
Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

417

ABSTRACT

Embedded Systems must be bug-free. Comprehensive
Testing of embedded systems is required to eliminate the risk
and reduce Time and also to improve the performance of the
embedded systems. Tools have been in existence for
undertaking different kinds of Testing that include
integraTion and system Testing. Embedded systems must be
tested considering different perspecTives that include input,
output, mulTi-input, mulTi-output, and input-output
relaTionships. No tool is in existence for Testing the
embedded systems, both the information and output domain.
There is a need to learn a model represenTing the embedded
systems, and the output generated out of the model must tally
with the expected production to guarantee that the embedded
system is tested comprehensively considering the input and
output domain.

In this paper, a method has been presented that learns the
embedded system through building the Neural network and
the correctness or exactness of the model through comparing
the outputs generated through Neural network with the
outputs collected through manual Testing. The paths
exisTing in the firmware that does not yield the expected
output are determined and listed, so that code relaTing to
those paths is corrected. The Testing method proposed in this
paper covers the Input-Output perspecTive of the embedded
system

Key words:Combinatorial methods, testing embedded
systems, Test case generation, Neural Networks, Input-
output domain

1. INTRODUCTION

Testing an embedded system is required for evaluaTing
firmware and all the components that comprise the firmware
— testing of the integrated system done for assessing the
performance, robustness, and especially the behavior.
Behavior assessment of the embedded systems is most
important, and the embedded systems generally built for
adapTive and real-Time systems. Testing of embedded
systems must be carried considering verifiable methods.
SomeTimes Testing must be carried considering different
perspectives to confirm that an embedded system is designed

and developed to meet all kind of relaTionships that exists
among inputs and outputs.

Combinatorial Testing methods are in use for Testing
conventional software systems. The arrangements are
designed focusing on the selecTion of combinaTion of inputs
that cover all the paths exisTing in the software. Embedded
systems must be tested considering hardware, software and
both. The behavior of hardware or software based on the
inputs provided to those elements. Combinatorial methods
have been proved to be efficient that fewer test cases
generated that exhausTively cover the Testing of loaded
software. Combinatorial methods are in use for Testing GUI,
system configuraTions, protocols, web forms, loaded
software, and the like.

Embedded systems are in use slowly in many fields,
including automobile, health, airspace, networking, cell
phones, home automation systems, and the proper
functioning of these systems is essential that the users of
those devices are confident of using those devices.

Embedded systems must be tested, considering both
hardware and software. 80% of the Testing relates to Testing
software. SomeTimes nonfunctioning of the hardware can
also be verified through Testing software components that
relate to hardware. Apart from testing of hardware and
functioning of the software, it is also necessary to check the
occurrence of the signals relating to the pattern of existence,
sequencing, Timing, and validity. The embedded systems
must test functions, end-to-end processing, etc.

The designers of an embedded system face a challenge in
designing and developing test cases. It is challenging to
generate test cases that are suitable for undertaking different
kinds of Testing to be carried that include load, functions,
paths, structure, and nonfunctional requirements such as
response time and throughput. Testing of the embedded
systems must also be undertaken considering different
constraints imposed on the system.

Neural networks are built using the relaTionships between
the inputs in a way the relaTionships depict the logic built
into a software system. The model is built using three layers
that include an input layer, output layer, and many hidden
layers. Neural networks can be used to generate fewer test

Generating Test cases for Testing Embedded Systems using Combinatorial
Techniques and Neural Networks based Learning Model

Dr. Sasi Bhanu1 J, Dr. Baswaraj D2, Sunitha Devi Bigul3, Dr. JKR Sastry4

1, 2, 3 CMR Institute of Technology, kandlakoya, Medchal, Hyderabad, bhanukamesh1@gmail.com
4Koneru Lakshmaiah Education Foundation University, Vaddeswaram, Guntur District, drsastry@kluniversity.in

 ISSN 2347 - 3983

Volume 7, No. 11 November 2019
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter047112019.pdf

https://doi.org/10.30534/ijeter/2019/047112019

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

418

cases that are sufficient to test a system exhausTively. The
constraints imposed on the input variables also are imposed
while considering the relaTionships among the variables.

Embedded systems are to be tested considering input, output,
mulTi-output, mulTi-input, and input-output domains.
Neural networks are best suited for Testing the embedded
systems as underlying principles match the Input-output
domain of the embedded systems.
In this paper, a method presented that uses combinatorial
methods and neural networks using which test cases required
for Testing embedded systems considering hardware,
software, and both generated. Comparative analysis has
performed that show how the proposed method produces
minimal test cases when compared other exisTing methods.

2. LITERATURE SURVEY

Several applications of different types are being tested using
combinatorial methods. The minimum cost incurred for
Testing a system using combinatorial methods. Minimal
Time required for undertaking Testing of a system using
combinatorial methods. Many articles have been published in
the literature, presenting the way the Testing of
convenTional systems can be carried using combinatorial
methods. Several approaches and methods published in the
literature relating to Testing of convenTional loaded system,
but very few have attempted to present the way embedded
systems can be tested using the combinatorial methods.

Many tools are in existence for generating the test cases, but
no tools, as such, are in reality for undertaking actual Testing
using the generated test cases. No one guarantee that every
aspect of a system will be thoroughly tested using the
generated test cases. C. Anderson et al. [1] have asserted that
one should learn a model based on facts observed out of the
behavior of a system. Historical evidence collected out of
Testing a system. Models help a lot in generating the
requisite number of test cases required for Testing a system
thoroughly and comprehensively. The authors have used a
neural network-based model for prototyping system and then
use the neural network for generating the test cases.

Cohen D. M. et al., [2] has used some determinisTic and
random procedures for generating the test cases using a
Table into which the relaTionships between the input
variables entered. The table filled with data related to the
relaTionships that exist among the input variables. The
relaTionships between the variables generated through
enumeraTion of the rows contained in the table.

