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ABSTRACT 
 
COST 2100 channel model (C2CM) wireless propagation 
multipaths taken from IEEE DataPort are grouped using 
simultaneous clustering and model selection (SCAMS). 
SCAMS solves simultaneously the membership and the 
number of clusters in contrast to just the number of clusters 
popular clustering approaches provide. The membership and 
the number of clusters rely on ߣ and ߛ, the parameters that 
avoid the trivial solution of the affinity matrix. Jaccard index 
is used to assess the accuracy of SCAMS by comparing the 
clustered multipaths with the reference multipath datasets 
from IEEE DataPort. 
 
Key words: channel models, clustering methods, data 
handling, data models, data preprocessing, multipath 
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1. INTRODUCTION 
 
The stochastic properties of multiple-input multiple-output 
(MIMO) wireless propagation channels can be reproduced 
using the European Cooperation in Science and Technology 
(COST) 2100 channel model. Groups of multipath 
components with similar delay and angles called multipath 
clusters characterize C2CM. A multipath component (MPC) 
is distinguished according to its delay, angle of departure 
(Azimuth of Departure (AoD), Elevation of Departure 
(EoD)), and angle of arrival (Azimuth of Arrival (AoA), 
Elevation of Arrival (EoA)). The properties of wireless 
communications systems can be studied with the use of 
channel modeling. The generated channel model is essential 
in analyzing and improving the performance of the 
communications system. The clustering of multipaths is 
indicated in many channel measurements and models. The 
accuracy of clustering wireless propagation multipaths 
influences the correctness of the channel models. Many 
clustering approaches [1]–[5] use only the number of clusters 
as the validity measurement. The drawback of giving just the 
number of clusters is that there is no guarantee that the 
membership of the multipath clusters is correct despite the 
accuracy of the number of clusters. The inaccurate clustering 
of the wireless propagation multipaths would result in an 
erroneous channel model. This problem can be solved by 
jointly identifying the membership and the number of 
multipath clusters using SCAMS. 

 
This study presents the results of clustering C2CM datasets 
obtained from IEEE DataPort using SCAMS. It describes the 
clustering of wireless propagation multipaths by jointly 
identifying the membership and the number of clusters. The 
main contributions of this paper are (1) SCAMS is used to 
cluster C2CM wireless propagation multipaths which give 
both the membership and the number of clusters; and (2) the 
results confirm the possibility of applying the clustering 
approach as another option in studying channel models. 
 
The paper is organized in the following way. Section 2 
describes the multipath clustering datasets. Section 3 
discusses SCAMS. Section 4 presents the clustering results 
provided by SCAMS. Section 5 concludes the study. 

 
2. WIRELESS PROPAGATION MULTIPATH 
CLUSTER DATASETS 
 
The combination of MPCs from all the multipath clusters 
based on the position of the mobile station results in a channel 
impulse response that is varying with time (designated by ݐ). 
Based on the delay and direction domain, the channel impulse 
response is given as 
 
ℎ(ݐ, ߬,દ୆ୗ,દ୑ୗ) =
∑ ∑ 	௣ ߬)ߜ௡,௣ߙ − ߬௡,௣)ߜ(દ୆ୗ −દ௡,௣

୆ୗ દ୑ୗ)ߜ( −દ௡,௣
୑ୗ)௄

௞ୀଵ
 (1) 

 
where K is the set of visible cluster indexes, ߙ௡,௣  is the 
complex amplitude of the pth MPC in the nth cluster, દ௡,௣

஻ௌ  is 
the direction of departure (AoD, EoD), and દ௡,௣

ெௌ  is the 
direction of arrival (AoA, EoA) of the MPC. C2CM is 
discussed in detail in [6] while the concise description can be 
found in [7]. 
 
Wireless propagation multipaths in indoor and semi-urban 
scenarios are taken from the multipath datasets in IEEE 
DataPort [8]. This common set of data can be used in channel 
modeling, evaluating clustering approaches, and assessing 
clustering accuracies. The generation of the datasets is 
detailed in [9]. The reference data used in multipath 
clustering are as follows: 

  
1. Indoor, band 1 (B1), line-of-sight (LOS), single link (SL) 
2. Indoor, band 2 (B2), line-of-sight, single link 
3. Semi-Urban, band 1, line-of-sight, single link 
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4. Semi-Urban, band 2, line-of-sight, single link 
5. Semi-Urban, band 1, non line-of-sight, single link 
6. Semi-Urban, band 2, non line-of-sight, single link 
7. Semi-Urban, band 1, line-of-sight, multiple links 
8. Semi-Urban, band 2, line-of-sight, multiple links (ML)  

 
For each channel scenario, there are thirty trials with different 
number of clusters and multipaths. Column 8 power 
component is removed as it is not needed in the clustering 
process. Column 9 cluster identifications or IDs are also 
eliminated in the clustering process as they are only used as 
reference IDs to compare with the calculated IDs. 
 
