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ABSTRACT 
 
Inactive target tracking using bearings-only measurements is 
a crucial issue of underwater tracking.   Target Motion 
Analysis (TMA) process is highly non-linear so the non linear 
algorithms like Modified Gain Bearings-only Extended 
Kalman Filter (MGBEKF) and Unscented Kalman Filter 
(UKF) are implemented and their performance is evaluated 
based on their solution convergence times. It is presumed that 
the target is moving in straight line path with constant speed. 
The algorithms are simulated for several scenarios which are 
close to reality using MATLAB. Monte-Carlo runs are 
performed to evaluate the capability of the algorithms. 
 
Key words: Bearings-only tracking, Modified Gain 
Bearings-only Extended Kalman filter, Statistical signal 
processing, Target tracking, Unscented Kalman filter.  
 
1. INTRODUCTION 
 
Two dimensional tracking of targets with bearings-only 
measurements is often carried out in underwater applications 
[1]. A single observer platform is utilized to obtain the bearing 
measurements. The estimates for the target parameters (range, 
course and speed) are acquired from these bearing 
measurements only. The mathematical method for obtaining 
these parameters is provided in Section 2.1. 
 

 
Figure 1: Initial target- observer scenario 

 
The practicality of Speyer’s modified gain extended Kalman 
filter (MGEKF) [3] along with the simpler version of 
algorithm introduced by Galkowski [4] are considered and the 
 

 

algorithm Modified Gain Bearings-only EKF (MGBEKF) is 
proposed in this paper. The algorithm for MGBEKF is given 
in section 2 of mathematical modelling. 
 
Another algorithm that is employed for comparison is 
Unscented Kalman Filter (UKF) [5-7]. The algorithm for 
UKF is explained in section 3 of mathematical modelling. 
The target observer scenario is as shown in figure 1. The 
observer is presumed to be initially at position ‘O’ and the 
target at position ‘T’. The observer follows ‘S’ maneuver [8] 
for tracking the target. 
 
Performance of the two algorithms is assessed based on the 
best convergence time of the solution for the three scenarios 
given in Table 1. Section 3 presents the process of simulation 
and the different scenarios on which the simulation is done. 
The results are plotted as graphs and analyzed in the tables. 
Section 4 gives the overall summary of the work done in this 
paper. 
 
2. MATHEMATICAL MODELING 
 
2.1 Target Motion Analysis 
 
Consider the observer is at position ‘O’ initially and the target 
is moving with constant speed and course.  The state vector at 
time instant ‘߬’ of the observer [8] is represented as  

ܵ(߬) = (߬)௫ݒ] (߬)௬ݒ (߬)௫ݎ ்[(߬)௬ݎ       (1) 

where ݒ௫(߬), ݒ௬(߬), ݎ௫(߬), ݎ௬(߬) are the speed and range 
components of the observer in x and y coordinates 
respectively. The change in the observer position is obtained 
from its course and speed as  

(߬)௫ݎ݀ = (߬)௫ݒ ∗ sinݎܿ ∗  (2)                              ݐ

(߬)௬ݎ݀ = (߬)௬ݒ ∗ cosݎܿ ∗  (3)                             ݐ

where ݀ݎ௫(߬),݀ݎ௬(߬)		are the change in x-coordinate and 
y-coordinates of observer and ݎܿ  is the observer course 
angle and t is the time period of one second [1]. The relative 
state vector [1, 3] of the target is represented as 

௦ܵ(߬) = (߬)௫ݒ] (߬)௬ݒ (߬)௫ݎ ்[(߬)௬ݎ 				           (4)       

where		ݒ௫(߬), ݒ௬(߬), ݎ௫(߬), ݎ௬(߬) are relative components of 
speed and range in x and y coordinates respectively. The 
relative state vector for the next time period based on the 
present time state vector is calculated as 
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௦ܵ(߬ + 1) = (߬)ܣ ௦ܵ(߬) + ܾ(߬ + 1) +  (5)        (߬)ܥ߱

where ܣ(߬) is the system dynamics matrix calculated as 

(߬)ܣ = ൦
1 0 0 0
0 1 0 0
ݐ 0 1 0
0 ݐ 0 1

൪                                             (6) 

 is the process noise and ω is calculated as (߬)ܥ 

߱ = ൦

ݐ 0
0 ݐ

ଶݐ 2⁄ 0
0 ଶݐ 2⁄

൪                                                   (7) 

