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ABSTRACT 
 
The concept of wide-area control and protection as an 
application on real-time wide-area measurement systems 
makes the transient stability prediction more accurate in 
early time after fault occurrences. The transient prediction is 
the first step in the dynamic control system to avoid any 
unwanted emergency or non-stable power system state. In 
this paper, an early predictionof the power system stability 
once the fault cleaning using real-time dynamic data 
collected by WAMS is proposed based on an artificial neural 
network (ANN). The dataset collected by the different 
contingency analyses on the IEEE 39 bus test system is used 
to train a multilayer perceptron network. Pre-fault, during-
fault, and post-fault generators' speeds are fed to ANN as 
inputs, and the status of the overall system, either stable or 
not, is the output of ANN. The proposed model can predict 
an unstable state within 100 ms after the fault. NEPLAN 
simulator is used to simulate the dynamic analysis ofthe 
IEEE 39-Bus test system, and MATLAB 2019a is used to 
design the ANN. 
 
Key words: wide-area monitoring system (WAMS), phasor 
measuring unit PMU, transient stability, wide-area control 
system, ANN, NEPLAN, MATLAB. 
 
1. INTRODUCTION 
 
Electric power systems should supply a continuous and 
secure service for the consumers while considering the 
economic dispatch. However, different types of faults 
endanger their stability and, in the worst case, causing a loss 
of stability, leading to a blackout of the power system [1-2]. 
Wide-area protection and control (WAPAC) systems are 
proposed to prevent the power system loss of stability after 
critical events [3-4]. WAPAC systems use the phasor 
measurement units (PMU) information to counteract the 
propagation of severe faults [5]. Predicting the power 
system's post-fault transient stability afteran event is 
significant for preventing any potential loss of stability. This 
prediction increases the chance for the WAPAC systems to 
trigger corrective control actions as fast as possible against 
the potential instability, and hence, the dynamic security of 
the power system is enhanced. 

If an unstable case is predicted early, the prevention system 
from unwanted scenarios may be more applicable. The 
WAMS plays a vital role in sensing, collecting, and 
processing real-time power systems dynamically based on 
GPS technology. Table 1: Comparative Analysis 
The problem of power system transient instability prediction 
after fault clearance is addressed in many articles. Based on 
the literature, the problem may be categorized into (a) time-
domain simulations [6-7]. (b) transient-energy-function 
(TEF) methods [8-9] and (c) machine-learning techniques 
[10]. The time-domain simulation method is a dynamic 
behavior of the power system, so a huge set of differential 
equations need to solve. TEF method uses the Lyapunov 
stability principle to determine the dynamic status of the 
power system without using the complex differential 
equations sets. ANN is a common example of machine-
learning techniques. All these techniques need to know the 
operational point before the fault and the post fault status. 
However, the power system's stability depends not only on 
the post and pre-fault system operation but also on the fault 
location, duration, and characteristic. 
In [11], an artificial neural networks-based methodology is 
proposed for directly predicting power system stability after 
clearing the fault. A dataset is generated to train a multilayer 
perceptron offline; then, it is used for early online prediction 
of any transient instability. The inputs feed the neural 
network: pre-fault, during-fault, and post-fault voltage 
magnitude measurements collected from the phasor 
measurement units. This study depends on the fault location 
and duration information in addition to synchrophasor 
measurement. However, this research provides a solution in 
case the location and duration are well known. 
Paper [12] proposes an approach for early detection of the 
transient instability of the power system to initiate 
emergency control in time. The synchrophasor 
measurements are used for real-time monitoring of the 
system. After that, the Artificial Neural Network (ANN) is 
used as a classifier for predicting the transient instability 
status of the system with rotor angles and speeds (frequency) 
of the generator as inputs at different consecutive cycle 
lengths after fault clearing. The stability status obtained from 
ANN can initiate emergency control actions within a few 
cycles from fault clearing. 
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For this work, the ability of the ANN technique to build a 
highly complex relationship between variables to estimate 
the internal behavior and response characteristic of the 
dynamic system, the capacity of ANN to work online with a 
swift response, and the benefits of its accuracy in addition to 
its ability to learn more cases in its live state are some 
motivations to use ANN in a stability prediction. Data 
collection from NEPLAN software for the IEEE 39-bus test 
system and ANN structure are presented in section 2. Then, 
the model simulation and ANN results are shown in section 
3. 
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� post fault
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Figure 1. The general structure of ANN, the input layer (red 
circles), and the output layer (green) depend on the number of input 
and output. More than one layer may be used in the hidden layer 
(yellow). 