Clustering results are greatly affected by the values of the 
affinities. To improve clustering accuracy, columns 1 to 7 
whitened data are normalized [0, 1] using 
 

normࢄ = whiteࢄ) − (sࢄ ∘ lࢄ) −  s)ିଵ         (2)ࢄ
 
where ࢄnorm is the whitened data’s normalized value, ࢄwhite 
is the columns 1 to 7 whitened data, ࢄl is each column’s 
maximum data, ࢄs is each column’s minimum data, and   
is the Hadamard product. Jaccard index ߟ  compares the 
similarity between the reference data and the computed data. 
The similarity measure is computed as 
 
ߟ = |clust࡯	∩	data࡯|

|clust࡯	∪	data࡯|
= ெೌ

ெೌାெ್ାெ೎
  ∈ [0,1]       (3) 

 
where | ⋅ |  refers to cardinality, ࡯௞ ∈ ࡯ ܭ , = |࡯|  is the 
number of multipath clusters, ࡯data is the reference clusters, 
clust࡯  is the calculated clusters, ܯ௔ is the total number of 
multipath clusters for the accuracy on the number of clusters 
or total number of multipaths for the accuracy on the 
membership of the clusters in ࡯data  that are the same as 
in	࡯clust  ௕ is the total number of multipath clusters for theܯ ,
accuracy on the number of clusters or total number of 
multipaths for the accuracy on the membership of the clusters 
in ࡯data that are not in	࡯clust , and ܯ௖ is the total number of 
multipath clusters for the accuracy on the number of clusters 
or total number of multipaths for the accuracy on the 
membership of the clusters in ࡯clust that are not in	࡯data. A 
Jaccard index of 1 means that the calculated multipath 
clusters are the same as the reference multipath clusters or the 
membership of the calculated multipath clusters is the same 
as the membership of the reference multipath clusters. 

 
3. SIMULTANEOUS CLUSTERING AND MODEL 
SELECTION (SCAMS) 
 
SCAMS [10]–[11] solves the clustering problem by 
computing the number of clusters and determining the 
membership of the clusters. SCAMS represents a dataset ࡰ 
with ࡯ࡰclust  where ࡯clust  is an affinity matrix. 
Self-expression method [12] can be used to formulate ࡯clust 
which corresponds to the solution of  

min ∥ clust࡯ ∥ଵ  s.t. ࡰ =
(clust࡯)clust, diag࡯ࡰ = ૙.                            (4) 

 
 

With the introduction of an ideal affinity matrix ࡯ideal and by 
designating ࢂ = clust࡯− , the clustering problem can be 
represented as 
 

 min  〈࡯,ࢂoptimal〉, 
 s.t.  ࢠ௞{0,1}ோ , ∑ ௞ࢠ = ெ௄ࢋ

௞ୀଵ , 

optimal࡯  = ෍ ௞ࢠ ∘ ௞ࢠ (optimal࡯)				,
௄

௞ୀଵ
=  (5)									ܭ

 
where 〈⋅,⋅〉 is the Frobenius inner product and ࢋெis an all one 
vector of size ܴ. An augmented Lagrange function can be 
used to express (5) as 
 
ख = tr൫ࢂT࡯୭୮୲୧୫ୟ୪൯ + ୭୮୲୧୫ୟ୪൯࡯rank൫ߣ + ଴‖ࡴ‖ߛ + (ࡴ)݃

+ tr(ࢄT(࡯୭୮୲୧୫ୟ୪ ࡴ− + diag(ࡴ)− ((ࡵ

+ ଵ
ଶఓ
ฮ࡯୭୮୲୧୫ୟ୪ − ࡴ + diag(ࡴ)− ฮࡵ

F

ଶ
,

 s.t. ࡯୭୮୲୧୫ୟ୪ ∈ ାࡿ

(6) 

