
Priyanshi Panwar et al., International Journal of Emerging Trends in Engineering Research, 11(1), January 2023, 30 – 34

30

ABSTRACT

As technology progresses, web based applications are

becoming more vulnerable and threats to it’s security is

increasing day by day. One of the ways by which an attacker

can attack any web application is cross site scripting attack.

The loop holes in a web based application can be exploited by

a hacker in ways like, session-hijacking, cookie-stealing,

malicious redirection etc. In this survey paper we focuses on

the current XSS attack detection techniques and their

limitations.

Key words: Cross-Site Scripting attack, prevention,

detection, Web based Application, XSS.

1. INTRODUCTION

Web based application are advancing with the advancements

in technology. But it also increases the probability of being

exploited by the hacker. With the recent surveys and studies it

is came to notice, that one of the ways to attack is XSS used by

a hacker.

Cross site script attack uses injection method. The hackers

takes the advantage of underlying inadequacy of present in

web based application by injecting hostile script code through

web pages input box, basically java script’s code snippets

along with input boxes are embedded and then sent at client

side and when client reload or revisit the web page it’s cookies

details can be seen as well as its session token and other

sensitive stored information can be seen.

Because web programmes do not effective monitoring and

filtering system for the user input, an attacker inserts perilous

scripts into reliable web sites. When a malicious script is run, a

hacker take hold of the required information. Specifically, the

personal user data. Researchers created a number of

approaches that can successfully stop the hostile script to get

executed and performed because of its practical significance.

Additionally, Google Chrome included a client-side XSS filter

using this method [1].

2. CSS ATTACK

Genrally, the attacker uses many methods to take advantage of

vulnerable web based application. a scenario where an

application that allows hacker to send hostile script and gather

some type of data from the victim this is what known as cross

site scripting attack (xss attack). it allows a hacker to insert

malicious programming (such as javascript, vbscript, activex,

html, or flash) into a weak dynamic website and then run that

script on his computer to collect data. the usage of xss runs the

risk of compromising confidential data, stealing or

manipulating cookies, creating requests that could be

construed as coming from a legitimate user, or executing

malicious code on the end-user computers. the information is

typically presented as a hyperlink with dangerous content that

is disseminated online through all available channels. In this

part, we examine the three primary xss attack types: persistent

xss attacks, non-persistent xss attacks and dom-based attacks.

 2.1 Stored XSS or Persistant or Type-II XSS Attack:

 In persistent XSS, an hacker will insert hostile script into a

website permanently, which lead to saving the script on the

servers as HTML text in places like databases, comment

fields, forum postings, etc., and will subsequently be displayed

to the victim. When the victim(to be) visits a website that

contains XSS-II attack code, the attack code runs on the

victims's browser, sending the victims's sensitive data from his

side to the hacker's side. The cached XSS attack is another

name for the persistent XSS attack. When compared to

"REFLECTED XSS," this form of XSS causes more severe

damage. Figure 1 shows XSS attack flow.

An Analysis of the Prevention and Detection of Cross Site

Scripting Attack

Priyanshi Panwar1, Himani Mishra2, Ritambhara Patidar3
1Research Student, S.G.I.T.S., Indore, India, priyanshisjr@gmail.com

2Assistance Professor, S.G.S.I.T.S., Indore, India, himanimishra.hm21@gmail.com
3Assistance Professor, S.G.S.I.T.S., Indore, India, ritam.patidar@gmail.com

Received Date: December 9, 2022 Accepted Date: December 20, 2022 Published Date : January 07, 2023

 ISSN 2347 - 3983

Volume 11. No.1, January 2023

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter051112023.pdf

https://doi.org/10.30534/ijeter/2023/051112023

Priyanshi Panwar et al., International Journal of Emerging Trends in Engineering Research, 11(1), January 2023, 30 – 34

31

Figure 1: Flow of Persistent XSS Attack

2.2 Reflected or Non-Persistant or Type-I XSS Attack:

The most frequent kind of XSS attacks is non-persistent

cross-site scripting attack. The user is quickly reflected with

the attack code rather than it being constantly kept. An

alternative name for it is a reverse XSS attack. The attack is

transmitted through e-mail or through websites. When a victim

clicks on the untrusted link, the information is transferred to

the server. The susceptible web application displays both the

requested web page and the information that was supplied to it

through the link when a victim clicks on the link. The Figure 2

shows flow.