 
 

2. ARTIFICIAL NEURAL NETWORK ANN  
 
Artificial Neural networks (ANN) or connectionist systems 
are computing systems vaguely inspired by the biological 
neural networks that constitute animal brains [13]. Such 
systems" learn" to perform tasks by considering examples, 
generally without being programmed with task-specific 
rules. 
ANNs have evolved into a broad family of techniques that 
have advanced state-of-the-art across multiple domains. The 
simplest types have one or more static components, 
including the number of units, layers, unit weights, and 
topology. On the other hand, dynamic types allow one or 
more of these to evolve via learning. These types are much 
more complicated but can shorten learning periods and 
produce better results. Some types allow/require learning to 
be supervised by the operator, while others operate 
independently. Some types operate purely in hardware, while 
others are purely software and run-on general-purpose 
computers. 
The mapping between input and targetbases on the concept 
of neural where each neuron has its transfer function; there 
are many presented transfer functions in the literature. Figure 
1 shows the relation between the variables in our example. 
For each generator, three angles are used, pre-fault, during-
fault, and post-fault. 
 

As mention above, ANN can be used to synthesize complex 
mapping accurately and rapidly for practical applications. 
Feedforward Neural Network (FFNN) is a class of ANN, 
generally termed Multi-Layer Perceptron (MLP), maps input 
data sets to a suitable output. The steps involved in detecting 
transient stability following significant disturbance using 
FFNN are presented in the next subsections.  
 
2.1. Data collection 
 
For transient stability assessment,a large number of 
contingencies should be simulated. The selection of the 
contingency depends on the operator's experience. In this 
study, contingencies are considered at three different 
locations: three-phase to ground fault (i) at the high side of 
all the generating buses, (ii) at the critical load buses, and 
(iii) at the midpoint of each transmission line. The system 
should be simulated for all possible contingencies with 
varying operating conditions to find system behavior after 
disturbance for all possible operating scenarios. NEPLAN 
generates considerable input data for three different loading 
levels: base case and ±10% of the base case. Three-phase 
faults have been applied at each substation, transmission line, 
generator, and transformer and then removed after time. 
Fault clearing time is randomly chosen from 5 cycles to 12 
cycles. Long-duration faults are deliberately taken to 
generate enough unstable cases. Thus, total operating points 
corresponding to 300 cases are generated where 152 are 
stable cases, and 148 are unstable cases. 
 
2.2. feature selection 
 
Three input features are extracted for each fault case:all 
generators' pre-fault, during-fault, and post fault rotor speed. 
Because all generators' pre-fault speeds should be the same 
at each scenario for the same operation point, they can be 
replaced by just two generators' speeds. These speeds 
represent the operation point, so they are changed if the 
operation point is changed.One generator angle is selected as 
a reference angle, so it is ignored for the data input. So, the 
ANN structure has 20 inputs and a single output. 
 
3. SIMULATION AND RESULT 
 
The proposed ANN-based approach is tested on the IEEE-39 
New England test system. However,this system consists of 
ten generators, forty-six transmission lines, and twelve 
transformers. Moreover,the slack generator bus is number 
39, andthe detail generator model is modeled with exciter, 
turbines, stabilizers, and governors. The 3-phase fault is 
created at all the high sides of generator buses, load buses, 
and the midpoint of all the transmission lines at the base 
case. The data is generated offline by randomly varying load 
from 10 % of the base case for training of FFNN. The 
dynamic simulation is performed for 5 seconds, and each 
operating condition is assigned a class label of 0 or 1 for 
transient unstable and transient stable state, respectively, 



Mohammad M. Al-Momani  et al., International Journal of Emerging Trends in Engineering Research, 9(11),  November  2021, 1373 –  1378 

1375 
 

based on the final values of rotor angles. The database of 300 
cases is prepared to detect abnormal conditions, of which 
152 are stable cases, and 148 are unstable cases. After 
normalization, 70% of the scenarios are taken for training the 
FFNN and the remaining 30% for testing and validation. All 
the simulations are carried out using MATLAB 2019a, and 
NEPLAN 5.5.5 is used to simulate IEEE 39 bus system, 
shown in Figure 2. Two fault duration times are applied here, 
short fault duration, 100 ms, and long fault duration,200 ms. 
The effect of fault duration is shown in Figures 3 and 4. 
These Figures show the dynamic change in generators angles 
if a 3-phase fault occurs at bus 34, then the fault cleared after 
100 ms and 200 ms in Figures 3 and 4, respectively. The 
output of the trained ANN is also presented in these figures. 
For the stable event, the output of the ANN is not changed 
(zero) and will toggle for an unstable event.  

