
Yunus Parvej Faniband et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6630 – 6637

6630

ABSTRACT

Digital content creators who also own their digitally created
content Utilizing Digital Rights Management or DRM in
order to safeguard and govern the distribution and usage of
their digital contents. The features of digital content
protection (such as ebook) ranges from content limitation or
transfer, and reading permission to authorized reading
hardware or Software, to corporate delivery policies
involving identification of users and devices for a definite
period. Until today, standard for EPUB does not provide a
specific DRM standard to protect eBook copyrights. In this
paper, we propose a cloud-based EPUB content protection
and control platform and describe the proposed ways in
protecting EPUB contents through a cloud-based solution for
digital content protection and access regulation. We have
implemented a prototype with OpenStack open source cloud
computing platform enforce access control and efficient in
data management with data-at-rest encryption.

Key words: digital publication, distributed platform, epub,
ebook

1. INTRODUCTION

Currently, the usage of E-books is becoming more popular
and it has become to be as a serious competitor to the
classically printed books (Chao et al., 2012) (Bounie et al.,
2013). E-books offer more valuable features that are absent in
paper-based printed books including such as built-in
dictionary, embedded videos and audios, search functionality,
and can be read using eReader software or hardware.

Currently, desktop computers, laptops, handheld devices, and
mobile phone are able toper form as eReader device (e.g.,
Kindle reader) due to the availability of appropriate reading
software. Among the popular eBook formats are MOBI
(Mobipocket or PRC, based on the Open eBook standard),
iBook (Apple), LRF (Sony broadband BBeB), AZW (Kindle
Format 8), and EPUB. However, security issues over the

Internet has threaten to weaken organizations control over
information asset that may include digital content (Iskandar
Ishak et al., 2013; Sidi et al., 2017), as well as the technique
of accessing and querying the digital content (Saad et al.,
2014; 2016).

There are a number of formats that support DRM that
controls the eBooks by restricting Other devices or apps for
readers, or sharing material with other people on eBooks. An
example of a DRM is EPUB, The International Digital
Publishing Forum(IDPF) developed a free and open eBook
standard based on technologies and standards such as Open
eBook and XHTML. One or the advantage of EPUB content
is, it is flexible to the device screen In which the material is
able to adapt its appearance to the device screen of the reader.
The presence of digital eBook stores on the Internet makes it
easy to download digital books to smart phones. This has
resulted into illegal activities such as illegal replication,
piracy and transferring or copying digital assets without
permission. Therefore, there is a need to provide secure
digital intellectual property (Huffman, 2013).Researchers
have proposed ways to protect data in mobile or wireless
communications such as by using secured data/document
(Mohamed et al., 2013; 2016a; 2016b). Hence DRM is an
approach to give protection to copyrighted digital content and
to control the usage and circulation of these digital assets.
DRM is a scheme that content owners can implement in order
to protect their content circulation in terms of it being printed,
copied, or distributed.

To implement a DRM for the content Submitted in the form
of an e-book, such as material based on EPUB, IDPFF,
(Bounie et al., 2013) provides no standard to impose DRM of
EPUB-based content. However, it provides some
commendations Based on the principles of XML protection
set by the World Wide Web Consortium, (W3C). IDPF
recommends for copyright protection and but there are no
standard algorithm for protecting copyrighted digital content.
There are issues with respects to the Security of e-book
material through copyright, such as EPUB, because a content

A Cloud-Based Distributed Platform for Secured EPUB
EBOOK Contents

Yunus Parvej Faniband1, Iskandar Ishak2, Fatimah Sidi3, Marzanah A. Jabar4
1King Fahd University of Petroleum & Minerals, Research Institute, Center for Communications and IT

Research, Dhahran-31261, Saudi Arabia.
2Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM, Serdang,

Selangor Darul Ehsan, Malaysia, iskandar_i@upm.edu.my
3Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM, Serdang,

Selangor Darul Ehsan, Malaysia
4Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM, Serdang,

Selangor Darul Ehsan, Malaysia

 ISSN 2347 - 3983
Volume 8. No. 10, October 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter018102020.pdf

https://doi.org/10.30534/ijeter/2020/018102020

Yunus Parvej Faniband et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6630 – 6637

6631

provider grants user rights in phases or aims to prohibit
access to content by an unauthorised user. Because of the
XML standard, there are different options to integrate DRM
into EPUB.

