
Varun K L Srivastava et al., International Journal of Emerging Trends in Engineering Research, 7(9), September 2019,
216 - 222

216

An efficient Software Source Code Metrics for Implementing for Software
quality analysis

Varun K L Srivastava1, N. Chandra Sekhar Reddy2, Dr. Anubha Shrivastava3

1Director General , Department of R & D, Association of Education Training & Research Institute(ASSOED),

Noida (UP) 201301, INDIA. mr.varunsrivastava@gmail.com
2Department of Computer Science and Engineering, MLR Institute of Technology, Dundigal, Hyderabad,

500043. India. nreddy28208@gmail.com
3Associate Professor, G. L. Bajaj Institute of Technology and Management, Noida (UP) 201301 , India

Aanubha.shrivastava@glbitm.org

ABSTRACT

The challenging task is evaluating size of a complex and
enormous software framework. Primarily in life cycle of
project, while necessities for framework might be
functional & immature described only at extreme level,
profiles of resource are require for suitable staffing,
funding, and progress of feasible project strategy. Same
project historical software size information& trends gives
a device to calculate size of software, making a possible
evaluation method. As processors are being utilized in
each and every imaginable region in current world,
software quality gets a main feature in planned
achievement of a human & business safety in common.
Discovering quality factors of software & illustration those
into computable measures will be an essential feature in
viable achievement of end product. Program features
illustration into these values of metrics depicts information
framework behavior & structural complexity. In this
survey, 5 software metric are utilized, they are lines of
code (LOC), lines of comment (COM), cyclomatic
complexity (MVG), number of modules (NOM), and
Halstead volume (HV) have been used to examine a group
of 3 sorting programs of java. The 3 software
measurement devices have been applied on them to
confirm their presentation w.r.to metrics cited there also a
resultant metric maintainability index has been measured
from basic metrics to designate comparative
maintainability of the source code. The comparative study
of selected devices has been undertaken to expose how
they change in providing outcomes for similar programs.
Additionally, few other quality features that might be
resultant from essential metrics are cited in next sub
section.

Key words: Software Metrics, Software Quality, Software
Testing, Software Faults, Software Engineering

1. INTRODUCTION

Why Evaluate Software Quality: Suppose you get a
programming item that is conveyed looking into time,
inside budget, and effectively & proficiently perform
know its specified works.
Does it follow that you will be happy with it? For a few
reasons, the response might a chance to be no. Here are a
few of the basic issues you might find: 1. the programming
item might a chance to be hard should see Furthermore
Was troublesome to change. This prompts unreasonable
expenses in programming maintenance, Also these fetches
would not insignificant. To example, a later paper toward
Elshoff [1] demonstrates that 75% for general Motors’
programming exert is used in product maintenance, also
that GM may be honestly commonplace for substantial
industry programming exercises. 2. The programming item
might be troublesome to utilize alternately simple should
abuse. A late GAO report card [2] distinguished through
$10,000,000 over unnecessary legislature expenses
because of ADP issues; a large number about them were a
direct result those product might have been in this way
simple to abuse. 3. The programming item might make
unnecessarily machined dependent or tough will
coordinate with other projects. This issue is troublesome
sufficient now, be that as machine sorts proceed to
proliferate; it will get more awful. Major product personal
satisfaction choice focuses. There are an amount from
claiming commonplace circumstances for which it will be
time permits should push a solid impact with respect to
programming quality, and for which it will be critical will
need a great seeing of the different aspects of product

ISSN 2347 - 3983

Volume 7, No. 9 September 2019
International Journal of Emerging Trends in Engineering Research

Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter01792019.pdf
https://doi.org/10.30534/ijeter/2019/01792019

Varun K L Srivastava et al., International Journal of Emerging Trends in Engineering Research, 7(9), September 2019, 216 - 222