ܾ(߬)	 is a deterministic matrix and is calculated as 

ܾ(߬ + 1) =

⎣
⎢
⎢
⎢
⎡

0
0

−൫ݎ௫(߬ + 1) − ௫(߬)൯ݎ

−ቀݎ௬(߬ + 1) − ⎦௬(߬)ቁݎ
⎥
⎥
⎥
⎤
்

                  (8) 

The covariance of the process noise is calculated as 

ܳ(߬) =   [்((߬)ܥ߱)((߬)ܥ߱)]ܧ

ܳ(߬) = ଶߪ

⎣
⎢
⎢
⎡ ݐ

ଶ 0 ଷݐ 2⁄ 0
0 ଶݐ 0 ଷݐ 2⁄

ଷݐ 2⁄ 0 ସݐ 4⁄ 0
0 ଷݐ 2⁄ 0 ସݐ 4⁄ ⎦

⎥
⎥
⎤
                 (9) 

where ߪଶ represents variance in the process noise. 
The measurement equation for this application has only 
bearing angles and the bearing angle ߚ(݊)  is represented as 

(߬)ߚ = tanିଵ൫ݎ௫(߬) ⁄(߬)௬ݎ ൯ + Υ                         (10) 

where Υ	 is the noise in measurement which is assumed to be 
following Gaussian distribution with variance ߪଶ.  

2.2 MGBEKF Algorithm 
The plant noise and measurement noise are presumed to be 
independent to each other. The nonlinear equation (6) is 
linearized by using the Taylor series expansion. The 
measurement model matrix is calculated as 

߬)ܪ + 1) =

⎣
⎢
⎢
⎡

0
0

߬)௬ݎ + 1) ܴଶ(߬ + 1)⁄
߬)௫ݎ + 1) ܴଶ(߬ + 1)⁄ ⎦

⎥
⎥
⎤
்

                     (11) 

Since the actual values of range will not be known, the 
estimated range values will be used in the above equation. The 
predicted covariance matrix is calculated as  
ܲ(߬ + 1) = ߬)ܣ) + ߬)்ܣ(߬)ܲ(1 + 1)) ߬)ܥ߱+ + 1)ω  

(12) 
The Kalman gain is 
߬)ܩ + 1) = ܲ(߬ + ߬)்ܪ(1 + ଶߪ](1 ߬)ܪ+ + 1)ܲ(߬ +

 (13)               1−(1+߬)ܶܪ1
The updated state matrix is calculated as 

௦ܵ(߬ + 1) = ௦ܵ(߬ + 1) + ߬)ܩ + ߬)ߚൣ(1 + 1) −
 (14)                                             1+߬ݏܵ,1+߬ܯ
where ܯ൫߬ + 1, ௦ܵ(߬ + 1)൯  is the bearing measurement 

obtained from predicted estimate at time index (߬ + 1). The 
updated covariance matrix is given in equation (11). 
ܲ(߬ + 1) = ܫൣ − ߬)ܩ + 1)݃൫ߚ(߬ + 1), ௦ܵ(߬ +

                              1+߬ܶܩ1+߬ܩ2ܤߪ+1ܶ+߬ݏܵ,1+߬݉ߚ1݃+߬ܩ−ܫ1ܲ߬+1
      (15) 

where 		݃	  represents the modified gain function and is 
calculated as follows [12] 

݃ =

⎣
⎢
⎢
⎢
⎢
⎡

0
0

൬ ୡ୭ୱఉ
ೣ ୱ୧୬ ఉା ୡ୭ୱఉ

൰

൬ ିୱ୧୬ ఉ
ೣ ୱ୧୬ ఉା ୡ୭ୱఉ

൰⎦
⎥
⎥
⎥
⎥
⎤
்

    (16) 

 

2.3 UKF Algorithm 
A random variable ݔ is considered to be propagating through 
a nonlinear function		ݕ =  ݔ as the mean of  ݔ̅ Consider .(ݔ)ܷ
and 		 ௫ܲ  as the covariance of ݔ		 . The statistics of ݕ		  are 
calculated by considering a matrix ߯ of sigma vectors ߯ with 
݅  having a maximum value of 2ܮଵ + 1 (where ܮଵ	  is the 
dimension of ݔ	 ). The sigma vectors ߯ 	  are assigned with 
corresponding weights		 ܹ. The matrix ߯  is formed by using 
the following equations [13]: 
߯ =  ݔ̅
߯ = ݔ̅ + ቀඥ(ܮଵ + (ߣ + ௫ܲቁ