Figure 2: Flow of Non-Persistent XSS Attack

 2.3 DOM (Document Object Model) - Based XSS or

Type-0 Attack:

Instead of delivering harmful code to the server, DOM-based

cross-site scripting attacks alter the DOM "environment" on

the user end. Document object model, sometimes known as

DOM, is a platform- and language-neutral interface. The

HTML or XML document can be changed by an attacker’s

script or programme since DOM permits scripting to do so.

Consequently, DOM-based XSS makes use of DOM's

weakness to carry out the XSS. Figure 3 shows the flow of

DOM based attack.

Figure 3: Flow of DOM-based XSS Attack

3. XSS HAZARDS

Once an attacker knows the loophole in the website which can

be victimized, the hacker can launch multiple attacks which

includes session hijacking, infiltration, data stealing and

propagation of worms[2]. Following section summarizes the

harms that a cross site attack can bring:

1. Cookie hijacking: Cookie is basically stores the

information about client or web site and is stored at

user’s computer and it can be accessed through

server[3]. The cookie hijacking is done by executing

a script in a web page which will lead to hijacking of

user’s browser, this will send current session detail to

hacker web site.

2. Session Hijacking: It will allow the hacker to take

control of user’s session and then he can perform

illegal actions like force posting, illegal transfers etc.

3. Build Get and Post requests: It cannot directly hijack

the cookie for usage if the cookie has Http Only

property set than it can combine user and client

information, but XSS is capable of creating a get,

post request in JavaScript to perform the attacks.

4. Defacing Website: “This is the worst vehicle”.

5. Inserting hostile content: adding hostile control to a

page.

Priyanshi Panwar et al., International Journal of Emerging Trends in Engineering Research, 11(1), January 2023, 30 – 34

32

6. XSS Phishing attack: For instance, an attacker can

alter a web page's DOM tree structure and content by

combining XSS with phishing. The site's login

window is simulated by the JavaScript tree code. XSS

transmits the user name and password to the

server for attack after the user inputs them.

7. XSS worm[4]: For instance, by combining XSS with

phishing, an attacker can change the DOM structure

and information present in web page. The JavaScript

code simulates site's login window. After the user

enters them, XSS sends the user name and password

to the server for attack.

4. DETECTION AND PREVENTION OF XSS

ATTACKS

Detection of XSS attack is significant an aspect to prevent the

attack. There are several techniques that has been used for the

spotting of the XSS attack. The attack happens when a hostile

script is executed at user’s end from a web browser. More than

60% of websites are still susceptible to XSS attacks despite the

widespread adoption of standardized code development

practices in many apps [5].

Static and dynamic detection techniques are two categories of

XSS attack detection techniques. Static detection involves

examining the program's source code to search for any

potential XSS vulnerabilities. Simulating user operations is the

method of performing the dynamic testing. It either manually

sends injection points or utilizes tools (such as fiddler or burp

suite [6, 7], etc.) and analyses the server's response to

determine whether an XSS attack has occurred. Many diverse

automated tools exists, that are able to perform XSS detection.

XSSER[8] is one such tool which is capable for automatic

injection testing of XSS attack[8]. Xelenium[9] is also a tool

which performs security testing developed by OWSAP. It uses

JAVA Swing which helps to find security loophole. Feature

matching [10], which runs match checking on input data, is the

primary defence against XSS assaults. The apparent problem

with this approach is that, hacker can avoid it by adding

characters or complete coding. Today, researchers looked at

XSS attack detection and protection methods using guidelines

from various sources. The S2XS2 tool was created by Shahriar

and Zulkernine [10] to identify XSS on the server’s end using

an automated framework based on injection and policy

generation principles. Script code location for content

production in the border marker server. For JSP projects, they

created a tool to spontaneously construct rules and set

boundaries. To examine this approach, they employ four JSP

programmes. The findings indicate that this technique can

identify the majority of known XSS threats. In 2016, Jinkun

Pan and Xiaoguang Mao [11] introduced the DomXssMicro

microbenchmark. DomXssMicro is created with six

components, it is constructed using templates that were taken

from typical vulnerabilities. There are 175 test cases in

DomXssMicro, each of which aims to evaluate a different

aspect of Dom-based XSS. Various Dom-based XSS detection

technologies were also assessed, that might offer direction and

a look into a choice and development of detection tool.