217

caliber. Here are a few: 1. Get ready the caliber
determinations for a programming item. Planning the thing
that capacities you need what's more entryway
significantly execution (speed, accuracy) you need aid
equitably clear. Demonstrating that you also require on
look after capability alternately understandability may be
important, be that considerably all the more was
troublesome on define on a few testable design. 2.
Checking for consistence for personal satisfaction
determinations. This may be vital Assuming that the
personal satisfaction determinations are should make
serious. It could obviously make done with an extensive
financing of great people, at this sort checking is both
unreasonable and diligent once human’s spirit. 3. Making
fitting outline trade-offs between improvement expenses
and operational expenses. This may be particularly vital a
result tight improvement plans alternately schedules make
activities on hold back looking into maintainability,
portability, & usability. 4. Programming bundle
determination. Here again, numerous clients necessity An
relative evaluation from claiming how effectively every
one bundle might be adjusted will their installation’s
evolving necessities and equipment build programming
building is equitably educated support and urgent
configuration procedure due to today’s progressive
surroundings which may be truly capricious also in
principle, not fully specifiable ahead of time. Compelling
product caliber assessment obliges determinants that
describe what nature will be and more entryway it can be
followed over of the improvement methodology or the
finished item itself. Product industry may be bit by bit
progressing towards a time from claiming high maturity;
the place casual methodologies will personal satisfaction
Investigation can never again fill. Because of the
revolutionary growth, clients need aid likewise
distinguishing its quality and they need aid not eager to
bargain on the qualitative parts. Notwithstanding from
claiming all this, inward caliber of an item might try
unchecked alternately make deliberately compromised
now and again. Product measurements are primitive
indicators on code caliber that provide us with the methods
should make pro-active activities at most punctual phase
possible, at whatever point one task will be moving off-
track.
Quality need separate elucidation for distinctive
individuals. Different personal satisfaction guidelines exist
which need aid pertinent to the associations included for
programming advancement. ISO and IEEE would those
practically generally utilized norms in this field. ISO/IEC
9126 [8] characterizes reliability functionality,
maintainability, efficiency, usability& portability as nature

aspects for product results. IEEE need distributed a
standard to those product nature measurements technique
[9]. IEEE characterizes quality of software- degree should
a component, system, or procedure meets specified
necessities or client desires. Further, programming
measurements need aid instruments connected with a bit
for programming or its configuration determinations for
those objective will accomplish proliferation quantitative
measurements, which might make further connected on
expense estimation, undertaking scheduling, debugging,
personal satisfaction certification and indistinguishable.

2. BACKGROUND
Estimation will be in any building domain; also there is
no exception on product building. A few specialists in the
secret word bring connected product measurements as
enter inputs with aide personal satisfaction predictors.
The work [10] identifies connection between a few
measurements starting with well-known article situated
measurements suites for example, CK metrics, McCabe
Cyclomatic multifaceted nature Also Different measure
metrics, also showing could reasonably be expected
thresholds. The work [6] recommend new product
measurements In view of coding measures violations will
catch idle faults in a advancement. The work [5] identifies
a straight development pattern in product size for crewed
space Also aircraft, which might sensibly anticipate
product extent in comparative future programs, utilizing
SLOC built information. The work [7] researches the
connections of size & unpredictability measurements for
maintainability of open source software. The work [7]
uses CK metrics, SLOC, COM measurements and so on.
On examine the association the middle of product
measurements Furthermore defects.

3. METHODOLOGYFOLLOWED
There would 2 methodologies to programming estimation.
Particular case may be centered around regulate assessment
of the personal satisfaction about finished item handled
Throughout Different processes; Furthermore in the second
one, procedures themselves need aid measured should
illuminate for duration, cost, adequacy & effectiveness of
programming advancement exercises. In this survey, we
proposed with assess source code as finished item to metric
built dissection. On start with, projects need aid chose for
which measurements should be observationally approved
to. We have opted to three java based foray projects starting
with well-established calculations of air pocket sort,
determination kind Furthermore fast kind. Afterward a
suitableness situated of measurements from claiming
investment is picked. This in place obliges determination
and pre-testing for devices which would dialect compatible,

Varun K L Srivastava et al., International Journal of Emerging Trends in Engineering Research, 7(9), September 2019, 216 - 222

218

backing provided for measurements and on the foundation
about accessibility. After actualizing the devices and
catching metric values, an inferred metric Maintainability
list (MI) may be ascertained from build metrics; outcomes
need aid compared Also translated inevitably. Figure 1
demonstrates the technique took after in this manuscript:

Figure.1: Methodology Followed

There exist numerous open-source & business estimation
devices with look over depending upon those investigator
inclination and other similarity problems. In this
manuscript, devices supporting examination from claiming
java projects were needed. After exactly preliminary
examination, three instruments have been chose – source
monitor, C & C++ code counter, and JHawk. For the
purpose for concision, they would identifier as SM, CCCC,
& JHK separately from this side of the point. One cause
behind opting to various instruments is to place crosswise
over the contrasts also likenesses prevailing around them
done delivering effects. Instruments process a number
measurements qualities crazy from claiming which
outcomes of five measurements about premium need aid
recorded, also these are: NOM, LOC, MVG, COM, and
HV. Out about these 5 essential metrics, 3 bring further
been used with figure MI similarly as work for LOC, HV,
& MVG. Some other derivable quality components need
aid summed- upon.