	
																					݅ = 1,2, … … ,  ଵܮ

߯ = ݔ̅ − ቀඥ(ܮଵ + (ߣ + ௫ܲቁ
ିభ	

								݅ = ଵܮ + 1, … …  ଵܮ2,

ܹ
() = ߣ ଵܮ) + ⁄(ߣ                                                       (17) 

ܹ
() = ߣ ⁄ ଵܮ)) + (ߣ + (1 − ଶߴ +  ((ߦ

ܹ
() = ܹ

() = 1 ൫2(ܮଵ + ⁄൯(ߣ 						݅ = 1,2, …  ଵܮ2,
where ߣ = ଵܮ)ଶߴ + (ߙ −  is set to ߴ .ଵ is a scaling parameterܮ
a small positive value (e.g., 1e-3) that determines how the 
sigma points are spread around the mean. ߙ, which is set to 
zero, is a secondary scaling parameter and ߦ   incorporates 
prior knowledge of the distribution of ݔ  (for Gaussian 
distribution, ߦ = 2 is optimal). ൫ඥ(ܮଵ + (ߣ + ௫ܲ൯	 represents 

the ݅௧  row of the matrix square root. ܹ
(),	 ܹ

(), ܹ() and 
ܹ() represents the weights of initialized target state vector, 
state covariance matrix, state sigma point vector and state 
sigma point covariance matrix respectively. The nonlinear 
function used for propagating these sigma vectors is 
represented as  
ݕ = ܷ(߯)							݅ = 1,2, … .  ଵ                                  (18)ܮ2,
The weighted mean and covariance of posterior sigma points 
are utilized to estimate the mean and covariance of 	[13] ݔ. 
The UKF implementation steps are as follows: 
(a) Let ܮଵ be the dimension of target state vector. (2ܮଵ + 1) 

state vectors are calculated from the initial points using 
sigma points  

 ܵ(߬) = ൦
௦ܵ(߬)

௦ܵ(߬) +ඥ(ܮଵ + (ߣ + ܲ(߬)

௦ܵ(߬) −ඥ(ܮଵ + (ߣ + ܲ(߬)
൪

்

                    (19) 

(b) Based on the process model equation (2), transform the 
sigma points.  
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(c) The predicted state estimate at time (߬ + 1)  with ߬  
measurements is calculated as 

௦ܵ(߬ + 1) = ∑ ܹ
()

௦ܵ൫݅, (߬ + 1)൯ଶభ
ୀ                           (20) 

(d) The predicted covariance matrix, assuming additive and 
independent process noise,  is calculated as  

ܲ(߬ + 1) = ∑ ܹ
()ൣ ௦ܵ൫݅, (߬ + 1)൯ − ௦ܵ(߬ + 1)൧ ×ଶభ

ୀ
 (21)                 ߬ܳ+1ܶ+߬ݏܵ−1+߬,݅ݏܵ

(e) The sigma points are updated using the predicted mean 
and predicted covariance as follows 

ܵ(߬ + 1) = ൦
௦ܵ(߬ + 1)

௦ܵ(߬ + 1) +ඥ(ܮଵ + (ߣ + ܲ(߬ + 1)

௦ܵ(߬ + 1) −ඥ(ܮଵ + (ߣ + ܲ(߬ + 1)
൪

்

  

                    (22) 
(f) Based on the measurement model given in equation (20), 

transform the predicted sigma points.  
(g) Predicted measurement matrix is calculated as 
߬)ܯ + 1) = ∑ ܹ

()ܻ(߬ + 1)ଶభ
ୀ                (23) 

 where										ܻ(߬ + 1) = ℎ൫ ௦ܵ(߬ + 1)൯				        (24) 
(h) The innovation covariance matrix is calculated as  
௬ܲ௬ = ∑ ܹ

()ൣܻ൫݅, (߬ + 1)൯ ߬)ܯ− + 1)൧ଶభ
ୀ ൣܻ൫݅, (߬ +

 (25)                (߬)2ܤߪ+1ܶ+߬ܯ−1
(i) The cross covariance matrix is calculated as 
௫ܲ௬ = ∑ ܹ

()ൣ ௦ܵ൫݅, (߬ + 1)൯ − ௦ܵ(߬ + 1)൧ଶభ
ୀ ൣ ௦ܵ൫݅, (߬ +

 (26)                          1ܶ+߬ݏܵ−1
 Kalman gain is calculated as 
߬)ܩ + 1) = ௫ܲ௬ ௬ܲ௬