Some existing EPUB copyright protection systems employ
encryption of the Using a single encryption key, the whole
'.epub' file or separately encrypting components of an ’.epub’
file using a single encryption key, following the Lightweight
Content Protection guidelines (IDPF, 2012) from IDF. Some
systems follow non-interoperable DRM schemes that are
fixed to specific eBook reader devices or application addition
to following restricting fixed to specific eBook reader devices
or applications. Digital Watermarking (McGuire & O’Leary,
2011)is another means of protecting the content. Readium is
an open-source framework with high-performance protection
and distribution techniques for EPUB parsing and provide
design standard reference software to apply DRM
independent of EPUB.

In this paper we proposed a cloud-based content distribution
system that enables securing and storing the eBook content in
trusted cloud store. The proposed system will also be
integrate Sigil EPUB editor with EncSwift(Bacis et al, 2016)
which enforce access control and efficient in data
management with data-at-rest encryption for OpenStack
object storage.

Table 1: eBook DRM technology providers

DRM
Platform

Filetype Encryption Electronic
Signature

Adobe
Content
Server

Epub/pdf AES-128 Private

Amazon AZW Private Private
Apple
Fairplay
DRM

iBook AES
algorithm
with MD5
hashes

MD5

Fasoo Private
Format

SEED
AES-128
RSA1024
3DES

RSA1024

2. LITERATURE REVIEW

EPUB format has been explored in detail in a number of
literatures (Williams, 2017). Based on the literatures,
different tools were used to convert the main publishing
format of an open access journal from PDF to EPUB format
(Eikebrokk et al., 2014). There are also, a number of
implementations to collect related information in EPUB
content and it was prototyped using Readium, an open source
SDK (Kataoka et al., 2013). Due to the recent popularity of
social media, a procedure is proposed to turn Facebook
contents into EPUB files, using Facebook SDK and EPUB
generation tools (EPUBGen) (Chen et al., 2011). In order to
create and read EPUB content, Adobe provides In Design tool

along with review functionality integrating the Adobe digital
Editions protection technology (see Table 1).

Apple Inc. has created iBooks Author tool (Fenwick et al.,
2013) that follows a proprietary Apple file format similar to
EPUB format by integrating the Apple FairPlay DRM. Sigil
and Calibre are two popular open source EPUB authoring
tools. Both Sigil and Calibre provide editing and importing
support for EPUB file (EPUB 2.0 and EPUB 3.0
specifications). However, both tools do not provide any built-
in content protection mechanisms with encryption.

The work solution proposed in (Eun-Bum et al., 2012) rely on
an EPUB multiple key encryption method and has the feature
of partial preview of content. This study in (Kim et al., 2013)
attempts to explore the technological approaches to licensing
methods that support eBook DRM compatibility based on the
four Korean EPUB DRM standards. Readium project is an
effort to design standard reference software to apply DRM
independent of EPUB, still has solves the complexity and
compatibility issues in plural DRMs.

The researchers (Kim et al., 2015) made efforts to solve
compatibility of Readium SDK. The same group of
researchers proposed a method to minimize the complexity of
Readium SDK (Kim et al., 2016) in order to provide easy
interlock between plural DRM and SDK. Authors of (Chen et
al., 2017) propose method to improve the annotation
mechanism based on Readium. Table 1 shows the leading
enterprise eBook DRM platforms and their associated
technologies. (Park et al., 2000) explained the various types
of application-level security architecture implementations
possible for the DRM content in which there is an
implementation of a personal digital rights system for mobile
devices (Bhatt et al., 2009).