 
where ݃ is the indicator function of the convex set [0,1]ோ×ோ, 
 ࡵ ,is a variable introduced to make the problem tractable ࡴ
is an identity matrix, ࢄ is a Lagrange parameter, ∥⋅∥଴ is the 
ℓ଴  norm which counts the number of nonzero elements, 
ߤ > 0 is a penalty parameter, ߣ and ߛ are the parameters 
that weigh the respective penalty terms, ܁ା is the positive 
semi-definite cone, and ∥⋅∥F  is the Frobenius norm. The 
Lagrange function can be minimized alternatingly with 
respect to ࡴ and ࡯optimal, by fixing the other variable, and 
then updating ࢄ. Algorithm 1 shows the solution of ࡯optimal 
using Alternating Direction Method of Multipliers (ADMM) 
 is an ࢅ T whereࢅࢅ optimal can then be factorized as࡯ .[13]
indicator matrix whose rows indicate to which cluster a point 
belongs. Algorithm 2 illustrates the solution of ࢅ using Asso 
Constrained Boolean Matrix Factorization (AssoCBMF) 
[10]. Superscript ࡮ is a “Boolean” matrix containing only 
0’s and 1’s, | ⋅ | is the cardinality of the Boolean matrix and 
defined as the number of 1’s in it, ⊕ is the exclusive-or 
operation applied element-wise, ࡰ(݅, ݆)  is the association 
accuracy as for rule ࡯optimal

,݆)࡮ : ) ⇒ optimal࡯
,݅)࡮ : ), ߭  is a 

threshold for constructing ࡮ࡰ, and ݎthresh is a threshold for 
deleting the ݆-th columns. AssoCBMF algorithm gives the 
number of clusters and the membership of the clusters. 
 
4. RESULTS 
 
SCAMS solves the correct number of clusters by using the 
calculated value of ߣ from [12] and selecting the appropriate 
value of ߛ. The number of clusters is inaccurate when the 
value of ߛ  is not the correct value. It follows that the 
membership of the clusters is also inaccurate when the 
number of clusters is incorrect. 
 
Table 1 shows the Jaccard indices of the eight-channel 
scenarios. The results are the completion of the previous 
works [14], [15]. Indoor channel scenarios have better 
accuracy both for the number of clusters and membership of 
clusters due to lesser number of multipaths and multipath 
clusters generated by the enclosed space where reflections of 
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signals are limited. Semi-Urban scenarios have lower 
accuracy for both the number of clusters and membership of 
clusters due to higher number of multipaths and multipath 
clusters generated by the wider surroundings where more 
interacting objects reflect the signals. 
 
Algorithm 1: Alternating Direction Method of Multipliers 

 
,ࢂ	matrix	afϐinity	Negative	:ܜܝܘܖ۷ parameters	λ	and		
	γ
୭୮୲୧୫ୟ୪࡯:܍ܢܑܔ܉ܑܜܑܖ۷	 = ࡴ = ࢄ = ૙ே×ே ,μ = 10଺,ρ = 1.1,
		μ୫୧୬ = 10ିଵ଴	and	ε = 10ି଼.
ܗ܌	converged	not	܍ܔܑܐܟ		
୭୮୲୧୫ୟ୪࡯	update	and	others	the	Fix	૚	ܘ܍ܜ܁		 	as

୭୮୲୧୫ୟ୪࡯			 = argmin࡯౥౦౪౟ౣ౗ౢ
ฮ࡯୭୮୲୧୫ୟ୪ − ࡴ + μ(ࢂ+ ฮ(ࢄ

୊

ଶ
+

			2μλrank൫࡯୭୮୲୧୫ୟ୪൯, s. t.		࡯୭୮୲୧୫ୟ୪ ∈ .ା܁
as	ࡴ	update	and	others	the	Fix	૛	ܘ܍ܜ܁		
′ࡴ			 = argminࡴฮࡴ − ୭୮୲୧୫ୟ୪࡯ − μࢄฮ

୊

ଶ + 2μγ‖ࡴ‖଴ + ,(ࡴ)݃
ࡴ			 = ′ࡴ − diag(ࡴ′) + .ࡵ
multipliers	the	Update	૜	ܘ܍ܜ܁		
܆			 = ܆ + ଵ

ஜ
൫࡯୭୮୲୧୫ୟ୪ .൯ࡴ−

by	ߤ	parameter	the	Update	૝ܘ܍ܜ܁		
ߤ			 = maxቀஜ

஡
, μ୫୧୬ቁ .

:conditions	convergence	the	Check	૞	ܘ܍ܜ܁		
			ฮ࡯୭୮୲୧୫ୟ୪ ฮࡴ−

ஶ
≤ ε.