Kohail[12] used XML and XSD to develop a tool to detect and

prevent server side XSS attacks. In this technique they are

forcing web application life cycle which will lead to stop

unstrusted user input by changing the code structure. But this

technique need lot of information from the server to perform

well and it will reduce the performance drastically. Gupta [13]

, a technique develop by Gupta[12] for automatic detection of

vulnerabilities by scanning JavaSript code at different site

location, it has three steps firstly he find the site of injection on

the server with the help of script locator, then in second step he

injects hostile XSS attack vectors with the help of BlogIT. and

lastly uses XSS attack list scanning attacks. It’s has a disability

of not detecting a DOM based XSS. Gandi [14] what he did

was, he generated a html script from the server and

randomized XML namespace prefix. Next the html tags were

annoted with random tags, but for this a policy has to be sent to

the browser. This technique is not good to use because browser

has to be modified as well as http header is introduced. Hao

Chen[15] is more focused on client end and for this he has

developed an analyzer that will analyze the flow of execution

on AJAX based web application. A client-side analysis

JavaScript code is generated to create the FSA, which is then
embedded in the browser and agent to keep track of all client

application activity. XSS attacks will occur throughout the

installation phase if the prebuilt procedure doesn't comply with

the FSA. This technology does not call for altering an Ajax

application's source code. As a result, XSS attacks may be

transparently prevented on any site. Prithvi Bisht[16] work to

protect the server side from XSS attack by developing

XSS-Guard which is a new framework. To prevent illegal

input on the server-side output of the script's content, wish to

identify any harmful may be recognised by any input filtering

system, and XSS-GUARD uses research on dynamic web

applications to ask for any HTML in order to build the script

set that will run. J.Sun[17] stops the browser from leaking

information by using the stain model and information flow

analysis, by rewriting code track framework. For this firstly we

have to abstract the semantic of JavaScript and convert the

code into Syntax tree for intermediate representation of

JavaScript. According to experimental findings, JSTFlow can

both ensure the security of sensitive data and find XSS attacks.

B.Mewara[18] develops a method which is to filter the

reflection based on coding which will help to detect hostile

Priyanshi Panwar et al., International Journal of Emerging Trends in Engineering Research, 11(1), January 2023, 30 – 34

33

web applications. This method increased detection rate

accurately, and it also applies defense mechanism known as

XSS-Me to prevent hostile script execution. This solution can

easily handle complex attacks. Gupta[19] developed the

defense meachanism against XSS for the cloud environment

application. CSSXC is a strong defense mechanism against

XSS. It basically finds all the injection point that are present in

the cloud. The programme makes advantage of an XSS

repository's blacklist of JavaScript vectors.

5. CONCLUSION

An emerging approach for application software businesses is

the utilization of the web paradigm. It enables the creation of

widespread apps that thousands of users with only basic web

clients may theoretically access. Furthermore, the

development of new tools that are no longer constrained by

certain operating systems is made possible by the presence of

new technologies for the advancement of online features.

When it comes to the online paradigm, the methods currently

used to secure traditional apps are often insufficient, and end

users are frequently left in charge of safeguarding significant

components of any web based service. The web applications

which are being developed should use support security tools

inorder to make sure a deployment[20] free from malicious

code and attack. Cross-site scripting (XSS) vulnerabilities in a

web application have been shown to pose a serious danger to

both the programme and its users. This paper reviewed current

strategies for preventing XSS attacks on susceptible apps.

There are now some highly challenging solutions that provides

techniques to handle the issue. But some of these methods fall

short; some don't offer enough protection. In order to create

safe, stable and secure web services, more cogent algorithms

and methods need to be developed to provide a better

detection and prevention mechanism.

REFERENCES

1. G. Dong, Y. Zhang, X. Wang, P. Wang and L. Liu,

Detecting cross site scripting vulnerabilities

introduced by HTML5, 2014 11th International Joint

Conference on Computer Science and Software

Engineering (JCSSE), Chon Buri, 2014, pp. 319-323.