ିଵ	                                                  (27) 
(j) The estimated state is calculated as 
ܵ(߬ + 1) = ܵ(߬ + 1) + ߬)ܩ + 1) ቀܯ(߬+ 1)−

 (28)                                                           1+߬ܯ
 where ܯ(߬ + 1) is  a matrix of measurement vector. 
(k) Estimation of error covariance matrix is given as 
ܲ(߬ + 1) = ܲ(߬ + 1) − ߬)ܩ + 1) ௬ܲ௬்ܩ(߬ + 1)      (29) 
 

3.  SIMULATION AND RESULTS 
 
This research paper assesses the performance of both 
algorithms by implementing in MATLAB PC environment. 
The measurements are assumed to be available continuously 
for every second. The observer is assumed to perform ‘S’ 
maneuvre in its course.  
 
The target is assumed to be having different initial ranges, 
speeds and courses in different scenarios, which is given in 
Table 1. The target state vector’s initial estimate for 
implementation of both algorithms is taken as 
௦ܵ(0,0) = [5 5 5000 sinߚ 5000 cosߚ]  

 
The speed components of the target are each assumed as 5m/s. 
The target’s initial position is calculated based on the Sonar 
Range of the Day (SRD), which is assumed to be 5000m. The 
initial state covariance matrix can be taken as a diagonal 
matrix if the uniform distribution of initial state estimate is 
considered and is given as  

ܲ(0,0) = ݈ܽ݊݃ܽ݅݀

⎣
⎢
⎢
⎢
௫ݒ4⎡

ଶ(0,0) 12⁄
௬ଶ(0,0)ݒ4 12⁄
௫ଶ(0,0)ݎ4 12⁄
௬ଶ(0,0)ݎ4 12⁄ ⎦

⎥
⎥
⎥
⎤
  

Table 1: Scenarios for the given algorithms 

Scenarios 
Initial 
Range 

(m) 

Initial 
Bearing 

(deg) 

Target 
Speed 
(m/s) 

Observer 
speed (m/s) 

Target 
course 
(deg) 

1 3000 0 12 8 135 
2 3500 0 12 10 110 
3 4500 0 8 5 135 

 
Table 2: Convergence time in seconds for 100 runs 

Parameter 
convergence 

Scenario 1 Scenario 2 Scenario 3 

UKF MGB
EKF UKF MGB

EKF UKF MGB
EKF 

Range 376 256 412 297 421 341 
Course 367 280 448 355 455 419 
Speed 400 262 438 302 463 373 
Total 
Solution 400 280 448 355 455 419 

 
The simulation and filtering for 100 Monte-Carlo runs are 
performed for the above mentioned scenarios using 
MATLAB [6] for both MGBEKF and UKF algorithms. The 
performance is assessed by using the Root-Mean-Squared 
(RMS) error of the target parameters and the solution is 
obtained based on the criteria of acceptance explained as 
follows and tabulated in table 2. 
 
Range error estimate<=2.66% of the actual range 
Course error estimate<=1o. 
Speed error estimate<=0.33m/s. 
 
It can be observed from the tables 2 that the solution 
convergence of MGBEKF algorithm is faster when compared 
to that of UKF algorithm for all the scenarios. Though the 
computational complexity of MGBEKF is a little higher than 
that of UKF, the convergence of the solution plays a key role 
in realistic scenarios. 
 
Figure 2 showed the movements of the observer and target 
that were assumed for the scenario 2 and the estimated target 
path obtained using MGBEKF algorithm. 
 

Figure 2: Observer and target movements 
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Figure 3: RMS errors in target range estimates 

 

 
Figure 4: RMS errors in target course estimate 

 
Figure 5: RMS error in estimates of speed 

 
Figures 3-5 shows the comparison of RMS errors in estimates 
of range, estimates of course and estimates of speed of the 
target for both MGBEKF and UKF algorithms. It can be 
observed from the figures that MGBEKF algorithm attain low 
RMS error values faster than the UKF algorithm which leads 
to faster convergence of the solution. 
 
4. CONCLUSION 
 
In this paper, an attempt is made to compare two algorithms, 
MGBEKF and UKF. From the observations it can be said that 
the solution convergence of MGBEKF algorithm is faster 
when compared to that of UKF algorithm for all the scenarios. 
Though the computational complexity of MGBEKF is a little 
higher than that of UKF, the convergence of the solution plays 
a key role in realistic scenarios. 
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