4. METRICS UNDER CONSIDERATION
A perfect consideration of the classification for code
qualities & possibility for their provision in enhancing
result of potential activities prompted to a research body
mainly joining acceptance about these measurements.
Further these need aid fit for decreasing subjectivity
throughout quality promise & aides in choice making
because of their way about reproducible. There exist a few
regulate and backhanded measures, crazy of which five

measurements have been opted for those devices to make
inspected. Ahead may be a short portrayal about them.

4.1 Line of Count (LOC) – Physical Size
This is much prevalent size-oriented metric displays entire
number of non-comment lines, non-blank. Supporters of
the LOC measure case that LOC may be an "artifact" for
every one product improvement tasks that might make
effectively counted, that a significant number existing
product estimation models utilize LOC or KLOC as main
information with assess different viewpoints of quality &
cost [11].
4.2 NOM (Number of modules) –Code Distribution
All functions, methods are count below this physical and
in addition legitimate metric. As contrasted with LOC, it
is a greater amount serious a size-metric on account of
with a percentage extent, it is autonomous of the
modifying dialect opted for. It may be simple to ascertain
and serves best likewise an interface metric. The greater
amount modules a population have additional perplexing
its interface will be expected to be.
4.3 COM (Number of Lines of Comments)-
Documentation
Well-documented programming helps maintainers
&developers just as great. COM speaks to the downright
sourball remark number and further as a trait of the
understandability, maintainability, &measures-reusability.
An additional advantageous metric called CCR (Code
with remark Ratio) might make inferred starting with this
measure with have an evaluate for upon what amount of
the source code may be great recorded.

4.4 Halstead Volume (HV)
HV is a measure from crew of Halstead metrics, may be a
composite metric In view of number about (distinct)
operands& operators in source code. As stated by
Halstead Volume may be those number of number of
mental correlations required will produce a system. It will
be computed likewise the system period times the 2-base
logarithm of vocabulary extent. It speaks to those volume
for majority of the data (in bits) obliged with define a
project. HV depicts text based code intricacy and will be
a standout amongst the important parameter in registering
maintainability list.

5. TOOLS DESCRIPTION

5.1 C and C# Code Counter (CCCC)
CCCC might have been formed to 2001 by Tim minimal
reasonable as a fragment of this doctorate examination
venture. It will be free-ware open wellspring order line
Interface initially intended to Linux, as well as build-able

Varun K L Srivastava et al., International Journal of Emerging Trends in Engineering Research, 7(9), September 2019, 216 - 222

219

on the Win32 stage. Initially actualized will methodology
C# & ANSI C programs, resulting variants have the
capacity with transform source files of java as well. It will
be not difficult to run on order line by specifying names
one or more source files to be investigated. CCCC will
primary check the development of file name & assuming
that the development may be recognized as demonstrating
a backed language, fitting parser will run on record. As
every record will be parsed, ID number of specific
constructs will reason records should make composed
under an interior database. Last yield will a chance to be
created in XML files& HTML arrangement. The CCCC
creates different measures like that extent metrics,
unpredictability metrics, and object turned measurements
from CK and some others.

5.2 Source Code Monitor (SM)
Enhanced by the programming with graphical-interface,
sourball screen [12] will be a free-ware closed-source
programming estimation device. It may be fit will be
worked looking into ASCII content files made ahead
different frameworks anyway runs only on Windows. The
“check pointing” may be a standout amongst its different
characteristics to keep the outcomes around thereabouts
that manager of projects could perceive how project code
progressions over time. There would five diverse
perspectives accessible should show the effects like charts
view, checkpoint view, details view, project view, and
method view. The languages maintained are - VB. NET, C,
VB6, HTML, C#, C++, Java, and a couple others. You quit
offering on that one might send out resultant measurements
information from sourball screen to quick files, XML or
CSV design. Measurements help differ slightly with
selection of programming language, nevertheless most
usually caught ones are- techniques per class, percent
branch statements, LOC, maximum method complexity,
classes & interfaces, & percent lines with the comments.
Principally a JHawk, java metric tool [13] need advanced
from a stand-alone GUI provision to incorporate an order
transport form and an eclipse plug in. It compromises to
process IDE coordination (for Visual period for Java) Also
gives the HTML, XML, and CSV send out formats.
Separated from letterset printing those clients make their
novel metrics, it gives a dashboard tab that provides for a
fast review of the measurements during System, one
bundle and population level. Also, the JHawk information
viewer permits a client with perspective progressions to
center measurements about whether – for case through an
extend lifecycle.