3. MATERIALS AND METHODS

In this paper, A lightweight framework of content security
that includes the module for content creation and the reading
framework is proposed. In the proposed system, the proposed
system recommends an The file called 'encryption.xml' is an
The encryption file contains key details and algorithm
information to be created when the EPUB standard is met and
the content of the e-book is encrypted. The suggested file is
intended to encrypt the contents of the container in the
META-INF directoryThe EPUB Open Container Format
(OCF) uses XML Encryption to provide an encryption
mechanism that enables different algorithms to be used in
compliance with W3C 's XML security standards. In order to
avoid falsification of content, a file called 'signatures.xml' is
also proposed to carry the digital signatures of the container
and its contents. Along side the file, a file named ‘rights.
xml‘is also proposed to hold information of the DRM. The
OCF specification also The use of a particular algorithm and
rights-expression language is recommended, but the use of
the chosen algorithm for content encryption-signature and
rights-control is not controlled.

Yunus Parvej Faniband et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6630 – 6637

6632

The proposed framework authoring and content protection
system lets the user/content provider create digital content in
the EPUB form. The framework enables the user/content
provider to protect the EPUB content file by associating the
certain control sets with it within the authoring environment
and share in the cloud for others users. The framework allows
the authorized user to unlock and display the protected
content only after enforcing the control set. The design of the
proposed system involves designing the following central
aspects of the system:

1. An EPUB authoring and reading tool: A Desktop

EPUB authoring tool facilitate creating/editing and 8
encrypting the content and upload to the cloud.

2. Cloud based crypto system enable securing and

storing the content in trusted cloud store. Prior to
describing the design of these aspects for our system,
we will consider some of the important security and
functional characteristics, and assumptions.

Figure 1: General security architecture with embedded control and

external repository

3.1 Proposed System Features

In the proposed system, the EPUB archive is contained in a
digital container (C1). The control set serve as a mechanism
for the group of access rights and usage rules to manage the
recipient’s access and usage of the EPUB archive. The digital
container (DC) (Sibbert et al., 1995) (Kaplan et al., 1996) is a
primary feature of use-control technologies. The high level
block diagram of this security architecture with embedded
control and external repository is shown in Figure 1. DC can
be used to prevent tampering and utilized as an electronic
envelope to secure digital content and to regulate usage by
integrating with cryptographic mechanisms.

The digital information with EPUB content is wrapped within
a DC and sent to the repository server (open stack swift).
Recipient can be restricted from storing the DC on their
storage (C6).The architecture enables the content provider to
locally store the content and also revoke a previously granted

access (C2) through the policy updates. The control set in this
system can restrict storage of non-encrypted EPUB content
on the recipient’s non-volatile storage (RAM). The recipient
has to explicitly store the EPUB digital container for further
access. But the control set can restrict the opening of EPUB
digital container by third recipient if it is re-published to them
(C3).

3.2 Securing Content using Cloud-based Crypto System

Content encryption is a standard technique to secure the
content in DRM. As per the requirement C2, the publisher
must to able to specify who can unlock and get the content
rendered. For example if client ’A’ publish some protected
content to recipient ’B’, it must be desired that content can be
unlocked in B only and 16 no other recipient should play the
content. The Publisher needs to share the EPUB content and
used external cloud service to store data in OpenStack Swift
object storage. The Publisher would like to share the content
in these Swift objects, selectively to other users. The
architecture of OpenStack Swift object storage stores data
into accounts, containers, and objects hierarchically. Hence
by giving access to each of the created Containers, the
Publisher can share grant access to content all of the objects
in the Container. The proposed system uses OpenStack Swift
for the object storage, where the data is divided hierarchically
into accounts, containers, and objects. The method of
selective and policy based encryption (Section 3.2.1)is
employed for enforcing access control by the cloud provider
and over-encryption are applied over the data. As in typical
client-server architecture, the system encrypts the data (swift
objects) before transferring them to the cloud store and
decrypt data when fetched from the cloud store. The system
executes crypto graphic operations in different layers with
encryption keys handled at both, the server side as well as the
client side.

3.2.1 Selective and Policy Based Encryption

Initially, a Data Owner or Publisher creates a container (a
Book in publishing sense) and define a DEK. Architecture of
OpenStack Swift store data hierarchically into accounts,
containers and objects. In order to control the access right
properly, it is mandatory for the Publisher to retain the access
control list architecture and make cure each object in the
container is subjected to same access control list. This is done
by Publisher orthe Data Owner through encryption of all the
objects (each file in eBook archive) in a particular container
with the DEK of that container. Policy-based encryption
enforces only authorized users have permission for accessing
the objects in each container.

