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ABSTRACT 
 
Active thermography is evolving as an efficient testing 
method for inspection of various materials with rapid 
development of infrared imaging technologies. Traditionally 
thermal response is captured at a rate determined by the IR 
camera which leads to data redundancy and consumption of 
resources. In this paper thermal response of a Glass Fibre 
Reinforced Polymer (GFRP) at a reduced rate is captured by 
applying Compressive Sensing (CS) to Quadrature 
Frequency Modulated Thermal Wave Imaging (QFMTWI). 
Convex optimization algorithm Basis Pursuit (BP) solves L1 
norm minimization to recover the complete thermal 
response. Recovered thermal response is processed using 
pulse compression approach to inspect the defects in the 
GFRP test sample. To quantify the effectiveness of defect 
detectability of this method SNRs of the defects for original 
and recovered thermal response are compared. 
 
Key words: Active Thermography, Basis Pursuit, 
Compressive sensing, Frequency Modulated Thermal Wave 
Imaging. 
 
1. INTRODUCTION 
 
Now a days fibre reinforced composite materials finds its 
applications in automotive, avionics and civil infrastructure. 
Due to low weight, high stiffness and high protection against 
corrosion, they are used in applications involving retrofitting 
of structures and avionics. But due to presence of 
inescapable defects such as voids and delaminations formed 
during manufacturing curbs their use in applications and 
requires detailed inspection prior to deployment. From the 
available non-destructive evaluation procedures for testing of 
these materials infrared thermoraphy [1] - [12] is becoming 
popular due to its reliable testing procedure. In this method 
of testing surface temperatures are mapped as heat flows 
through the test sample, to detect surface and subsurface 
defects. This method is fast non-contact method of defect 
identification. Infrared thermography is broadly classified in 
to active and passive methods [1]. In passive approach 
natural temperature difference between ambient and sample 
to be certified is obtained. This method cannot detect flaws 
lying deep interiors of the material. To overcome this, active 
                                                        

 

thermography on the other hand uses external energy 
stimulation on the material to be tested. Pulsed thermography 
(PT) [3] – [5], modulated lock-in thermography(LT) [2], 
pulsed phase thermography(PPT) [4] and frequency 
modulated thermal wave imaging(FMTWI) [15] [16] are 
some of the approaches in active thermography. PT works 
with high peak power heat sources and is prone to surface 
radiation alterations and has non uniform warming on the 
surface of material being inspected. In LT a mono frequency 
thermal wave excitation based on the thermal characteristic 
and geometry of sample, launches extremely attenuated 
dispersive signals of the identical frequency into the sample. 
Reflected thermal wave image sequence is recorded and 
phase information is derived. LT has the inherent drawback 
that to distinguish defects at various depths experiment needs 
to be conducted multiple number of times with different 
frequency excitations. PPT is same as PT, but the different 
frequency components are extracted by performing Fourier 
transform at each of the pixel location of the thermal image 
sequence. With an objective to detect defects present deeper 
in test samples, PT and PPT depend upon high pulsed power 
heat sources which damages materials under test [13] [14]. In 
FMTWI approach desired range of frequencies (linear chirp) 
are launched in to the sample in a single go. FMTWI is 
similar to radar pulse compression [17] approach using 
which good depth resolution can be obtained. The key 
principle in this approach is that if the two defects lies at 
different depths, then the arrival of reflected signals differ in 
time. This time delay or group delay is obtained by cross 
correlating the thermal profile of non-defective location of 
the test sample with all other profiles. However the presence 
of large sidebands in linear FMTWI causes decrease in SNR 
of the defects which is overcome by Quadrature Frequency 
Modulated Thermal Wave Imaging (QFMTWI) [18] 
Pulse compression has convenience of long range detection 
and superior range resolution as obtained with long pulse and 
short pulse respectively. In pulse compression approach the 
reflected signal from the target is passed through a matched 
filter whose impulse response is replica of the response of 
reflected signal. The output of matched filter will be a 
narrow peak termed compressed pulse. The resolution 
capability of matched filter increases with decrease in 
bandwidth and vice-versa.  

