1068

1068

ACKNOWLEDGEMENT

Thank you to the Universitas Multimedia Nusantara,
Indonesia which has become a place for researchers to
develop this journal research. Hopefully, this research can
make a major contribution to the advancement of technology
in Indonesia.

REFERENCES
1. A. M. Thike, S. Lupin, and Y. Vagapov,

“Implementation of brute force algorithm for topology
optimisation of wireless networks,” 2016 International
Conference for Students on Applied Engineering, ICSAE
2016, no. October 2017, pp. 264–268, 2017.

2. P. Pangestu and S. E. Wahyuningrum, “Word search
using boyer-moore algorithm,” Proxies : Jurnal
Informatika, vol. 2, no. 1, pp. 6–11, 2018.

3. D. Budianta, “Brute Force Algorithm Implementation on
Knowledge Management System Overcoming Heavy
Metal of Pb and Cd in Soil At Palm Oil Plantation,”
International Journal of Latest Trends in Engineering
and Technology, vol. 8, no. 2, pp. 297–301, 2017.

4. C. KOMALASARI and W. ISTIONO, “A Comparative
Study of Cocktail Sort and Insertion Sort,” Journal of
Applied Computer Science & Mathematics, vol. 15, no.
1, pp. 21–25, 2021.

5. S. Smale, “On the efficiency of algorithms of analysis,”
Bulletin of the American Mathematical Society, vol. 13,
no. 2, pp. 87–121, 1985.

6. W. Philips, W. Istiono, and U. M. Nusantara, “Analysis
of MinFinder Algorithm on Large Data Amounts,”
International Journal of Emerging Trends in
Engineering Research, vol. 9, no. 6, pp. 627–632, 2021.

7. M. M. Yulianto, R. Arifudin, and A. Alamsyah,
“Autocomplete and Spell Checking Levenshtein
Distance Algorithm To Getting Text Suggest Error Data
Searching In Library,” Scientific Journal of Informatics,
vol. 5, no. 1, p. 75, 2018.

8. R. Muntazari, M. . Arini, and M. K. Hendra Bayu
Suseno, “Application of the Boyer Moore Method in the
Application Dictionary of Web-Based Information
Technology Terms,” INTEGRATED (Information
Tecknology and Vocational Education), vol. 1, no. 2, pp.
1–8, 2019.

9. F. T. Waruwu, “Application Of Boyer Moore Algorithm
for Text Searching,” International Journal of Informatics
and Computer Science (The IJICS), vol. 1, no. 1, pp.
18–22, 2017.

10. A. Kumar, “Available Online at www.jgrcs.info
STRING MATCHING RULES USED BY VARIANTS
OF BOYER-MOORE,” Journal of Global Research in
Computer Science, vol. 5, no. 1, pp. 8–11, 2014.

11. B. Lakshmi and B. Navyasri, “of Emerging Trends
Energy Efficient Routing Mechanism for Harsh
Environment,” International Journal of Emerging

Trends in Engineering Research, vol. 7, no. 9, pp. 7–11,
2019.

12. S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar,
W. Z. Khan, and M. Imran, “Exact String Matching
Algorithms: Survey, Issues, and Future Research
Directions,” IEEE Access, vol. 7, pp. 69614–69637,
2019.

13. K. A. F. A. Samah, N. Sabri, R. Hamzah, R. Roslan, N.
A. Mangshor, and A. A. M. Asri, “Brute force algorithm
implementation for traveljoy travelling recommendation
system,” Indonesian Journal of Electrical Engineering
and Computer Science, vol. 16, no. 2, pp. 1042–1049,
2019.

14. R. Rahim, A. S. Ahmar, A. P. Ardyanti, and D.
Nofriansyah, “Visual Approach of Searching Process
using Boyer-Moore Algorithm,” Journal of Physics:
Conference Series, vol. 930, no. 1, 2017.

15. S. Supatmi and I. D. Sumitra, “Fingerprint Identification
using Bozorth and Boyer-Moore Algorithm,” IOP
Conference Series: Materials Science and Engineering,
vol. 662, no. 2, 2019.

16. M. J. and . D. N. K., “An Enhanced Boyer-Moore
Algorithm for WorstCase Running Time,” GSTF Journal
on Computing (JoC), vol. 2, no. 1, pp. 152–157, 2014.

17. N. Ben Nsira, T. Lecroq, and M. Elloumi, “A fast
Boyer-Moore type pattern matching algorithm for highly
similar sequences,” International Journal of Data Mining
and Bioinformatics, vol. 13, no. 3, pp. 266–288, 2015.

18. P. P. Borah, G. Talukdar, and Y. J. Singh, “A
Comparison of String Matching algorithms-Boyer
Moore Algorithm and Brute Force algorithm,” National
Conference on New Approaches of Basic Sciences
towards the Development of Engineering and
TechnologyAt: Assam Don Bosco University, Guwahati,
no. March 2013, pp. 1–6, 2013.

19. R. Fitriyanto, A. Yudhana, and S. Sunardi,
“Boyer-Moore String Matching Algorithm and SHA512
Implementation for Jpeg/exif File Fingerprint
Compilation in DSA,” JUITA: Jurnal Informatika, vol.
8, no. 1, p. 1, 2020.