In order to achieve this, a key is required for authorized users
in which they have knowledge about this key or can derive
from this key. The key is used to encrypt each object in the
container to make sure the same group of users has the access
to digital Book content. Meanwhile at the encryption layer in
the cloud side, the DEK is encrypted using the Master key of
the Data Owner or the publisher. The OpenStack swift
provide access control list (ACL) to enable access policy to

Yunus Parvej Faniband et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6630 – 6637

6633

the objects in the container. For each of the user permitted to
access objects in the container, the DEK is encrypted with the
combination of user RSA public key and signed by the
content owner or Publisher with the user’s signature private
key. The access mechanism of a User for eBook content
works as follows. When there is a request to retrieve a
particular content (object), it is required to get the attribute of
the DEK that is used to encrypt that object.

In the beginning, Object descriptor reads this DEK identifier
and allows access to the respective KEK and further
determine corresponding DEK. In case of symmetric KEK it
is determined by user own Master Key or the user RSA
private encryption key for asymmetric KEK.

Table 2: Definition of different keys used in over-encryption
approach in Openstack Swift

Key Description
Master Keys The Master Key belongs to the client side.

The systems identify a particular user with
two pairs of public and private keys and a
symmetric Master Key.

RSA key pairs

One combination is utilized for encryption
(RSA key pair) and one combination is
needed during signing messages (RSA
signature combination)

Data
Encryption
Keys (DEKs)

The Encryption Layer use a DEK is a
symmetric key for encrypting or decrypting
an swift object

Key
Encryption
Keys (KEKs)

KEK refers to the stored encrypted form of
DEKs

3.2.2 Encryption using Swift (EncSwift)
The systems identify a particular user With a symmetrical
Master Key and two public and private key combinations
(See Table 2). While the Master Key is kept on the client
side, for all the other keys, Barbican (the OpenStack Hidden
Storage) is the shop. The Encryption Layer uses a DEK to
encrypt an object stored in the cloud store. Initially each
object that belongs to one container will be encrypted with
the same DEK. A policy update requires generating new
DEK. EncSwift offers three ways for Over-Encryption on
Swift objects. These methods need changes in Swift storage
module. Each of the methods affects the data protection and
downloads or uploads efficiency.

The method over-encryption is applied only on the data
during the transfer between the client and server and is
referred to as On-the-fly mode. The on-resource mode
enables over-encryption on data when the objects are stored
onto the cloud server. The third method of end-to-end mode
over-encryption is applied with the combination of the
protection of the prior two methods by over-encrypting of
data both during the transmission and at rest. The proposed
ePUB content protection framework use the third method (i.e
end-to-end mode) to apply over-encryption on the swift
objects saved on the server disks and maintain the SEL
encryption during swift object transfer to the client.

3.2.3 Access Control List (ACL) in Swift
In order to control the access of stored objects, two levels of
privileged access control are granted by Swift. The first level
which is the account-level is the access control that enables
the user to perform administrative level operations over an
entire account (tenant) (e.g., assign rights like Read-Only and
Read-Write access, to other users). The second level is the
account-level that allow users to grant authorization to access
objects throughout the account. They are also allowed to
access account metadata and delete or create new containers.
Container ACLs are set to allow following actions on the
container: read or write or listing. Users with read (list and
write) ACL can download objects from the container (list the
container contents and upload objects to the container, resp.)