D. M. Cohen et al., [3] have presented a method that
considers selecTion a set of variables at a Time-based
fulfillment of specific conditions and then generates test
cases based on all combinations of the selected set of
variables. The number of test cases created grows
logarithmically, and it becomes infeasible to process those
test cases or find the suitability of the same. The method

proposed by them becomes infeasible when the numbers of
input variables are more than 10.

The input domain of any system comprises of input
variables. Input variables, when ordered or sequence based
on some criteria, someTimes lead to the generation of most
appropriate test cases. Yu Lei et al. [4] have considered all
possible domain values of each variable in the domain. They
[Lei Y et al.] [5] have further considered that every pair of
input variables must be present at least in one test case.

Users have no idea about the wat the code is written and,
therefore, not in a position to judge the combinaTion of test
cases to be considered that help Testing the system
thoroughly. The only option for the user is to use the
combination of the input variables and the kind of output
expected out of using the input combinaTions as test
variables. It is possible to generate adequate test cases if the
numbers of input variables are minimal in number. The
numbers of test configurations to be used are minimal in
number when the input variables considered are few. Genetic
algorithms tried by S.A. Ghazi et al. [6] for generating test
cases from few test case seeds such that the test cases made
will cover most of the source code. They have used upper
limit constraint while selecTing input variables.

Many methods presented in the literature, the most important
among them being IPO, Annealing, AETG, TCG, TConfig
for generaTing the test cases required for Testing
convenTional loaded systems. Combinatorial methods and
heurisTic search methods used combined for generating an
opTimum number of test cases. Greedy methods presented
leads to fewer test cases. Test cases are made as fast as
possible using greedy methods, but there is no control over
the number of test cases made, or there is no guarantee that
the generated test cases will cover all the perspecTives of a
system. The size of test cases made is significant, and
performance in terms of the extent of Testing carried is also
not guaranteed. Bryce R. R. et al., [7] have addressed the
issue of generaTing large size of test cases and also ensure
the performance related to undertaking the Testing of any
convenTional loaded system.

Changes to software will happen as the customer
requirements keep changing. Testing of the software is done
every Times changes takes place to the software. Test cases
are generated for Testing of the software initially, and then
out of these test cases are selected to test the affected
modifications on the software. The generation of test cases
based on the input pairs is a kind of NP problem. Such sort
of NP problems can only be solved using algebraic,
heurisTics or greedy methods. Kewen Li et al. [8] have
presented the Ant colony method that generates few test
cases that cover maximum input variables. Regression
Testing would become lot easier when the numbers of input
variables used are less in number to create the test cases.

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

419

Software Testing is being done these days through learning a
Neural network model; however, the way the neural network
learned differed in many ways. Every neural network
designed based on the inputs fed and the kind of outputs
expected out of the system. A method called Back-
propagation is used by Wu et al. [9] for adjusting the
coefficients which are the most critical model parameters.
They have presented the way software Testing can be carried
using the learned neural network. They have experimented
Testing an exisTing software and have shown that 90% of
the code gets tested using test cases generated by the method
proposed by them.

Yogesh Singh et al. [10] considered each node within a
neural network as an object modeled as a process of
computaTion. The NN model presented by them used for
assessing the quality of software. The authors have handled
test cases of specific software as data for undertaking Testing
of the software. They have also evaluated the level of effort
required for undertaking Testing using the model presented
by them.

Combinatorial methods involve combinaTion of input
variables or the inter-relaTions between the variables for the
generation of test cases. However, the test cases are not good
enough that rare faults that occur, especially within
embedded systems tested as it is quite difficult to simulate
the occurrence of such. Many tools exist that generate test
cases covering at least one existence of a test pair. R. Kuhn
et al., [11] have considered the concept of covering arrays
that places the input variables into different rows of a
collection. Various models built depicTing either the
functionality of a system or test scenarios. The models are
checked to see if the models cover all input pairs. The
authors have combined the covering arrays and modeling
checking methods to generate test cases.

Once the software developed, the users start interacTing
using the GUI designed for the system. The users will get
idea on the type of test cases required, the sequence in which
the test cases inputted, and the order in which the test cases
administered for Testing the system. The density and the
domain values of the variable are most important aspects
considered while generating the test cases. Xiang Chen et al.
[12] have studied the density of variables as weighted factors
and also the covering array method for making the test cases
while ate the same Time use the Ant Colony OpTimizaTion
method for opTimizing the process used for generation of
test cases.

Exhaustive testing of the embedded system is Time-
consuming and is also quite expensive. Thorough Testing
requires consideraTion of all combinaTion of input variables.
Input-pair based test case generation method produces the
least number of test cases than considering all the
combinaTion of input variables while at the same Time
exhausTing Testing of the enTire system carried. J.D.
McCaffrey et al. [13] have used bee colony opTimizaTion

while considering input-pairs for the generation of test cases.
Their methods generated few test cases but have taken more
time to create those test cases.

GeneraTing test cases are complex, considering all input
pairs and the domain values of the input variables that form
the input pairs. Several vectors with each vector containing
specific values selected out of the domain of input variables
get created. Many such vectors get created as many chosen
values from the realm of each variable. The problems of
dealing with too many variables are like the NP-hard
problem. James D. McCaffrey et al. [14] used a genetic
algorithm to generate test cases considering seed test cases
that involve few input variables. As the test case generation
gets exhausted more input variables get added some
variables are dropped. At any instance fewer input-variables
are on scope making it easy to generate the test cases. While
this approach creates all the test cases required, it is quite
time-consuming.

A book published by Rick Kuhn et al. [15] covers the
essential aspects relating to combinatorial Testing. They
have emphasized the requirements of real-world Testing that
focus on the cost of Testing. They have presented advanced
approaches to software Testing using combinatorial Testing.

It becomes complex to test a system when many test cases
are generated using a few input variables and several test
cases. Particle swarm opTimizaTion technique is a
Metaheuristic search technique used by Xiang Chen et al.
[16] for generating the test cases based on the input variable
pairs such that all paths exisTing in the software tested. A
single test case created by them represents a test case created
by them. The test case made representing a way is opTimum
as it covers all the edge conditions required for undertaking
the Testing.