Correlation method can also be used to compute the 
pulse compression. In this method time delay is obtained by 
cross correlating the reference signal with the delayed 
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received signal. If the reference signal is symmetric both 
methods gives the same result [19]. Generally finding peak 
of the correlation function is to be done on the sampled data, 
this indicates that cross correlation function must be sampled 
on a discrete grid. To obtain this the reflected sampled signal 
is multiplied on to a dictionary of reference signals, each one 
of which is a delayed version of known reference signal. 
Time delay can be estimated by searching the correlation 
vector for maximum non- zero components. To attain good 
depth resolution high sampling rate is required which may be 
costly. In many applications including thermography the 
dimension of the sampled signal may be much greater than 
the information conveyed by it. Therefore signal may be 
assumed sparse and there is a possibility to reduce the 
sampling rate by using compressive sensing (CS) [20]-[23]. 
CS has the potential to collect the necessary information for 
faithful recovery of compressible or sparse signal using low 
dimensional non-linear projections.  
In this paper CS based thermal wave detection is applied for 
inspection of defects in Glass Fiber Reinforced Polymer 
(GFRP) test sample. Thermal response is captured using low 
frame rate IR camera and later using convex optimization 
based Basis Pursuit (BP) [24] [25] recovery algorithm entire 
thermal response is reconstruct. Reconstructed thermal 
response is processed using Pulse Compression technique for 
inspection of defects and SNRs of the defects are compared 
among Original and reconstructed thermal data to test the 
effectiveness of the CS based recovery. 
 
2. COMPRESSIVE SENSING 
 
CS recovers signals and parameters from an under-
determined system of linear equations using sparsity as a 
constraint in a known basis. Let X is a N dimensional signal 
with a maximum of K non-zero components. This signal is 
said to be K sparse. To obtain information of a signal  
ܺ ∈ 	∁ , ܯ < ܰ	measurements ∅ୀ,݉ = 1,2, … .  are ܯ,
applied to X so that	ݕ = 	 ∅்	ܺ. Suppose sensing waveforms 
are obtained in a ܯ × ܰ sensing matrix	ߠ = (∅ଵ∅ଶ … 	∅ெ), 
then the sampling process is expressed by the equation 
ܻ = ݊,ߖ Let the basis function .ܺߠ = 1,2, … ,ܰ be 
introduced for the signal:	ܺ = ∑ ܽ߰

ே
ୀଵ , and in matrix form 

ܺ = ܰ where ܽ is coefficient vector and	ܽߖ × ܰ matrix 
ߖ = (	߰ଵ߰ଶ …߰ே). The measurement can be expressed with 
respect to coefficients ܻ = Θܺ where	Θ =  Since the .ߖߠ
measurements M are much smaller than the length N of the 
signal X, this situation is underdetermined.  
 
2.1 Basis Pursuit 
 

The sparse recovery problem can be viewed as recovering 
of K-sparse signal X from the measurements Y=AX. Easiest 
way to recover this vector is to solve the l0 minimization 
problem. 

 ݉݅݊‖ܺ‖ subject to AX=Y           (1) 
This l0 minimization problem works good in theory. 

However it is not numerically solvable and is NP- Hard in 

general. If l0 minimization is replaced with the l1 
minimization i.e.  
݉݅݊‖ܺ‖ଵ subject to AX=Y                                     (2) 

Candes and Tao illustrated in [27] that when measurement 
matrices satisfy Restricted Isometry Property (RIP), ݈ଵ-norm 
minimization recovers all sparse signals exactly, this is basis 
pursuit algorithm. In general exact sparse signals are not 
encountered and also measurements and signals are noisy. 
Candes and his associates showed in [28] that a variant of 
Basis Pursuit called Basis Pursuit De-Noising (BPDN) which 
approximately recovers signals affected by noise.  
݉݅݊‖ܺ‖ଵ Subject to ‖ܺܣ − ܻ‖ଶ ≤  (3)          ߝ

Where ε is proportional to variance of noise. 
Matrix A satisfies RIP of order M if there exist a 