3.2.4 Handling Policy Update
In order to authorize an operation, the system is required to
create a new (asymmetric) KEK for the authorized user and
save it in the OpenStack Secret Storage (Barbican). The
container (data) owner needs to create this KEK. In order to
determine the procedure of revoking user access to a
container, consider the mechanism to access swift object in
the framework. When there is a request to retrieve a particular
content (object), it is required to get the attribute of the DEK
that is used to encrypt that particular object. The Swift
Decryptor Module (EncSwift) read this DEK identifier in the
beginning and grants access to the respective KEK and
further determines corresponding DEK. For a revoke
operation, there must a new DEK, with which the objects
must be encrypted at the SEL level that should be unknown to
the invoking users. Hence in order to suppress the use of
locally stored KEK, the containers are assigned with two
keys. The first key is associated at the client-side from the
BEL layer. This key will be derived by entire users
(authorized users and to be evoked users) originally
authorized to access container. The non-invoked users only
can derive from the second key at the server side (SEL).
According to the data hierarchy of OpenStack swift, when a
new object is added to the container, it derives the List of
access control of an associated container. The swift object is
also encrypted with the container-corresponding BEL DEK
key. If the swift object is encrypted with the SEL DEK key,
the swift object will be encrypted. object is considered to be
revoke.

Figure 2: Architecture of encryption of content using EncSwift.

Yunus Parvej Faniband et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6630 – 6637

6634

3.2.5 Data Content Protection Process

Figure 2 illustrates the proposed system architecture for
protecting the ePUB content with policy- based encryption.
Figure 2 also depicts the events when the client accessed a
remote data of object stored in OpenStack swift.

• Step 1.a - The EPUB Content Authoring or Reading System
send the request to access the object to Encryption layer of
Swift Decryptor Module at the Client side. There will be a
configuration file that describes the path of the user’s
keys.The application sends this info after reading from this
configuration file.
• Step 1.b - The Swift Decryptor Module access the private
key of the user from the Barbican key storagemodule (Step
1.b). Alternatively the client can send private key with the
request.
• Step 2 - The Swift Decryptor Module retrieves the KEK
(from the Publisher’s catalogue stored in Swift)matching to
the DEK that is used to protect the object under consideration.
The Swift Decryptor Module decrypts it to get the DEK. It
will also obtain the encrypted object and decrypts it with the
help of the retrieved DEK.
• Step 3 - The decrypted object from the Swift Decryptor
Module is sent to the requested client application (EPUB
Content Authoring or Reading System). The procedure to
upload an object works is analogues to accessing the object,
but with the APIs requiring the Publisher’s keys to
encrypt/decrypt the data.

Figure 3: Block diagram of the secured EPUB eBook content using

OpenStack cloud platform.

4. RESULTS AND DISCUSSION

The proposed system (as shown in Figure 3) It enables the
producer of content to build and export protected content for
safe sharing. The import module makes it possible to render
the content and activate the contentThe device can also
protect text files, media files, and related zip properties
archive with encryption individually. The proposed
implementation follows the embedded control architecture

with external repository (Park et al., 2000). In this
architecture, the control set is enclosed in the digital
information. The digital container wraps the information and
it is transferred to the external repository server (OpenStack).
Also, in this work, an Based on Qt, a cross-platform
technology framework to support the following aspects of the
proposed system, the open source version of the Sigil EPUB
editor is enhanced:
1. Content encryption during Export/Save.
2. Client side Swift Encryptor and Cloud Data upload
3. Content decryption during Import/Read.

The export or The EPUB editor save module is enhanced to
introduce an EPUB multiple key encryption process using
EncSwift Wrapper APIs (Bacis et al.,2016) that encrypts
individual files as explained in section 3.2.5. The epub Export
module encrypts each of the allowed files individually. It also
formalizes and repackages the encrypted unit files based on
the EPUB standard and invokes the encryption calls from the
EncSwift library. The Import or Reading module decrypts
individual files as explained in section 3.2.5 by calling the
decryption APIs of EncSwift library through the wrapper
module.

The prototype of the system is implemented using Qt C++
engine instead of python plug-ins. In the proposed system, Qt
C++ engine is used to utilize the encryption and decryption
modules during the authoring stage. QtEncSwift Wrapper
APIs is utilized in the encryption module to securely save the
content in the cloud. While the decryption module assist in
the importing of encrypted EPUB content with QtEncSwift
Wrapper APIs for decryption.