A fault can occur within software due to the existence of
variables. The failures also can happen when a combination
of input variables used. A review of different tools, concepts,
and methods utilized for generating the test cases is by D.
Richard Kuhn et al. [17]. They have shown drawbacks
existing in each of the methods.

Most research focusses on in input domain for generaTing
the test case. These approaches covered just one face of the
Testing of the system. Many other facets considered for the
generation of test cases based on the output domain, mulTi-
input domain, mulTi-output domain, and input-output
domain. The number of output variables is less compared to
number of input variables in respecTive of some systems; in
such cases consideraTion of output domain only becomes
critical.

Testing in and around the CriTicality regions, exhaustively,
is essential when it comes to the embedded systems, while
random Testing is sufficient in the other areas. Chandra
Prakash V et al., [18] [19] have used the output domain of an

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

420

embedded system and the criTicality regions to generate test
cases using genetic algorithms. The seed test cases are those
related to criTicality regions of the embedded systems.

Some organizaTions are using automated tools for
generating test cases and also automate the very Testing of
the embedded systems. Kristina Smilgyte et al. [20] have
developed a tool that uses a neural network as the model for
generating the test cases. They have presented the effort and
Time required for undertaking the Testing of a system using
the tool.

The main objecTive of Testing a system is to undertake
Testing of the system using few test cases so that the Time
and money required for undertaking Testing of software is
minimum — a genetic algorithm-based technique presented
by Kristina Smilgyte et al. [20] and simulated annealing
based technique presented by Patil et al. [21]. Both the
methods reduced the number of test cases required for
undertaking the Testing of a software-based system
exhaustively.

The selection of the input variables is the most crucial aspect
when it comes to the generation of test cases. One has to use
certainly the optimization techniques for generating test
cases through input pairs. Hamming distance between the
input variables considered by Priti Bansal et al. [22], based
on which the input variables get selected. The input variables
which are close to each other based on the hamming distance
are the best choice for selecTion so that these variables can
be used further to generates test cases using combinatorial
methods. The authors have developed an algorithm that finds
the cross over points using which the individual test cases
created.

Combinations of approaches are used by many authors to
address the issue of Time, cost, and the use of a few test
cases. Genetic Algorithms, random Testing is used by R.
Raju et al. [23] for generation of test cases. They have
emphasized that it is complicated and complex to test the
interaction among the input variables based on the generated
test cases. Hayao Wu et al. [24] presented detailed overview
of Testing software based on the interaction between the
input variables. They have also explained the use of search-
based techniques for finding the faults that might happen due
to interacTion among the variables.

H. L. Zakaria et al. [25] presented an advance search
technique called MBO (MigraTing search opTimizaTion) for
achieving the opTimizaTion of test case generation using
input pairs. They have presented MBO, and an improved
MBO called iMBO. The main focus of their method is to
consider structures that are input pairs in the same
neighborhood.

A method called hybrid optimization used by R. Qi et al.
[26] is an enhancement of the purpose-built on a genetic
algorithm combined with a hill-climbing algorithm. This

approach is also proved to produce acceptable results,
especially when specific systems are developed based on the
concepts of hierarchical structuring.

Some test tuples get ignored when search methods used for
selection of the Input variables. Some test tuples usually get
overlooked when the Greedy method employed for
searching. The greedy approach as such, ignores the
constraints imposed while undertaking the search. Akihisa
Yamada et al. [27] have improved the greedy way while
imposing the test conditions and restrictions.

A number of approaches presented by Sastry et al.,
[28][29][30][31][32][33] [34][35][36][37][38][39][40] [41]
[42][43][44][45] for Testing standalone and distributed
embedded systems must of which focused on the way
Testing of the embedded systems carried and also
concentrate on the way test cases are generated. While these
contributions focused on may perspecTives which are
different from the perspecTives of Input-Output domain

3. PROTOTYPE MODEL

A prototype embedded application developed, which is
meant for moniTion and control the temperatures within
nuclear reactor tubes. The application developed with the
principal undertaking the Testing using the Internetwork
based combinatorial method proposed in this paper. The
prototype used as an experimental model. Figure 1 shows the
Hardware interconnecTivity diagram of the prototype model.

The nuclear reactor tubes fitted with temperature sensors for
sensing the temperatures exisTing in the reactor tubes. The
temperature sensor produces analog signals proportional to
the temperatures sensed. The amplified analog signal is
inputted to an A/D converter to transform the signals to
digital data read by a program that is part of firmware
running within a prototype model. The temperatures thus
read are read within RAM of the Microcontroller based
system.

Threshold values defined for each of the temperatures within
the nuclear reactor tube and the temperatures maintained
within the threshold value by controlling temperature
through the injection of coolants using the pumps. The
operator is alerted when tremendous various occur across the
gradients of the temperatures exisTing in both the tubes. The
pumps are controlled using relays. Power to the pump-fed
when coolant is to be pumped into the reactor tube or
otherwise the power to the pump is switched off through
proper rely operaTion. The microcontroller based system is
interfaced with a PC through an RS232C connecTion for
feeding the threshold values, are used for controlling the
temperatures within the nuclear reactor tubes — the
temperatures within the nuclear reactors displayed on the
LCD connected to the Microcontroller based system. The
functional requirements of the prototype system shown in
Table 1.

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

421

3.0 GENERATING TEST CASES THROUGH NUERAL
NETWORKS

3.1 An overview on Nueral networks

A neural network is a directed graph having nodes that are
Artificial neutrons. The nodes are interconnected using edges
that have specific weights. The commencing nodes are called
input nodes, and the terminating nodes are called output
nodes. The intermittent nodes are processing nodes, which
generally called the hidden nodes. The nodes included in
several layers are structured. The first layer is called the
input layer, and the last layer called the output layer; there
can be many hidden layers situated between the input layer
and the output layer. The typical layout of the network
shown in figure 2, and the architecture of neural network
shown in figure 3.