6. EXPERIMENTAL EVALUATION
The analysis of code was executed after this preliminary
study & pre-preparations. The 3 programs of java
dependent upon 3 categorization strategies – Selection
sort, Quick sort, & Bubble sort for were investigated
through the devices embraced. Short portrayal of the
source projects is in table I.

Table 1: Short portrayal of the source projects
Symbolic names of

programs
Explanation

ProgramX Bubble sort
ProgramY Selection sort

ProgramZ Quick sort

Every project may be accessed through every last one of
three devices so that comes about might be compared
crosswise over different instruments. As stated by the
distinctive tool’s metric support, various measurements
values were estimated &conveyed naturally as part of
outcomes. Though just the measurements of
concentration were caught & recorded in table 2 for
further examination.

Table 2: Results of tools’ implementation

Tools Prog MVG COM HV LOC NOM
CCCC ProgA 5 1 57 3*

 ProgB 5 2 - 30 2*
 ProgC 11 3 45 2*

Source
Code

ProgA 4 1# 44 4

Monitor ProgB 4 2# - 32 2

(ScM) ProgC 9 3# 40 2

JHawk ProgA 5 1 318.0 47 4
 ProgB 4 2 519.7 36 2

(JHK) ProgC 8 3 727.3 42 2

- indicates metric is not supported by corresponding tool
indicates normalized values according to Table III
(row 4, col2)
* indicates different granularity level according to
Table III (row3, col2)

It will be clear in table II that to the similar program,
indistinguishable measurements prepare distinctive
outcomes. This is due to the truth that all devices hold
fluctuating presumptions something like their metric
definitions and accordingly, conclusions reasonably vary

Varun K L Srivastava et al., International Journal of Emerging Trends in Engineering Research, 7(9), September 2019, 216 - 222

220

crosswise over one another. Despite this, we might
recognize fascinating likenesses the middle of them as
specified over table III. Note that HV may be underpinned
via special case of the tool, thereabouts may be excluded
from similar investigation in the next table 3.

Table 3: Comparative analysis of tools against metrics

calculated
Metri
c

Concluding observations w.r.t CCCC, SM
and JHK

Mvg CCCC calculates the final value is as selects the
extreme &class-wise

SM calculates module-wise &reports the
outcome as extreme complexity.
JHK calculates metrics very close to SM.
Since no 2 devices agreed to a common value
for MVG, we tested programs with one
anonymous well-known quality examination
device. It authorizes outcome of SM‟s
analysis.

Loc Out of 3, SM runs most positive value of LOC.
CCCC counts all curly brackets {,} &non-
blank lines as part of LOC where as in the case
of label statements, the SM counts non-blank
lines only and does not counts curly brackets.
JHK counts same under the label LLOC as SM
does. JHK diverges from SM in way it counts
the statement.

Com SM reports this metric for rate form, it need
been changed over under altered quality in
front of entering under table by bringing two
other measurements Lines (counting
comments) &percent line with remarks as
input parameters. CCCC &JHK
straightforwardly returns those bring about
outright figures What's more advantageous on
counter-check. Around all, these metric
remains the greater part stable of all.

Nom CCCC calculates for NOM may be not similar
to its counterparts due to it checks number for
classes as against others two, which check
amount about capacities &methods spanning
through every last one of classes in a project.
Since a strategy undoubtedly may be toward a
better granularity level over a class, we affirm
the outcome of SM or JHK investigation in
this instance.

The below table 4 shows the outcomes of evaluation
metrics.