The evaluation environment for evaluating the proposed
content protection platform A selection of virtual machines
and clients for mobile devices includes. OpenStack Swift and
Barbican deployments with 4 storage nodes and a proxy node
and 4 storage nodes were used to set up a virtual machine (
VM). The proxy node with Ubuntu 14.04 was equipped with
Intel Xeon CPU and 4 GB RAM and storage nodes (Ubuntu
14.04) with Intel Xeon E5-2403 processors and 1 GB RAM.
Another VM with the enhanced solution of Sigil with
EncSwift is setup on another Ubuntu 14.04,that was equipped
with Intel Xeon CPU and 2 GB RAM. The empirical
evaluation and comparison of the system is measured based
on the following criteria:

1. Computation Cost with impact of cryptographic operations
2. Communication Cost
3. Computation complexity of a group update

Yunus Parvej Faniband et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6630 – 6637

6635

Figure 4: Overhead of computation for Data (A) Encryption and (B)
Decryption at the client side

4.1 Evaluation of Computational Cost

In orderto test the performance of the system at the client side,
we conducted local data processing tests for encryption and
decryption. Figure 4 depicts the client side perceived
computation overhead for data encryption and decryption for
varying sizes of data content. We can observer that the time
taken to encrypt 1MB file is approximately 12 ms, which make
the less computation cost with less resources and better
security for the outsourced cloud data. We can notice that the
time usually increases with the size of file data and end-to-end
mode takes more time, since In the end-to - end mode, SEL
encryption and decryption function on the client side.

Figure 5: Effect of cryptographic operations (A) Encryption and (B)

Decryption at the client side.

4.2Effect of Cryptographic Operation
Next we analysed the effect of cryptographic operations while
uploading or downloading the content through the EPUB
Sigil IDE (Creator/Reader) to or from the cloud storage.
Figure 5 depicts the comparison of time taken for encryption
process and the OpenStack swift upload operation. We
observed that the content encryption operation at the client
side is tolerable. As an example, an EPUB file with the size
of 0.8 MiB required 1.12 seconds for upload and only 0.1
seconds for encryption. Hence less than 1% overhead is used
for file content encryption over the OpenStack swift and
Barbican upload overhead. Figure 5 also depict the
comparison of time taken for decryption process and the
OpenStack swift download. Similar to encryption, the content
decryption operation at the client side is tolerable in contrast
to the download operations and involved less than 1%
overhead compared to file content decryption over the
OpenStack swift download.

Yunus Parvej Faniband et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6630 – 6637

6636

Figure 6: OpenStack upload and download overhead with different
data size

Figure 7: Performance for serving multiple requests after a policy
update.

4.3 Communication Cost

We also examine the communication cost, which is the
overhead cost when the content owner stores the EPUB file
content to cloud store and then request to access secured data.
Figure 6 shows a variation of the latency for upload and
download operations with respect to different file sizes. We
can observe that the average latency is stable for small file
size and gradually increase for large data content.

4.4 Computing complexity of a group update

We investigated the communication overhead, when the
content owner needs to update sharing policy of the content

and carry out a Group update to share content to a new user.
In the evaluation we analysed the time taken for updating the
policy over a 100MB container. The test analyse the effect of
applying a policy change for a 100MB container, consisting
of object size of 1MB . The system then requests a sequence
of get object request to the cloud store. As depicted in Figure
7, There is an immediate overhead on the initial post
container due to re-encryption of the saved objects. End-to -
end mode is used by the proposed ePUB content security
system to apply over-encryption to the speedy objects stored
on the server discs. It should be noted that the overhead will
decrease as there are less policy updates than the object
access requests.

5. CONCLUSION

It provides a proposed method for securing and managing the
content of the EPUB. The prototype is also implemented
using the Sigil Desktop Editor and enhanced to support the
proposed EPUB security framework in terms of integration
of modified version python-swiftclient library (EncSwift) for
encrypting and decrypting the swift objects. The
implementation is evaluated for Computation Cost with
impact of cryptographic operations, Communication Cost and
Effect of policy update. Our proposed system provides a
suitable method for protecting and sharing the EPUB content
with current cloud technology by utilizing the open and
modular architecture of OpenStack Swift object storage.