The inputs from the external world (Sensors, File Records,
Manual Inputs, Patterns, and Vectors) fed as inputs to the
nodes situated in the input layer. The input nodes
mathematically represented as X(i) where i stands for n
number of inputs. Every data is normalized to fit into a range
— the inputs connected to the nodes situated in the first
hidden layer — every connection between any pair of nodes
assigned with weights. The problem is to find the values
attached to the weights. The value of any node is summation
of inputs multiplied by the respective weights. Bias is added
to the summed value to bring the value into a specific range.
The bios value is zero in the beginning.

Figure 1: System IntegraTion Diagram of Prototype Model

Every summed up value subjected to an activation function
such that summed value will be in acceptable limits. The
primary purpose of activation function is to direct the
summed up data to the expected output values. There are
many types of activation functions that are either linear or

non-linear. Sigmoidal, hyperbolic sigmoidal functions
(Nonlinear), and Binary are some of the activation functions
used. The output of an activation function is either 0 or 1
when the activation function is binary. The function related
to a shaped curve ‘S’ represents Sigmoidal Hyperbolic. The
activation function “Tan Hyperbolic” gives more accurate
output estimation. The function defined in equation 1.
ff (x) = (1/1+ exp (-࣌x)) where ࣌ — steepness parameter {1}

Figure 2: Layout of an Artificial Neural Network

Figure 3: Neural Networks - Architetcure

Two different types of topologies used while developing a
neural network, which includes – Feed Forward and Feeds
backward, which considers a feedback loop to propagate the
error at the output nodes, which occur when the actual output
is different from the computed output. A sample
Feedforward and feed backward ANN, shown in Figure 4
and Figure 5.

 Figure 4 : Feed Forward ANN Figure 5: Feedbacks ANN

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

422

4.2 Neural network equalizations of a processing
program

Neural networks are being used heavily for different
purposes, including for software Testing. The input variables
of a test case fed as inputs to the neural network. The test
results are the outputs of a neural network. The hidden
nodes are symbolic representation of processing that takes
place within a program.

A test case meant for testing a specific path existing within a
program. A test path represented as a sequence of processing
nodes, which are the nodes situated in the hidden layers of
the neural networks. The processing nodes situated in the
adjacent hidden layers form a specific sequence. The
processing at each of the nodes represented as summation of
income inputs multiplied by the corresponding weights, and
then some bios added. The resultant value is then
transformed to get the test output value. Thus any internal
processing coded into a program can be represented as a path
in the neural network.

In this paper, an efficient algorithm is developed using which
a neural network designed that represents a Testing model.
The model thus used for undertaking Testing by feeding the
data of test variables as input to the neural network and then
immediately getting the expected output. The test case
subjected to the program under teste and the production
obtained from the program compared with the production
received neural network. When the outputs are same, one can
conclude that the neural network learned correctly. If there
exists a difference between the program output and NN
output then the difference is propagated in the feed backward
direction, and the weights are adjusted accordingly. Several
test cases tried before one can declare that the NN fully
matured. Table 2 shows the steps for the algorithm.

Algorithm

Table 2 Algorithmic steps for constructing an NN and
generation of test cases

St
ep

N

um
be

r

Step Execution

1. Study Testing specification drafted for an
embedded system and list down the Input
Variables, or if the source code is in hand,
parses the code to find the Input Variables.

2. Order the variables based on the way they
appear in a program

3. Considering the list of ordered input variables,
generate input variable pairs

4. While parsing the program, find the conditions
that exist in between Input variables, and
generate the matrix based on those conditions

St
ep

N

um
be

r

Step Execution

5. Process the conditional matrix and remove
redundant rows existing in the conditional
matrix. The redundant rows are those that have
input variables that are transitive.

6. Process the conditional matrix to determine the
total number of nodes, nodes exiting in the input
layer and nodes existing in output layer and
hidden layers existing in between output and
Input layers

7. Generate and Enumerate the formulas that
connect the processing nodes situated in Hidden
layers based on the number of incoming edges
and outgoing edges. The relationships between
the variables form the computation expressions

8. With all the details about the inputs, outputs,
connectivity among the nodes, develop neural
networks and store the same as connected data
structures that stores the Initial weights of the
edges connecting the outgoing nodes

9. Implement a recursive process that assumes an
activation function and determines weights and
bios such that the outputs generated matches
with the expected output values. Different
activation functions trained, and the function
that create least variations selected such that
model is full learned

10. Enumerate all the paths contained in the neural
network learned. Each way containing specific
input variables and the output variables forms
the test case — the data values calculated for
the intermittent variables based on the
expressions. The test data is the values assigned
to the variables contained in a path within the
neural network.

The test data keeps varying based on the data
assigned to the input variables, and when the
inputs subjected to the neural networks, the
expected outputs generated.

All the generated test cases stored in an array

11. The test cases derived out of the neural network
subjected to the actual software, and test results
obtained.

The software produced test results compared
with the test results obtained through neural
networks. If the outputs are the same then one
can conclude that the test succeeded or else test
failed leading to the correction of the code
related to the test path.

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

423

4.3 Step by step execution of Algorithm using prototype

Figure 6: Generated neural Network

4.4 model

The algorithm applied to the prototype project described
above. The experimental results obtained while using the
algorithm step by step presented below.

Step-1:

Determine the input variables, either parsing the sources
code or tracing the functional / Testing specification of the
application concerned, and in this case, it is the prototype
project. The technical requirements of the Prototype project
shown in Table-1. Table 3 shows the list of input variables
traced out through the analysis of functional specification or
processing of the source code.

Table 3: Variables traced in the Input domain

S. No Input
Variable

Description

1. II1 Temp-1 data value
2. II2 Temp-2 data value
3. II3 Temp-3 data value
4. II4 Temp-4 data value
5. RR1 Value of Ref-1
6. RR2 Value of Ref-2
7. RR3 Value of Ref-3
8. RR4 Value of Ref-4

Step-2
Process all the input variable pairs, as shown in Table 4.