  (0,1) such that	ெ߳ߜ
                                                       

൫1-δM൯ ‖ݔ‖ଶ
ଶ≤‖ݔܣ‖ଶଶ ≤ (1 +  ଶଶ           (4)‖ݔ‖(ெߜ

holds for all ݔ ∈ ∑ெ  
RIP of matrix A can be verified using coherence property, 

which is defined as  
                                                                

μ = maxஷห〈ܽ , ܽ〉ห             (5) 
where ܽ and ܽ  are any two columns of A. 
There are various algorithms to solve the convex 

optimization problem involving l1. In [25] authors show that 
among various algorithms simplex and Interior Point 
methods give good results for this optimization problem.  
The simplex method is variation of Dantzig’s algorithm. 
Initially a new Matrix ܣመ  is constituted such that its columns 
are linearly independent to columns of A. Therefore the 
corresponding solution ܣመିଵݕ is feasible. Then iteratively 
basis ܣመ is improved by swapping one column in basis by one 
column not in basis such that swap improves the desired 
property of solution. There are many ways such as anti-
cycling rules by which one can select column to swap in 
such a manner that convergence to optimal solution is 
guaranteed. 

 The interior point method starts from a solution to 
ݔܣ = ݔ	where ݕ > . Then entries in ݔିଵ are changed 
through an iteration process to obtain the solution ݔ such 
that the condition ݔܣ =   is projected on toݔ .is satisfied ݕ
a basis matrix such that resulting signal is sparse. By limiting 
smaller values to zero at a particular iteration a vector is 
obtained which satisfies the stopping criteriawhich forms the 
solution.  

Random matrices A whose entries are independent and 
identically distributed (i.i.d) Gaussian entries with zero mean 
and variance 1/ܰ satisfies RIP and can guarantee the exact 
recovery of ݔ with overwhelming probability. Gaussian, 
Bernoulli or sub gaussian random projections are such 
matrices. For Gaussian and Bernoulli matrices, RIP holds 
for	ܭ ≈  For structured matrices, such as .(ܯ/ܰ)	log/ܯ
random section of a discrete fourier transform, RIP holds 
when	ܭ ≈  .(ܰ)݈݃/ܯ
There are many solvers available to solve this problem 
involving l1. The matlab software packages l1 magic [29], 
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CVX [30], Sparse lab[ 31], YALL1 [32] and LASSO [33] 
are some of the solvers. In our work CVX matlab package is 
used. 
 
3.  PROBLEM FORMULATION 
 
This paper studies the application of CS to the thermographic 
data. Thermal response from the test sample is captured at 
reduced frame rate and complete data is recovered using 
compressive sensing based Basis Pursuit algorithm. 
Recovered thermal data is processed using pulse 
compression based method for defect detection and 
performance is analysed. 
 
3.1 Compressive Sensing Applied to Thermography  
 
Compressive sensing theory is described in previous section. 
In our work IR camera acquires thermal response of the test 
sample at a constant frame rate and thereby a video signal 
with total number of frames depending on the time the test 
sample is exposed to radiation is captured. Fig. shows the 
video signal illustration as captured by the IR camera. 
Suppose there are N frames in this video signal. Now 
compressed thermal response at a reduced frame rate is 
obtained by projecting the video on to a measurement matrix. 
Thermal response at a pixel location x is projected on to a 
random measurement matrix to obtain a compressive signal 
y. The set of locations which are retained in this step are used 
to obtain the complete compressed thermal response at a 
reduced rate. To obtain compressed measurements directly 
arrangement must be made in the camera sensors to capture 
the compressed response. From this compressed response 
complete data must be recovered using l1 minimization as 
described in Eq. 2. The thermal response at pixel location is 
represented by X in Eq. 2 and it is a column vector. The M x 
N measurement matrix Φ is obtained by sampling i.i.d 
entries of a normal distribution with mean zero and variance 
1/M as described in the previous section. Sparsity level K is 
determined experimentally from the thermal data and the 
sparsifying dictionary ߖ in our work is DFT matrix. Given 
the measured signal y from the availability of the 
measurement matrix  Φ and the sparsifying dictionary ߖ l1 
norm is minimized using basis pursuit algorithm and N 
dimensional coefficient vector a is recovered and from this 
complete signal x is recovered.  To select the optimum value 
of M reconstruction is done with various measurements such 
as 2*K, 3*K, etc. so on at a chosen pixel location. The value 
of M which gives least mean square error is selected for 
capturing entire thermal response. 
 