6. ACKNOWLEDGMENT

Authors would like to thank the Faculty of Informatics and
Computer Science, Universiti Putra Malaysia for its
assistance. This research is funded under the Fundamental
Research Grant Scheme (FRGS) by Malaysia's Ministry of
Education. (FRGS/1/2015/ICT04/UPM/02/07) and Universiti
Putra Malaysia under the Putra Grant Scheme-Putra Graduate
Initiative (GP-IPS/2016/9478900).The authors also would
like to thank to King Fahd University of Petroleum &
Minerals (KFUPM) and Center for Communications and IT
Research, Dhahran, for all the support in producing this
research paper.

REFERENCES

[1] Bill Rosenblatt. EPUB Lightweight Content Protection:

Use Cases & Requirements, 2012.http://idpf.org/epub-
content-protection.[Online; accessed 24-June-2019].

[2] Brian Huffman. Self-publishing digital books: options,
considerations, and insights. 2013.

[3] Chao Chiang-Nan, Niall Hegarty, and Abraham
Stefanidis. Global Impacts And Challenges Of Paperless
Books: A Preliminary Study. International Journal of
Business and Social Science, 3(11), 2012.

[4] Chen-Yuan Chuang, Yi-Bing Lin, Zhihao Julie Ren, and
Yu-TienYeh. User-Generated E-Books From Facebook
Contents. In 2011 7th International Wireless
Communications and Mobile Computing Conference,
pages 1918–1922.23 IEEE, 2011.

Yunus Parvej Faniband et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 6630 – 6637

6637

[5] David Bounie, Bora Eang, Marvin Sirbu, and Patrick
Waelbroeck. Superstars And Outsiders In Online
Markets: An Empirical Analysis Of Electronic Books.
Electronic Commerce Research and Applications,
12(1):52–59, 2013.

[6] Enrico Bacis, Sabrina De Capitani di Vimercati, Sara
Foresti, Daniele Guttadoro, Stefano Paraboschi, Marco
Rosa, Pierangela Samarati, and Alessandro Saullo.
Managing Data Sharing In Openstack Swift With Over-
Encryption. In Proceedings of the 2016 ACM on
Workshop on Information Sharing and Collaborative
Security, pages 39–48. ACM, 2016.

[7] EriKataoka, Toshiyuki Amagasa, and Hiroyuki
Kitagawa. A System For Social Reading Based On
Epub3. In Proceedings of International Conference on
Information Integration and Web-based Applications and
Services, page 72. ACM, 2013.

[8] Eun-Bum Kim, Kyung-Il Kim, Tae-Hyun Kim, and
Seong-Hwan Cho. A Study Of Partial Preview Control
Method Of Epub-Based Ebook DRM. The Journal of The
Institute of Internet, Broadcasting and Communication,
12(1):249–256, 29 2012.

[9] Eun-Bum Kim, Kyung-Il Kim, Tae-Hyun Kim, and
Seong-Hwan Cho. A Study Of Partial Preview Control
Method Of Epub-Based Ebook DRM. The Journal of The
Institute of Internet, Broadcasting and Communication,
12(1):249–256, 29 2012.

[10] Greg Williams. Epub: Primer, Preview, And
Prognostications. Collection Management, 36(3):182–
191, 2011.

[11] Hugh McGuire and Brian O’Leary. Book: A Futurist’s
Manifesto: A Collection of Essays from the Bleeding
Edge of Publishing. ” O’Reilly Media, Inc.”, 2011.

[12] IskandarIshak, Sidi, F., Jabar, M. A., Sani, N. F. M.,
Mustapha, A., Supian, S. R., & Apau, M. N. 2012. A
survey on security awareness among social networking
users in malaysia. Australian Journal of Basic and
Applied Sciences, 6(12), 23-29.

[13] Jaehong Park, Ravi Sandhu, and James Schifalacqua.
Security Architectures For Controlled Digital
Information Dissemination. In Computer Security
Applications, 2000.ACSAC’00. 16th Annual Conference,
pages 224–233. IEEE, 2000.

[14] James B Fenwick Jr, Barry L Kurtz, Philip Meznar, Reed
Phillips, and Alex Weidner. Developing A Highly
Interactive Ebook For CS Instruction. In Proceeding of
the 44th ACM technical symposium on Computer
science education, pages 135–140. ACM, 2013.