Step-3

Develop a matrix that stores the conditions existing among
the varaiables. The conditions that exist among the Input
variables shown in Table 5.

Step-4:

Remove the redundant rows existing in the Conditional
matric. Table 6 shows the pruned conditional matrix.

Step-5:

Process the conditional matrix and find the number of nodes
in input, output, and hidden and all to see the number of
hidden layers. One can note from the conditional matrix e 8
Input, 8 outputs and Inputs, two hidden layers, 8 nodes in
each hidden layer are in existence. Two hidden layers exist to
model two specific conditions.

Step-6:

Formulas to be implemented within the processing nodes that
are situated in the hidden layer are determined.
Step-6(a):

The computational expressions processed @ hidden nodes
within hidden layer-1 shown in equation 2. These
expressions are related to processing the buzzer outputs

∑ Abs (TTi*wwi - Ti+1*wwi+1) +b >2 for i=1 to n with
increment of i++ (2)

In the above equation, Ti is the temperature values (TT1,
TT2…Tn), and wwi is the weights (w1, w2... wn).

Step-6(b):

The computational expressions processed @ hidden nodes
within hidden layer-2 shown in equation 3. These
expressions are related to processing the pumps outputs

∑ (TTi*wwj+b) >(Refi*wwk) for i=1,j=1,k=1 to n with
increment of i++,j=j+2,k=k+2 (3)

TTi are the temperature values (TT1, TT2…Tn) and wwi are
the weights (w1, w2…. wn), and Refi is the reference
temperatures (Ref1, Ref2…. Refn). According to the
Porotype project, if Abs (TT1 - TT2) + b > 2, then
corresponding buzzers are to be in ON state; otherwise, the
buzzers put at OFF state. Similarly, if the TT1 > Ref1, then
the corresponding pump is in ON state; otherwise, set in
OFF state.

Step-7:

A recursive process is implemented to arraive at the values
of Edge weigts, and Bios and also determine most suitable
transformation function. Intiatially the bios value is fixed at
-1 and the weights fixed at value 1.
Step-8:

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

424

Based on the design parameters computed a nueral network
is constructed which is shown in Figure 6.

Step-9

Test cases are generated by tracing the paths contained in the
Nueral network. The paths enumerated with the help of
constructed nuerl netork are shown in Table 7.

Step 10:

Any number of test cases can be generated considering each
path by picking values from the domin of the Input variables.
Some of the test cases selected by selecting the values for the
input varaibles are shown in Table 8.

Step 11

The test cases generated, as shown in Table 6 subjected to
the firmware and the output generated by the firmware
shown in Table 9.
One can check whether the output produced by NN and the
Firmware are sihmialr or different. If different the test
concluded as failed.

4.5 Experimental Results

A Prototype system developed using 4-sensors, 4-pumps,
and 3- buzzers tested and test cases generated using the
algorithm are shown in Table 10. TT1, TT2...Tn represents
the temperatures sensed by the corresponding sensors, the
reference temperatures for which are 30, 32, and so on for
the respective temperatures. The test suites size generated by
AETG, IPO, and NNBS for different criteria shown in Table
11. By inspection, the results show that the NNBS has
produced optimal results when compared to other techniques
like AETG, IPO, etc.

5 CONCLUSION AND FUTURE ENHANCEMENTS

Embedded system tested to find the system working different
perspectives that include Input domain, output domain,
multi-input, multi-output, and Input-Output domain. The
input-output domain reflects the end-to-end testing of the
embedded systems. Numeral networks also used when end-
end processing depicted effectively.

Combinatorial methods have been provided to be quite
useful in generating a few test cases that can help to
complete Testing in the least time and cost. Considering of
neural networks and combinatorial methods helps is creating
the few test cases used for Testing using the model as well as
the software. One can extend the model for considering 3-
way or n-way combinations of the input variables.

In this paper, a novel way of constructing the neural network
is presented based on the relationships that exist among the

input variables to model the processing nodes situated in the
hidden layers

REFERENCES

[1] C. Anderson, A. Von Mayrhauser, R. Mraz (1995),

"On the use of neural networks to guide software
Testing acTiviTies," Proceedings of International
Test Conference, pp.720-729.
https://doi.org/10.1109/TEST.1995.529902

[2] Cohen DM., Dalal SR., Method and system for
automatically generating efficient test cases for
systems having interacting elements, 1996 Patent.

[3] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G. C.
PaTon (1997), "The AETG System: An Approach to
Testing Based on Combinatorial Design, IEEE
Transactions on Software Engineering, Vol. 23, No.
7, pp. no.437-443.
https://doi.org/10.1109/32.605761

[4] Yu Lei and K.C. Tai (1998), "In-parameter-order: a
test generation strategy for pairwise Testing,"
Proceedings of Third IEEE International High-
Assurance Systems Engineering Symposium, 1998,
pp. 254-261.
https://doi.org/10.1109/HASE.1998.731623

[5] Lei, Y, and Tai, K. C. (2002), "A Test Generating
Strategy for Pairwise Testing," IEEE Transactions
on Software Engineering.

[6] S.A. Ghazi and M.A. Ahmed (2003), "Pair-wise test
coverage using genetic algorithms," CEC, The 2003
Congress on Evolutionary Computation, Vol. 2, pp.
1420-1424.

[7] Bryce, R., & Colbourn, C. J. (2007), "The Density
Algorithm for Pairwise Interaction Testing,” Journal
of Software: Testing, Verification, and Reliability.
https://doi.org/10.1002/stvr.365

[8] Kewen Li and Zhixia Yang (2008), "Generating
Method of Pairwise Covering Test Data Based on
ACO," ET and GRS, 2008, IEEE International
Workshop on Geoscience and Remote Sensing and
International Workshop on Education Technology
and Training, Vol.2, pp. 776-779.