2. R. Johari and P. Sharma, A Survey on Web Application

Vulnerabilities (SQLIA, XSS) Exploitation and

Security Engine for SQL Injection, 2012 International

Conference on Communication Systems and Network

Technologies, Rajkot, 2012, pp. 453-458

3. What are cookies. http://www.whatarecookies.com/

4. M. R. Faghani and U. T. Nguyen, A Study of XSS Worm

Propagation and Detection Mechanisms in Online

Social Networks, in IEEE Transactions on Information

Forensics and Security, vol. 8, no. 11, pp. 1815-1826,

Nov. 2013.

5. A. W. Marashdih and Z. F. Zaaba, Detection and

Removing Cross Site Scripting Vulnerability in PHP

Web Application, 2017 International Conference on

Promising Electronic Technologies (ICPET), Deir

El-Balah, 2017, pp. 26-31.

6. Ishikawa, Tomohisa, and Kouichi Sakurai. Parameter

manipulation attack prevention and detection by

using web application deception proxy, Proceedings of

the 11th International Conference on Ubiquitous

Information Management and Communication, ACM, Jan

2017.

7. Katy Anton, Jim Manico, and Jim Bird, Top 10 proactive

controls 2016, OWASP, US, 2016.

8. XSSer: Cross Site scripter. [2018-04].

https://xsser.03c8.net/.

9. Xelenium info page.

http://www.hackguide4u.com/2012/07/owasp-xelenium-

xss-s canner.html.

10. H. Shahriar and M. Zulkernine, "S2XS2: A Server Side

Approach to Automatically Detect XSS Attacks, 2011

IEEE Ninth International Conference on Dependable,

Autonomic and Secure Computing, Sydney, NSW, 2011,

pp. 7-14.

11. J. Pan and X. Mao, DomXssMicro: A Micro

Benchmark for Evaluating DOM-Based Cross-Site

Scripting Detection, 2016 IEEE

Trustcom/BigDataSE/ISPA,Tianjin,2016, pp. 208-215.

12. Tawfiq S. Barhoom and Sarah N. Kohail, A new

server-side solution for detecting Cross Site Scripting

attack, International Journal of Computer Information

Systems, Vol. 3, No. 2, 2011.

13. Shashank Gupta and B. B. Gupta, Automated discovery

of JavaScript code injection attacks in PHP web

applications, International Conference on Information

Security & Privacy (ICISP), Nagpur, INDIA, 11-12

December 2015, Elsevier, Procedia Computer Science,

vol. 78, pp.82 – 87, 2016.

14. M. Gundy and H. Chen, Noncespaces: Using

Randomization to Enforce Information Flow

Tracking and Thwart Cross-site Scripting Attacks,

Proc. of NDSS, San Diego, Feb. 2009.

15. Q. Zhang, H. Chen and J. Sun, An execution-flow based

method for detecting Cross-site Scripting attacks, The

2nd International Conference on Software Engineering

and Data Mining, Chengdu, China, 2010, pp. 160-165.

16. Prithvi Bisht, V. N. Venkatakrishnan, XSS-GUARD:

Precise Dynamic Prevention of Cross-Site Scripting

Attacks, Department of Computer ScienceUniversity of

Illinois, Chicago, 2008, pp. 23-43.

17. W. Xiao, J. Sun, H. Chen and X. Xu, Preventing Client

Side XSS with Rewrite Based Dynamic Information

Flow, 2014 Sixth International Symposium on Parallel

Architectures, Algorithms and Programming, Beijing,

2014, pp. 238-243.

18. B. Mewara, S. Bairwa, J. Gajrani and V. Jain, Enhanced

browser defense for reflected Cross-Site Scripting,

https://xsser.03c8.net/

Priyanshi Panwar et al., International Journal of Emerging Trends in Engineering Research, 11(1), January 2023, 30 – 34

34

Proceedings of 3rd International Conference on

Reliability, Infocom Technologies and Optimization,

Noida, 2014, pp. 1-6.

19. Shashank Gupta and B. B. Gupta, CSSXC:

Context-Sensitive Sanitization Framework for web

applications against XSS vulnerabilities in cloud

environments, Procedia Computer Science, No. 85, pp.

198-205, Elsevier, 2016.

20. Forrest, S., Hofmeyr, A., Somayaji, A., Longstaff, T.: A

sense of self for unix processes. In: IEEE Symposium

on Security and Privacy, pp. 120–129 (1996)

21. Livshits, B., Erlingsson, U.: Using web application

construction frameworks to protect against code

injection attacks, In: 2007 workshop on Programming

languages and analysis for security, pp. 95–104 (2007