 
Figure 2. IEEE 39 bus test system from NEPLAN simulator 
consists of 10 generators and 46 lines.  
 

 
Figure 3. Generators' speeds for an unstable event, three-phase 
fault applied at bus number 34 for 200 ms. 
 

 
Figure 4. Generators' speeds for a stable event, three-phase fault 
applied at bus number 34 for 100 ms. 
For ANN training, 300 samples, 20 inputs, and one output 
data representing the most critical cases and extracting the 
best feature from the system are generated from NEPLAN to 
train ANN using MATLAB. 
Two separate ANN models are used: the first is feed-forward 
ANN, and the second isa step function preceptor. All 
combinations of three layers with less than 25 neurons per 
layer are trained, and the best system is selected based on the 
following criteria:  
 
ݎ݋ݎݎܧ = ∑(௢௨௧௣௨௧ି௧௔௥௚௘௧)మ

௡௨௠௕௘௥௢௙௦௔௠௣௟௘
× 100%        (1) 

 
The minimum error structure is a three-layer with 5,5,8 
neurons per layer, respectively; the structure is shown in 
Figure 5. The system's error reaches 6.8e-12%. After 
digitalize stage, this error is eliminated, which means the 
proposed ANN detects all stable and unstable scenarios 
correctly.  
 

 
Figure 5.   The first ANN structure, FFNN, consists of three hidden 
layers with 5,5,8 neurons per layer. 
 
The backpropagation training algorithm conducts to 
determine the optimal value of each weight in the structure. 
The backpropagation method firstly selects random values to 
the weights and derive the partial derivative of the error with 
respect to each weight to minimize the error; therefore, this 
technique is highly affected by the first random values, 
which may (in most cases) lead the system to a local 
solution. for overcoming this problem, the same structure [5 
5 8] is trained 2000 times. Then, the best solution defined by 
equation (1) is saved.  
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The relative values of the weights between layersare 
presented in Figure 6. The red square refers to a negative 
value, green a positive value, and the big one represents 
relatively considerable weight. The absolute values of these 
weights are attached in Tables 1-4 in the appendix. 
From Figure 6, the relative weights detect the importance of 
the connection; for example, inputs number 2 and 12 are the 
less important in this classification, but input number 13 is 
the most important one. So, the input can be reselection 
based on this character. Moreover, the location of PMUs can 
also be selected based on the critical input (s). The ANN 
structure is acceptable because the weights' values are 
distributed uniformly between the neurons; so, all neurons 
are essential to achieve the goal.  
 
 
 

 
(a) Input Layer-Layer 1 relative wights  

 
(b) Layer1-Layer 2 wights   (c) Layer 2-Layer 3 wights  

 
(d) Layer 3-output layer wights  

Figure 6. Relative weights between input, output, and hidden 
layers, green refers to a positive value, and red refers to a negative 
value.  
 
The performance plot is shown in Figure 7. The best 
validation performance (cross-Entropy of the validation set) 
is about 1.18e-7 reaches at iteration 48. The train and test 
performance are close to the validation. Error in the train 
data set has a more considerable value than validation and 
test data set in the training process, which means the division 
algorithm works correctly, and the train data set represents 
all data features.  Finally, the confusion matrix is presented 
in Figure 8.  
 

 
Figure 7.The performance plot of the trained ANN is divided into 
70%, 15%, and 15% for train, test, and validation, respectively.  

 
Figure 8.The confusion matrix of the trained ANN consists of 148 
unstable events and 152 stable events; zero refers to a stable event 
and one to an unstable event.  
 