[9] Lilan Wu, Bo Liu, Yi Jin, Xiaoyao Xie (2008),
Using backpropagation neural networks for
functional software Testing, 2nd International
Conference on Anti-counterfeiting, Security, and
Identification, ASID, pp.272-275.

[10] Yogesh Singh, Arvinder Kaur, Ruchika Malhotra
(2008), "Predict- ing Testing Effort using Artificial
Neural Network," Proceedings of the World
Congress on Engineering and Computer
Science(WCECS).

[11] R. Kuhn, Yu Lei, Raghu Kacker, "Practical
Combinatorial Testing: beyond Pairwise, IEEE
Computer Society - IT Professional, Vol.10, No. 3,
2018
https://doi.org/10.1109/MITP.2008.54

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

425

[12] Xiang Chen, Qing Gu, Xin Zhang and Daoxu Chen
(2009), "Building Prioritized Pairwise Interaction
Test Suites with Ant Colony Optimization," QSIC,
9th International Conference on Quality Software,
pp. 347-352.

[13] J.D. McCaffrey (2009), "Generation of pairwise test
sets using a simulated bee colony algorithm," IRI
'09, IEEE International Conference on Information
Reuse & Integration, pp. 115-119.
https://doi.org/10.1109/IRI.2009.5211598

[14] James D. McCaffrey (2009), "Generation of
Pairwise Test Sets using a Genetic Algorithm," 33rd
Annual IEEE International Computer Software and
Applications Conference.

[15] Rick Kuhn and Raghu Kacker, Yu Lei and Justin
Hunter, "Combinatorial Software Testing," IEEE,
0018-9162, 2009.
https://doi.org/10.1109/MC.2009.253

[16] Xiang Chen, Qing Gu, Jingxian Qi, Daoxu Chen,
Applying Particle Swarm Optimization to Pairwise
Testing, 34th Annual Computer Software and
Applications Conference, pp.107-116

[17] D. Richard Kuhn, Raghu N. Kacker and Yu Lei
(2010), "Practical Combinatorial Testing," NIST
Special Publication.

[18] Chandra Prakash Vudatha, Sastry KR
Jammalamadaka, Bala Krishna Kamesh Duvvuri,
Reddy LSS, Automated Generation of Test Cases
from Output Domain of an Embedded System using
Genetic Algorithms, Proceedings of the 3rd
International Conference on Electronics Computer
Technology, 2011.

[19] Chandra Prakash V., Sastry JKR., S. Nalliboena,
BKK. Duvvuri, LSS. Reddy, Automated generation
of test cases from output domain and critical regions
of embedded systems using genetic algorithms,"
2nd National Conference on Emerging Trends and
Applications in Computer Science, pp.1-6.

[20] KrisTina Smilgyte, Jovita Nenortaite (2011),
"Artificial Neural Networks Application in Software
Testing Selection Method," Springer Link Lecture
notes, Hybrid Artificial Intelligent Systems, Lecture
Notes in Computer Science, Vol. 6678, pp. 247-254.
https://doi.org/10.1007/978-3-642-21219-2_32

[21] Manisha Patil and P.J. Nikumbh, "Pair-wise Testing
Using Simulated Annealing,” Published by Elsevier
Ltd, 2012.

[22] PriTi Bansal, Sangeeta Sabharwal, Shreya Malik,
Vikhyat Arora, and Vineet Kumar (2013), "An
Approach to Test Set Generation for Pair-Wise
Testing Using Genetic Algorithms," Search-Based
Software Engineering, vol. 8084, pp.294-299.

[23] R. Raju, P. Subhapriya (2013), "A Neural Network
Approach for Randomized Unit Testing Based On
Genetic Algorithm," International Journal of
Engineering and Advanced Technology (IJEAT),
Vol.2, Issue.No.3.

[24] Huayao Wu and Changhai Nie (2014), "An
overview of search-based combinatorial Testing," In
Proceedings of the 7th International Workshop on
Search-Based Software Testing (SBST 2014).
ACM, New York, NY, USA, 27-30.
https://doi.org/10.1145/2593833.2593839

[25] H. L. Zakaria and K. Z. Zamli (2015), "Migrating
Birds Optimization-based strategies for Pairwise
Testing," 9th Malaysian Software Engineering
Conference (MySEC), Kuala Lumpur, pp. 19-24.

[26] R. Qi, Z. Wang, P. Ping, and S. Li (2015), "A
hybrid optimization algorithm for pairwise test suite
generation," 2015 IEEE International Conference on
Information and Automation, Lijiang, pp. 3062-
3067.

[27] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.
H. Choi (2016), "Greedy combinatorial test case
generation using unsatisfiable cores," In
Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering
(ASE), Singapore, pp. 614-624.
https://doi.org/10.1145/2970276.2970335

[28]. J. K. R. Sastry, M. Lakshmi Prasad, Testing
embedded system through opTimal mining
technique (OMT) based on mulTi-input domain,
International Journal of Electrical and Computer
Engineering (IJECE) Vol. 9, No. 3, pp. 2141~2151,
2019

[29]. J Sasi Bhanu, JKR Sastry, M Lakshmi Prasad,
Testing Embedded Systems from Multi-Output
Domain perspective, International Journal of
Recent Technology and Engineering (IJRTE),
Volume-8, Issue-1, pp. 3106-3113, 2019

[30]. K Chaitanya1, Dr. K Rajasekhra Rao2, Dr. JKR
Sastry3, International Journal of Advanced Trends
in Computer Science and Engineering, Volume 8,
No.4, pp 1194-1227, 2019
https://doi.org/10.30534/ijatcse/2019/30842019

[31]. M. Lakshmi Prasad, A. Raja Sekhar Reddy, J.K.R.
Sastry, GAPSO: Optimal Test Set Generator for
Pairwise Testing, International Journal of
Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-8 Issue-6, pp. 2346-
2350, 2019