3.2 Compressive Sensing Recovery Algorithm 
 

Basis Pursuit is described in section II. Compressive 
sensing recovery using basis Pursuit is summarized here. 

 Compressive measurements y from the captured 
thermal response is obtained as described in the 
previous section. 

 At each pixel location coefficient vector a is 
recovered by solving L1 norm minimization using 
Basis Pursuit. 

 Inverse DFT is applied on the coefficient vector a to 
obtain the thermal profile x. 

Above steps are repeated for all the pixel location of the 
thermal response to recover the complete video signal. 

 
Figure 1: Illustration of video signal captured by IR 

camera 

 
3.3 Pulse Compression for Thermal Wave Imaging  
 

Pulse compression is most popular method in radio 
detection and ranging (RADAR) engineering to obtain good 
range resolution, sensitivity and signal to noise ratio. Using 
this detection range and resolution is obtained with long 
duration low peak power pulse as achieved with short 
duration high peak power pulse in the influence of noise. 
Let		(ݐ)ݎ be a signal which is being reflected from a 
subsurface defect in the test object after being exposed with a 
LFM excitation. This signal is same as the signal reflected at 
a non-defective location except for some attenuation in 
magnitude and with a fixed delay. Let this signal be 
represented as a reference signal	ℎ(ݐ). When signal		(ݐ)ݎ is 
cross-correlated with ℎ(ݐ) it produces an output ݃(ݐ) which 
is a narrow peak called compressed pulse whose peak is 
located at a delayed location based on the delay 
between		(ݐ)ݎ and	ℎ(ݐ). 

The cross correlation of the reference signal (impulse 
response) and the received signal, is given by: 

                                                           
݃(߬) = ∫ ߬)ℎ(ݐ)ݎ + ஶ߬݀(ݐ

ିஶ                    (6)   
For two defects lying at distinct depths their corresponding 

reflected signals differ in both amplitude and time. Due to 
this compressed pulse peaks corresponding to these defects 
are observed at different time instants, and measure of defect 
depth is proportional to occurrence of compressed pulse 
peak. In correlation approach developed temperature 
distribution over a reference region as a result of heat 
excitation can be treated analogous to r(t) and the 
consequence temperature distribution developed at the region 
of defect is identical to h(τ+t). Therefore time delay can be 
obtained by response of cross-correlation given by Equation 
15. 
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      To apply pulse compression using this method, at each 
pixel location average rise in temperature by cause of active 
heating is estimated and compensated by fitting the data to 
the thermal profiles. Then cross-correlation is applied 
between the each of the mean removed pixel and reference 
thermal profile. As a result normalized correlation 
coefficients are obtained and are preserved at the 
corresponding locations. These deviations in the correlation 
coefficients help to detect subsurface defects.  
 

 
Figure 2:  Experimental Setup 

 
4. EXPERIMENT  
 
Experimentation is conducted on a Glass Fibre Reinforced 
Polymer (GFRP) test sample to obtain the data which is 
processed for defect detection. A control unit connected to a 
set of halogen lamps of power 1 kW each generates QFM 
thermal excitation in the range 0.01 to 0.1 Hz which is 
focussed on to the test sample. Temporal thermal response of 
the test sample is captured using an infrared camera FLIR SC 
655 A with spectral range 5 to 8 µm and at a frame rate of 25 
frames per second over a period of 100 s. The 
experimentation setup is shown in the Fig. 2. The test sample 
used in our experimentation is a GFRP specimen consisting 
of embedded patches, water ingress and cracks. 
 