Table 4: Characteristics of Program

Metrics portray different project Characteristics
objectively. They might a chance to be arranged toward
their volume alternately size, association around those
modules or many-sided nature from claiming stream
control in every system module and a considerable measure
additional. These estimations ended up additional serious
though a percentage critical personal satisfaction qualities
Might be further inferred from the base measurements.
Over following sub-section, we endeavor should figure
particular case such composite metric will demonstrate
relative maintainability that may be a most after quality
factor of sought for managers of project.

7. MAINTAINABILITY
The work [22] depicted a MCI (Maintainability Code
Index) will be a composite metric, which includes an
amount of traditional source code metrics in to a particular
amount, which signifies comparative maintainability. It
will be estimated with specific equation from HV (Halstead
volume), MVG, and LOC. The metric initially estimated as
follows:

MCI = 161 - 4.2 * ln(aveV) - 0.33 * (aveMVG) – 16.1 *
ln(aveLOC)
Where 'ave' is average of measure per module. To
rearrange this measure to lie between 0 and 100, it has been
normalized as- MCI*=MAX (0,(171-5.2*ln(aveV)-
0.33*(aveMVG)-16.2*ln(aveLOC)))*101/171
It computes a value of index among 0 and 101, which
signifies the comparative ease of sustaining source code.
The higher value proposes enhanced maintainability. The
values of MCI estimated for all programs are shows in
table 5.

Table 5: MCI Calculation

Programs Calculating
MCI

Output

ProgramX Max(0,(161 - 4.2 *
LN(318.97)-0.33 *

3.74 - 16.1 * LN(11.4))) *

58.83

Varun K L Srivastava et al., International Journal of Emerging Trends in Engineering Research, 7(9), September 2019, 216 - 222

221

101/172

ProgramY Max(0,(171 - 5.2 *
LN(519.69)-0.33 *

3.5 - 16.2 * LN(18))) *
100/171

54.14

ProgramZ Max(0,(172 - 5.1 *
LN(727.36)-0.33 * 5.4 -

16.2 * LN(22))) * 101/172

51.37

As per table V, Prog A (Bubble sort) need most noteworthy
level from claiming maintainability "around the trio and
Prog C (Quick sort) will be practically troublesome on
support. Prog B (Selection sort) goes amidst the line. One
might notice these perceptions come quite in concordance
with the project aspects in table IV. Fast kind carries most
astounding unpredictability previously, hotspot code,
biggest volume Also Subsequently brings about least
maintainability list over table V. Sort of bubble will be
easiest with program, less intricate and for any rate volume
& scores maximum MI. Exchange-off remains comparative
to determination sad for a really. Accordingly the
algorithmic qualities and resultant qualities uncover that
our projects need aid effectively tried for those said
measures.

7.1 Other Derived Parameters
Although the characteristics calculated in sec 7 might not
straightly describe quality, but they might be used to
derive factors representing potential variations to be
conducted in last product. Few quality features that might
be defined by these code characteristics are following
below:
Exactness: Once LOC will be deliberated, it might
demonstrate beneficial to derive the other code
characteristics like flaws per KLOC. It evaluates the flaw
density & finally the exactness that will be the significant
quality metric.
Cost & effort of programming: Another beneficial price
metrics derivable from LOC will be price of project per
KLOC. In case, assuming 2.00 dollars per LOC, the pure
price of coding might be estimated for Prog B as 88
dollars. Likewise built on effort of programmer, MVG
(degree of complexity), & consequently evaluation of
price might be enhanced. The MVG specifies functional
coverage breadth of software.
Fault proneness: The main goal of complexity metric will
be to calculate components, which are fault-prone. Built
on MVG, remaining defect prediction might be prepared.
The more difficult framework will be much challenging it
will be to check it completely & more error-prone it is.

to confirm their validity.
Devices either report pictures in diverse forms or measure
the characteristics at diverse level of granularity that
creates them critical to compare deprived of few
normalizations. For instance, CCCC calculates the
amount of classes for NOM whereas JHK & SM
calculates amount of strategies. SM offers COM in
percent form whereas others outcome in stable value.

8. THREATS TO VALIDITY
Quality of service for source code will be a multi face
model. Similar any evaluation survey, our results will be
partial according to whatever primeval information was
utilized to generate them. Bias probable traces incorporate
representativeness of source code, selection of
programming language, selection of devices & their
precision programs for diverse metrics on dissimilar
programming languages & other capable devices.