[32]. M. Lakshmi Prasad, Dr.J.K.R. Sastry, A Graph-
Based Strategy (GBS) for Generating Test Cases
Meant for Testing Embedded Systems Using
Combinatorial Approaches, Jour of Adv Research
in Dynamical & Control Systems, Vol. 10, pp. 314-
324, 2018

[33]. Chaitanya Kilaru, Dr. JKR Sastry, Dr. K Raja
Sekhara Rao, Testing distributed embedded systems
through logic Analyzer, International Journal of
Engineering & Technology, 7 (2.7) (2018) 297-302
https://doi.org/10.14419/ijet.v7i2.7.10601

[34]. Lakshmi Prasad Mudarakola1, J. K.R. Sastry, V.
Chandra Prakash, Testing embedded systems using
test cases generated through combinatorial

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

426

techniques, International Journal of Engineering &
Technology, 7 (2.7) (2018) 146-158
https://doi.org/10.14419/ijet.v7i2.7.10282

[35]. Dr. J Sasi Bhanu, M. Lakshmi Prasad, Dr. J. K. R.
Sastry, A Combinatorial Particle Swarm
Optimization (PSO) Technique for Testing an
Embedded System, Jour of Adv Research in
Dynamical & Control Systems, Vol. 10, 07-Special
Issue, pp. (321-336), 2018

[36]. M. Lakshmi Prasad1, Dr. JKR Sastry, Building Test
Cases by Particle Swarm Optimization (PSO) For
Multi-Output Domain Embedded Systems Using
Combinatorial Techniques, Jour of Adv Research in
Dynamical & Control Systems, Vol. 10, pp. 1221-
1229, 2018

[37]. Dr. J Sasi Bhanu, M. Lakshmi Prasad, Dr. J. K. R.
Sastry, Combinatorial Neural Network-Based a
Testing of an Embedded System, Jour of Adv
Research in Dynamical & Control Systems, Vol. 10,
pp. 605-611, 2018

[38]. Dr. J Sasi Bhanu, M. Lakshmi Prasad, Dr. J. K. R.
Sastry, Testing Embedded System through OpTimal
Combinatorial Mining Technique, Jour of Adv
Research in Dynamical & Control Systems, Vol. 10,
pp. (337-354), 2018

[39]. Dr. J Sasi Bhanu, M. Lakshmi Prasad, Dr. J. K. R.
Sastry, Testing Embedded Systems Using - A
Graph-Based Combinatorial Method (GBCM), Jour
of Adv Research in Dynamical & Control Systems,
Vol. 10, pp. (355-375), 2018

[40]. J Sasi Bhanu, Y. Venkata Raghavarao and JKR
Sastry, Testing through In-Circuit Emulators, the
RS485 based Distributed Embedded System,

Journal of Engineering and Applied Sciences 13 (8):
pp. 1947-1962, 2018

[41]. Dr. JKR Sastry, K Chaitanya, An Effective Model
for Testing Distributed Embedded Systems using
Scaffolding Method, PONTE-International Journal
of sciences and research, Volume 78, issue 8, pp. 2-
22, 2017
https://doi.org/10.21506/j.ponte.2017.8.1

[42]. Dr. JKR Sastry, K Chaitanya, Dr. DBK Kamesh, An
Efficient Method for Testing Distributed Embedded
Systems using In-circuit Emulators, PONTE-
InternaTional Journal of sciences and research,
Volume 73, issue 7, pp. 390-422, 2017
https://doi.org/10.21506/j.ponte.2017.7.59

[43]. Dr. Sastry JKR, K Chaitanya, Dr. K. Rajasekhara
Rao, Dr. DBK Kamesh, Testing distributed
embedded systems through instruction set
simulators, PONTE-International Journal of
sciences and research, Volume 73, issue 7, pp. 353-
382, 2017
https://doi.org/10.21506/j.ponte.2017.7.57

[44]. K. Chaitanya1, Sastry JKR, K. N. Sravani, D.
Pavani Ramya, and K. Rajasekhara Rao, Testing
distributed embedded systems using assert macros,
ARPN Journal of Engineering and Applied
Sciences, VOL. 12, NO. 9, pp. 3011-3022, 2017,

[45]. ChandraPrakash V, Sastry JKR, Sravani G, Manasa
USL, Khyathi A, Harini A, Testing software
through genetic algorithms – A survey, Journal of
Advanced Research in Dynamical and Control
Systems Vol. 9, 1607-1623 2017

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

427

Table 1: Prototype Model – requirement specification

S. No.

Functional requirements

Req.1 The threshold temperatures(Ref-1 and Ref-2) maintained within the reactor tubes are transmitted from HOST (PC) and
stored within the RAM of Microcontroller

Req.2

The temperature (Temp-1) within the first reactor tube must be sensed within every 1o Microseconds and displayed on
LCD and sent to PC which is called the HOST

Req.3 Pump-1 is made to be in on state by changing the state of the Relay-1 to which the Pump-1 connected when Temp-1 >
Ref-1 or else Pump-1 is switched off

Req.4 The temperature (Temp-2) within the second reactor tube must be sensed within every 1o Microseconds and displayed
on LCD and sent to PC which is called the HOST

Req.5

Pump-1 is made to be in on state by changing the state of the Relay-1 to which the Pump-1 connected when Temp-1 >
Ref-1 or else Pump-1 is switched off

Req.6 If the temperature difference between Temp-1 and Temp-2 > 2 Degrees, then buzzer must be triggered, and else the
buzzer id de-triggered.

Table 4: Generated Input Pairs

Pair
num.