܍ܔܑܐܟ܌ܖ܍		

   

 
 

Table 1: Jaccard Indices for the Number of Clusters and 
Membership of Clusters  

 Channel Scenario Number of 
Clusters 

Membership 
of Clusters 

Indoor Band 1  0.6034 0.7305 

Indoor Band 2  0.6487 0.7582 

Semi-Urban Band 1 
Line-of-Sight Single Link 0.0186 0.1875 

Semi-Urban Band 2 
Line-of-Sight Single Link 0.0159 0.1818 

Semi-Urban Band 1 Non 
Line-of-Sight Single Link 0.0052 0.1597 

Semi-Urban Band 2 Non 
Line-of-Sight Single Link 0.0108 0.1505 

Semi-Urban Band 1 
Line-of-Sight Multiple Links 0.0080 0.1459 

Semi-Urban Band 2 
Line-of-Sight Multiple Links 0.0084 0.1436 

 
Figure 1 shows the Jaccard index of the number of clusters in 
the indoor band 1 line-of-sight single link versus the 
corresponding values of ߣ and ߛ . The minimum index is 
0.1176 while the maximum index is 1. Figure 2 illustrates the 
Jaccard index of the membership of the clusters of indoor 
band 1 line-of-sight single link. The minimum index is 0.3649 

while the maximum index is 1. Figure 3 displays the Jaccard 
index of the number of clusters in the indoor band 2 
line-of-sight single link. The minimum index is 0 while the 
maximum index is 1. Figure 4 presents the Jaccard index of 
the membership of the clusters of indoor band 2 line-of-sight 
Algorithm 2: AssoConstrained Boolean Matrix Factorization 

 
୭୮୲୧୫ୟ୪࡯	:ܜܝܘܖ۷ ଴ܭ,
:܍ܢܑܔ܉ܑܜܑܖ۷	 Construct	the	Boolean	matrix	࡯୭୮୲୧୫ୟ୪࡮	from
୭୮୲୧୫ୟ୪࡯	 	with	rounding	threshold	࡮ݐ = ࡮ࢅ,0.5 ← [ ],
	݁ = ∞, ୲୦୰ୣୱ୦ݎ = 0.1.
ߥ	ܚܗ܎	 = 0.1,0.2, … ܗ܌	1,
		Construct	࡮ࡰ	with

,݅)࡮ࡰ			 ݆) =
ൻ࡯୭୮୲୧୫ୟ୪࡮(݅, : ,݆)࡮୭୮୲୧୫ୟ୪࡯,( : )ൿ
ൻ࡯୭୮୲୧୫ୟ୪࡮(݆, : ,݆)࡮୭୮୲୧୫ୟ୪࡯,( : )ൿ

> .ߥ

݇	ܚܗ܎		 = 1,2, … ܗ܌	଴ܭ,
			݅ = argmin௜ห࡯୭୮୲୧୫ୟ୪࡮ ⊕ :)࡮ࡰ࡮ࢅ]) , ݅)] ∘ :)࡮ࡰ࡮ࢅ] , ݅)]୘)ห.
࡮ࢅ			 ← :)࡮ࡰ࡮ࢅ] , ݅)].
			Delete	all	݆ − th	columns	with	

			
:)࡮ࡰ⟩ , :)࡮ࡰ,(݅ , ݆)⟩
:)࡮ࡰ‖ , :)࡮ࡰ‖‖(݅ , ݆)‖ > ࡮ࡰ	from	୲୦୰ୣୱ୦ݎ

.min	ܚܗ	empty	is	࡮ࡰ	܎ܑ			 ห࡯୭୮୲୧୫ୟ୪࡮ ⊕ ൫࡮ࢅ ∘ ,౐൯ห࡮ࢅ
				s. t.࡮ࢅ౐ ∘ ࡮ࢅ = ௄×௄ࡵ 	is	not	reduced	in	this	loop
ܓ܉܍ܚ܊				
܎ܑ	܌ܖ܍			
୭୮୲୧୫ୟ୪࡯ฮ܎ܑ			 ౐ฮ࡮ࢅ࡮ࢅ−

୊

ଶ
< ݁

∗࡮ࢅ				 = .࡮ࢅ
				݁ = ฮ࡯୭୮୲୧୫ୟ୪ ౐ฮ࡮ࢅ࡮ࢅ−

୊

ଶ
.

܎ܑ	܌ܖ܍			
ܚܗ܎	܌ܖ܍		
ܚܗ܎	܌ܖ܍	
∗࡮ࢅ	ܖܚܝܜ܍ܚ

 

 
single link. The minimum index is 0.3684 while the 
maximum index is 1. Figure 5 reveals the Jaccard index of the 
number of clusters of semi-urban band 1 line-of-sight single 
link. The minimum index is 0 while the maximum index is 
0.0455. Figure 6 demonstrates the Jaccard index of the 
membership of clusters of semi-urban band 1 line-of-sight 
single link. The minimum index is 0.1364 while the 
maximum index is 0.2452. Figure 7 indicates the Jaccard 
index of the number of clusters of semi-urban band 2 
line-of-sight multiple links. The minimum index is 0 while 
the maximum index is 0.0141. Figure 8 exhibits the Jaccard 
index of the membership of clusters of semi-urban band 2 
line-of-sight multiple links. The minimum index is 0.1138 
while the maximum index is 0.1699. 
 