[15] Mao Chen, Hang Luo, Tengbaao He, and Sanya Liu. A
Method to Improve the Annotation Mechanism based on
Readium. In 2016 4th International Conference on
Machinery, Materials and Information Technology
Applications. Atlantis Press, 2017.

[16] Marc A Kaplan et al. IBM Cryptolopes,
Superdistribution And Digital Rights Management.
viewed at on, pages 1–10, 1996.

[17] Mohamed, K., Sidi, F., Jabar, M. A., &Ishak, I. (2013).A
novel watermarking technique in data transmission
between QR codes and database. Paper presented at the

2013 IEEE Conference on Open Systems, ICOS 2013,
95-99. doi:10.1109/ICOS.2013.6735055.

[18] Mohamed, K., Sidi, F., Jabar, M. A., Ishak, I., Salimin,
N., Salleh, N. S. A., Hamzah, A.Q., Jarno, A.D.,
andPauzi, M. F. (2016b). Strengthening user
authentication for better protection of mobile application
systems. Journal of Theoretical and Applied Information
Technology, 85(3), 416-424.

[19] Mohamed, K., Sidi, F., Jabar, M.A., &Ishak, I. (2016a).
Protecting Wireless Data Transmission In Mobile
Application Systems Using Digital Watermarking
Technique. Journal of Theoretical and Applied
Information Technology, 83(1): 52-63, 2016.

[20] Olin Sibert, David Bernstein, and David Van Wie. The
digibox: A Self-protecting Container for Information
Commerce. In USENIX Workshop on Electronic
Commerce, 1995.

[21] Saad, N. H. M., Ibrahim, H., Alwan, A. A., Sidi, F.,
&Yaakob, R. 2014.A framework for evaluating skyline
query over uncertain autonomous databases. Procedia
Computer Science, 29 1546-1556.
doi:10.1016/j.procs.2014.05.140.

[22] Saad, N. H. M., Ibrahim, H., Sidi, F., Yaakob, R., &
Alwan, A. A. 2016. Computing range skyline query on
uncertain dimension, doi:10.1007/978-3-319-44406-
2_31.

[23] Siddharth Bhatt, Radu Sion, and Bogdan Carbunar.A
Personal Mobile DRM Manager for smartphones.
Computers and Security, 28(6):327–340, 2009.

[24] Sidi, F., Marzanah, A. J., Affendey, L. S., Ishak, I.,
Sharef, N. M., Zolkepli, M., Ming, T. M., AbdMokthi,
M. F., Daud, M., Zainuddin, B. Z. and Hamid, R. A.
2017. A Comparative Analysis Study on Information
Security Threat Models: A Propose for Threat Factor
Profiling. Journal of Engineering and Applied Sciences,
12(3), 548-554. doi:10.3923/jeasci.2017.548.554.

[25] Tae-Hyun Kim, Hee-Don Yoon, Ho-Gab Kang, and
Seong-Hwan Cho. A Study OnEbookDrm
Interoperability Based On Idpf Readium SDK. The
Journal of The Institute of Internet, Broadcasting and
Communication, 15(2):15–21, 2015.

[26] Tae-Hyun Kim, Ho-Gap Kang, Yoon-Ho Kim, and
Seong-Hwan Cho. A Study Of License Acquisition
Method Supporting Mutual Compatibility Of Epub-
Based Ebook DRM. The Journal of The Institute of
Internet, Broadcasting and Communication, 13(1):205–
214, 2013.

[27] Tae-Hyun Kim, Hui-Don Yun, Ho-Gab Kang, and
Seong-Hwan Cho. A Study On Content Protection
Framework For E-Book Drm-Agnostic Based On
Readium SDK. The Journal of The Institute of Internet,
Broadcasting and Communication, 16(1):7–14, 2016.

[28] Trude Eikebrokk, Tor Arne Dahl, and Siri Kessel.
EpubAs Publication Format In Open Access Journals:
Tools And Workflow. Code4Lib Journal, 24, 2014.