Input pair Pair num. Input pair Pair
number

Input pair

1 (11, RR1), 2 (II1, RR2) 3 (II1, RR3)
4 (II2,RR1) 5 (II3,RR2) 6 (II2,RR3)
7 (II3,RR1) 8 (II3,RR2) 9 (II3,RR3)
10 (II1,II1) 11 (II1, II2) 12 (II1, II3)
13 (II3,II1) 14 (II3, II2) 15 (II3, II3)
15 (II3,II4) 17 (II4, II1) 18 (II4, II2)
19 (RR1, RR1) 20 (RR1,RR2) 21 (RR1, RR3)
22 (RR2, RR1) 23 (RR2, RR2) 24 (RR2, RR3)
25 (RR3, RR1) 26 (RR3, RR2) 27 (RR3, RR3)

Table 5: Relationships among the Input variables

S. No

Input Variable pair
Conditions Output

1st Condition 2nd Condition Output-1 Output-2

1. (II1, RR1) (II1 < RR1) (II1 > RR1) PUMP-1-OFF PUMP-1-ON
2. (II1, RR2) - - - -
3. (II1, RR3) - - - -
4. (II2, RR1) - - - -
5. (II2, RR2) (II2 < RR2) (II2 > RR2) PUMP-2-OFF PUMP-2-ON
6. (II2, RR3) - - - -
7. (II3, RR1) - - - -
8. (II3, RR2) - - - -
9. (II3, RR3) (II3 < RR3) (II3 > RR3) PUMP-3-OFF PUMP-3-ON
10. (II1, II2) Abs (II1 - II2) < 2 Abs (II1 - II2) > 2 Buzzer-1 Buzzer-1
11. (II1, II3) - - - -
12. (II2, II1) Abs (II2 - II1) < 2 Abs (II1 - II2) > 2 Buzzer-1 Buzzer-1
13. (II2, II3) Abs (II2 - II3) < 2 Abs (II1-II2) > 2 Buzzer-2 Buzzer-2
14. (II3, II1) - - - -
15. (II3, II2) Abs (II3 - II2) < 2 Abs (II1 - II2) > 2 Buzzer-2 Buzzer-2

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

428

Table 6: Pruned Conditional Matrix

S.No

Input
variable

pair

Conditions Output

1st Condition 2nd Condition 1st Output 2nd Output
1. (II1, RR1) (II1 < RR1) (II1 > RR1) PUMP-1-OFF PUMP-1-ON

2. (II2, RR2) (II2 < RR2) (II2 > RR2) PUMP-2-OFF PUMP-2-ON

3. (II3, RR3) (II3 < RR3) (II3 > RR3) PUMP-3-OFF PUM-P3-ON

4. (II1, II2) Abs (II1 - II2) < 2 Abs (II1 - II2) > 2 1st Buzzer OFF 1st Buzzer ON

5. (II2, II1) Abs (II2 - II1) < 2 Abs (II1 - II2) > 2 1st Buzzer OFF 1st Buzzer ON

6.

(II2, II3)

Abs (II2 - II3) < 2 Abs (II1 - II2 > 2 1st Buzzer OFF 2nd Buzzer ON

7. (II3, II2) Abs (II3 - II2) < 2 Abs (I 1- II2) > 2 1st Buzzer OFF 2nd Buzzer ON

Table 7: Paths Contained Within the Neural Networks

Path

Number Input variable-1 Input Variable-2 Output Variable Output Variable- value

1. TT1 RR1 PUMP-1 ON
2. TT1 RR1 PUMP-1 OFF
3. TT2 RR2 PUMP-2 ON
4. TT2 RR2 PUMP-2 OFF
5. TT1 TT2 BUZZER-1 ON
6. TT1 TT2 BUZZER-1 OFF

Table 8: Generated Test cases through test paths in the Neural Network

Test case

Num. TT1 TT2 RR1 RR2 Output

1. 28 - 31 - PUMP-1-STATUS = OFF
2. 32 - 31 - PUMP-1-STATUS = ON
3. - 28 - 32 PUMP-2-STATUS = OFF
4. - 33 - 32 PUMP-2-STATUS = ON
5. 28 29 - - BUZZER-1-STATS = OFF
6. 28 31 - - BUZZER-1-STATS = OFF

Table 9: Firmware Test Results

Test case

Num.

TT1

TT2

RR1

RR2 Output from NN Output from Firmware

1. 28 - 31 PUMP-1-STATUS = OFF PUMP-1-STATUS = OFF
2. 32 - 31 PUMP-1-STATU = OFF PUMP-1-STATU = ON
3. - 28 - 31 PUMP-2-STATUS = OFF PUMP-2-STATUS = OFF
4. - 32 - 31 PUMP-2-STATUS = ON PUMP-2-STATUS = ON
5. 28 29 - - BUZZER-1-STATUS = OFF BUZZER-1-STATUS = OFF
6. 28 31 - - BUZZER-1-STATUS = ON BUZZER-1-STATUS = ON

Sasi Bhanu et al., International Journal of Emerging Trends in Engineering Research, 7(11), November 2019, 417 - 429

429

Table 10: Test suite generated from Input Domain for the Prototype application using NNBS

Test

case No.

Input Vector Expected Output

Temp 1
(Ref. Temp=30)

Temp 2
(Ref. Temp= 32)

Temp 3
(Ref.

Temp=34)

Temp4 (Ref.
Temp= 36)

PSC
(Binary)

BSC
(Binary)

1. 29 31 33 35 0000 000
2. 29 32 33 36 0000 101
3. 29 33 33 37 0101 101
4. 30 31 34 35 0000 010
5. 30 32 34 36 0000 000
6. 30 33 34 37 0101 101
7. 31 31 35 35 1010 010
8. 31 32 35 36 1010 010
9. 31 33 35 37 1111 000

Table 11: Sizes of Test suite generated by AETG, IPO, and NNBS

System S1 S2 S3 S4 S5 S6
AETG 11 17 35 25 12 193

Pair wise (IPO) 9 17 34 26 15 212
NNBS 9 9 16 12 04 100

S1: 4 (3-value parameters), S2: 13 (3-value parameters),
S3: 61 parameters (15 (4- value parameters), 17 (3- value parameters), 29 (2- value parameters)),
S4: 75 parameters (1 (4- value parameters), 39 (3- value parameters), 35 (2-value parameters)),
S5: 100 (2- value parameters), S6: 20 (10- value parameters)