The relative frequency of the Jaccard indices on the number 
of clusters and the membership of the clusters for indoor band 
1 line-of-sight single link is shown in Figure 9. For the 
number of clusters, 13% of the indices occurred from 0.9 to 1 
while 20% for the membership of the clusters. Figure 10 
displays the relative frequency of the Jaccard indices on the 
number of clusters and the membership of the clusters for 
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indoor band 2 line-of-sight single link. For the number of 
clusters, 27% of the indices occurred from 0.9 to 1 while 37% 
for the membership of the clusters. Figure 11 presents the 
relative frequency of the Jaccard indices for semi-urban band  

 
Figure 1: Jaccard index of the number of clusters as a 
function of ߣ and ߛ in indoor B1 LOS SL where cyan colors 
are indices higher than the mean of 0.6034 
 

 
Figure 2: Jaccard index of membership of clusters as a 
function of ߣ and ߛ in indoor B1 LOS SL where cyan colors 
are indices higher than the mean of 0.7305 
 

 
Figure 3: Jaccard index of the number of clusters as a 

function of ߣ and ߛ in indoor B2 LOS SL where cyan colors 

are indices higher than the mean of 0.6487 

 
Figure 4: Jaccard index of membership of clusters as a 

function of ߣ and ߛ in indoor B2 LOS SL where cyan colors 
are indices higher than the mean of 0.7582 

 

 
Figure 5: Jaccard index of the number of clusters as a 

function of ߣ and ߛ in semi-urban B1 LOS SL where cyan 
colors are indices higher than the mean of 0.0186 

 

 
Figure 6: Jaccard index of membership of clusters as a 

function of ߣ and ߛ in semi-urban B1 LOS SL where cyan 
colors are indices higher than the mean of 0.1875 



Jojo F. Blanza et al.,  International Journal of Emerging Trends in Engineering Research, 7(12), December  2019, 762- 767                    

766 
 

 

 
Figure 7: Jaccard index of the number of clusters as a 

function of ߣ and ߛ in semi-urban B2 LOS ML where cyan 
colors are indices higher than the mean of 0.0084 

 

 
Figure 8: Jaccard index of membership of clusters as a 

function of ߣ and ߛ in semi-urban B2 LOS ML where cyan 
colors are indices higher than the mean of 0.1436 

 

 
Figure 9: Relative frequency of Jaccard indices for indoor 

band 9 line-of-sight single link 

 
Figure 10: Relative frequency of Jaccard indices for indoor 

band 2 line-of-sight single link 
 
 

 
Figure 11: Relative frequency of Jaccard indices for 

semi-urban band 1 line-of-sight single link 
 
 

 
Figure 12: Relative frequency of Jaccard indices for 

semi-urban band 2 line-of-sight multiple links 
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1 line-of-sight single link. For the number of clusters, all of 
the indices fall between 0 and 0.1 while for the membership 
of the clusters all indices are within the 0.2 to 0.4 range. 
Figure 12 illustrates the relative frequency of the Jaccard 
indices for semi-urban band 2 line-of-sight multiple links. All 
of the indices fall within the 0 to 0.1 range for the number of 
clusters while 0.2 to 0.3 for the membership of clusters. The 
results show that SCAMS has good clustering accuracy for 
the indoor scenarios while improvements can be made for the 
semi-urban scenarios. Overall, SCAMS can be used as an 
alternative clustering approach in channel modeling. 
 
5. CONCLUSION 
 
The results of SCAMS in clustering wireless propagation 
multipaths are presented in this work. SCAMS can jointly 
identify the number of clusters and the membership of the 
clusters. The accuracy of SCAMS in clustering multipaths is 
dependent on the parameters ߣ and	ߛ. The reference data for 
the C2CM multipath clusters are taken from the IEEE 
DataPort. Results show that SCAMS can be used as an 
alternative clustering approach in the field of channel 
modeling. SCAMS gives good clustering accuracy for the 
indoor scenarios but improvements for the semi-urban 
scenarios are necessary. Other options can be explored based 
on the clustering results with the joint identification of the 
membership and the number of multipath clusters into 
consideration. 
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