 
Figure 3: MSE plot 

5. RESULTS AND DISCUSSION 
 
Reconstruction procedure based on basis pursuit is explained 
in section. The IR camera captures thermal response from the 
test sample at a period of 25 frames per second with a spatial 
resolution of 104 x 98 for 100 s so that 2500 frames are 
generated. The basis matrix Ψ used for sparsifying the signal 
is DFT. The random measurement matrix of dimension M x 

2500 for various values of M based on sparsity level K is 
generated. The sparsity level is calculated experimentally 
from the given data and for our thermographic data it is 
found to be 25. At a chosen pixel location of the thermal 
response various measurements M with multiple values of 
sparsity level K are generated. For each value of M Basis 
Pursuit reconstruction algorithm is applied and mean square 
error (MSE) is computed. Fig. 3. shows MSEs of the 
reconstructed signal for various measurements. It can be 
observed from the MSE plot that with 10*K i.e. 250 
measurements MSE is minimum. Using this value of M 
compressive measurements for the entire thermal response is 
obtained and by applying Basis Pursuit reconstruction 
algorithm as described in section IV complete thermal 
response is reconstructed. Fig. 4. shows compressed and 
reconstructed thermal profile with M=250 measurements 
with QFM excitation signal. In reconstructed thermal profiles 
retaining spectral components is crucial as most of the 
information about the defects is preserved in it. As the 
excitation frequency is from 0.01 Hz to 0.1 Hz preserving 
frequency components in this range is required which is 
achieved as can be seen from the frequency spectrum plot of 
Fig. 5. Reconstructed thermal data using basis pursuit is then 
processed with correlation based pulse compression for 
inspection of defects in GFRP test sample. Frame 
highlighting the defects is then chosen subjectively from the 
series of thermograms.   Fig. 6. shows frames highlighting 
defects in the GFRP test sample after processing original, 
compressed and reconstructed thermal data using pulse 
compression method. In this figure a, b and c are the 
manually embedded patches in to the test sample, d and e 
shows water ingress formed into the sample and f and g are 
the cracks. SNRs of the manually embedded defects are 
computed to quantify the visibility of the defects at each of 
the locations of defects using 
 
(ܤ݀)ܴܰܵ

= 20	log	(
ܽ݁ݎܽ	ݐ݂ܿ݁݁݀	ℎ݁ݐ	݂	݊ܽ݁ܯ − ܽ݁ݎܽ	݁ݒ݅ݐ݂ܿ݁݁݀	݊݊	ℎ݁ݐ	݂	݊ܽ݁݉

݊݅݃݁ݎ	݁ݒ݅ݐ݂ܿ݁݁݀	݊݊	݂	݊݅ݐܽ݅ݒ݁݀	݀ݎܽ݀݊ܽݐܵ
) 

Fig. 7.  shows the SNR comparison of embedded defects in 
the test sample for original and reconstructed thermal data 
using basis pursuit. It can be noticed from the SNR 
comparison that SNRs of the defects in the reconstructed 
thermal data are very close to original. With measurements 
as few as one-tenth of the original data satisfactory 
reconstruction using basis pursuit algorithm and inspection 
of defects using pulse compression is possible. 

 
Figure 4: Compressed and Reconstructed Thermal Profile using 

250 measurements 
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Figure 5:  Frequency Spectrum of original and reconstructed 

thermal profile at a pixel location 
 

 
Figure 6: Pulse compressed image at group delayed instant of 9 sec 

(a) Original Data (b) Reconstructed data using Basis Pursuit with 
250 measurements 

 

 
Figure 7: SNR comparison of the defects from Original and 

Reconstructed data using Pulse Compression 
 

6. CONCLUSION 
This paper puts light on application of CS based Basis 
Pursuit recovery algorithm to reconstruct thermal response at 
a reduced frame rate. Thermal response at a reduced rate is 
obtained from the original thermal response and then using 
Basis Pursuit recovery algorithm complete thermal response 
is reconstructed and further using pulse compression 
approach defects were identified successfully. Original 
thermal response has 2500 frames and after compressed 
sensing they were reduced to 250 frames, thus it leads to 
memory saving as well as saving of sensor resources and 
power. Even though convex optimization based Basis Pursuit 
is computationally complex, non convex methods like greedy 
and iterative algorithms can be used for fast computing. It 
can be concluded that if efficiently used CS has lot of 

potential in thermography applications which can save 
resources such as power and memory.  
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