9. CONCLUSION
This manuscript requires estimation of 5 software metrics
on a group of 3 well recognized categorization approaches
with three computerized examination devices. It will be
followed by foundation of maintainability index from factor
metrics and a brief purpose of other quality features that
might be inferred. Certainly software metrics are reasonable
devices accessible to managing for decision making
determinations and creating them able to taking proactive
exploit in instance of potential software crisis by declaring
primary indicators to risk prone problems. However, project
executives must formulate their program of tailor made
metrics to know company’s unique strategic objectives,
user’s custom requirement, priorities, and assumptions to
entirely use their massive worth. This survey increases prior
experimental literature on software metrics validating the
connection among quality attributes & software metrics
resultant there on providing the advantages and
disadvantages on selecting automated devices that are
accessible in massive amount.

REFERENCES

[1] Elshoff, J. L., an Analysis of Some Commercial PL/I

Programs. IEEE Transactions on Software
Engineering, pp. 113–120, June, 1976.
https://doi.org/10.1109/TSE.1976.233538

[2] Improvements Needed in Managing Automated
Decision making &v computers Throughout the
Federal Government, U.S. General Accounting Office,
April 23, 1976.

Varun K L Srivastava et al., International Journal of Emerging Trends in Engineering Research, 7(9), September 2019, 216 - 222

222

[3] ISO/IEC 9126-1 Software engineering – Product
Quality - Part 1: Quality model", 2001.

[4] IEEE Std 1061-1998 “IEEE standard for a software
quality metrics methodology, IEEEpublications.

[5] H. Barkmann, R. Lincke, and W. Löwe. “Quantitative
Evaluation of Software Quality Metrics in Open-
Source Projects”. In Proceedings of The 2009 IEEE
International Workshop on Quantitative Evaluation of
large-scale Systems and Technologies (QuEST09),
Bradford, UK, 26-29th May, 2009.
https://doi.org/10.1109/WAINA.2009.190

[6] YasunariTakai, Takashi Kobayashi, Kiyoshi Agusa.
”Software Metrics based on Coding Standards
Violations”, In Proc. the Joint Conference of the 21th
International Workshop on Software Measurement
and the 6th International Conference on Software
Process and Product Measurement
(IWSM/MENSURA2011) pp.273-278,Nara, Japan, 3-
4 Nov. 2011
https://doi.org/10.1109/IWSM-MENSURA.2011.34

[7] Yuming Zhou, BaowenXu, Hareton Leung. “On the
ability of complexity metrics to predict fault-prone
classes in object- oriented systems”. Journal of
Systems and Software, 83(4), 2010:660-674
https://doi.org/10.1016/j.jss.2009.11.704

[8] S Pradeep, Chaudhary K D and V Shrish. "An
Investigation of the Relationships between Software
Metrics and Defects".

[9] Yuming Zhou, BaowenXu, Hareton Leung. 2010. “On
the ability of complexity metrics to predict fault-prone
classes in object-oriented systems”. Journal of
Systems and Software, 83(4), 2010:660-674.
https://doi.org/10.1016/j.jss.2009.11.704

[10] Roger S. Pressman, “Software Engineering – A
Practitioner‟s Approach”, 5th Ed., McGraw Hill
International Edition.

[11] Cesar Couto, Christofer Silva, Marco Tulio Valente,
Roberto da Silva Bigonha, Nicolas Anquetil.
“Uncovering Causal Relationships between Software
Metrics and Bugs”. CSMR 2012:223-232
https://doi.org/10.1109/CSMR.2012.31

[12] Glasberg, D., Emam, K. E., Melo, W., and Madhavji,
N., "Validating Object-Oriented Design Metrics on a
Commercial Java Application," National Research
Council 44146, September 2000.

[13] AK Pandey. “Predicting Fault-prone Software
Module Using Data Mining Technique and Fuzzy
Logic”. Special Issue of IJCCT Vol. 2,2010

[14] Aaron Don M. Africa,” A Comprehensive Study on
Application Development Software Systems”,
International Journal of Emerging Trends in

Engineering Research, Volume 7, No.8 August 2019.
https://doi.org/10.30534/ijeter/2019/03782019

[15] Nagappan, N., Ball, T., Zeller, A. 2006.: Mining
metrics to predict component failures. In
ICSE(2006)452-461.
https://doi.org/10.1145/1134285.1134349

[16] YuhanisYusof and Qusai Hussein Ramadan, 2010.
Automation of Software Artifacts Classification.
https://doi.org/10.3923/ijscomp.2010.109.115