Figure 8 shows the confusion matrix of the 148 unstable 
cases and 152 stable events.All these events are predicted 
correctly by the Proposed ANN. Green squares refer to 
correct prediction, and red squares refer to incorrect 
prediction. From the figure, four parameters can be defined 
as follow:  
 TP: True Positive, number of correct stable event 

prediction to the total stable events, element (0,0) 
from the confusion matrix.  

 TN: True Negative, number of correct unstable event 
prediction to the total unstable events, element (1,1) 
from the confusion matrix.  

 FP: False Positive, number of incorrect stable event 
prediction to the total stable events, element (0,1) 
from the confusion matrix. 

 FN: False Negative, number of incorrect unstable 
event prediction to the total unstable events, element 
(1,0) from the confusion matrix.  
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The best classification method should give maximum TP and 
TN and minimum FP and FN. Figure 8 shows that the TP, 
TN, FP, and FN are 100%, 100%, 0%, and 0% respectively. 
So this is the best classification algorithm for this problem.  
 
4. CONCLUSION 
 
An efficient method is proposed to detect the transient 
instability based on rotor angle speed obtained through 
synchrophasor measurements across the system in real-time. 
The critical feature of the method is that the developed 
FFNN output depends upon the post-fault scenarios and is 
independent of fault location and type of fault. The proposed 
ANN used two cascade ANN, one FFNN and the second is 
step perceptron. The benefit of usingtwo-level makes a rest 
pointinsidethe ANN structure, which helps the learning 
algorithm fit the globularity more accurately. The output of 
the ANN can be utilized for initiating emergencycontrol 
actions. The proposed method is suitable for detecting 
transient instability and early initiation of the Remedial 
Action Scheme, considering the time requirements for 
implementing the emergency actions. 
 
APPENDIX  
 

Table 1. Input hidden layers weights 
 

I/H1 1 2 3 4 5 
1 -0.513 -0.216 -0.113 -0.172 -0.018 
2 0.125 -0.048 -0.148 -0.176 -0.259 
3 -0.3 -0.481 -0.402 0.234 -0.084 
4 0.024 0.422 -0.719 -0.326 -0.608 
5 0.138 0.206 0.716 0.038 -0.594 
6 -0.056 -0.348 -0.413 0.05 -0.471 
7 -0.467 0.315 0 0.378 0.448 
8 -0.437 0.132 -0.004 0.112 -0.431 
9 -0.319 -0.118 -0.47 -0.109 -0.513 
10 -0.371 0.509 -0.709 0.092 -0.543 
11 0.298 -0.116 -0.051 0.426 -0.322 
12 0.161 -0.213 0.298 -0.362 0.021 
13 0.531 0.445 1.021 -0.733 0.531 
14 0.401 -0.663 0.068 -0.359 -0.107 
15 0.776 0.483 0.344 0.515 0.111 
16 0.327 0.406 0.42 -0.522 0.245 
17 0.49 -0.246 0.518 -0.647 -0.477 
18 1.054 -0.311 0.521 0.428 -0.261 
19 0.227 0.357 -0.314 -0.003 -0.043 
20 0.221 0.013 0.163 -0.342 0.406 
 
 
Table 2. Hidden layer 1 to hidden layer 2 weights 
 
H1/H2 1 2 3 4 5 
1 1.472 1.716 1.087 0.013 -1.061 
2 0.655 -1.111 0.766 0.995 -0.58 
3 -0.827 1.601 -0.133 -0.059 -1.485 
4 0.383 -0.088 0.66 -0.96 0.92 
5 -1.033 0.645 1.23 1.34 1.118 
 
 

Table 3. Hidden layer 1 to hidden layer 2 weights 
 
O/H3 1 2 3 4 5 
1 -0.54 1.36 -0.43 -1.51 -0.97 
2 0.15 1.69 0.36 1.2 -1.31 
3 -1.11 0.9 1.36 -0.08 0.97 
4 1.11 -1.49 -0.37 1.52 1.13 
5 0.79 -2.16 -0.09 0.74 -0.11 
6 -1.26 -0.39 1.47 0.86 -1 
7 0.1 -1.21 -0.87 -1.35 0.64 
8 1.5 -1.46 0.57 -1.01 1.46 
 
Table 4. Hidden layer 3 to output layer weights 
 
H3 1 2 3 4 5 6 7 8 
O -1.2 -3.9 -1 3.54 2.25 1.35 1.15 4.36 
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