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ABSTRACT 
 
Nowadays, the magnitude of data generated daily through the 
technological environment has increased enormously. This 
massive amount of heterogeneous data led to the emergence 
of a large number of big data systems and technologies that 
share similar architectures but with different 
implementations. In essence, the common architecture is 
composed of many components: Data sources, Ingestion, 
Hadoop Storage, Hadoop Platform management, 
Visualization, Monitoring, and Security Layers. In our way 
for a unified abstract implementation, we proposed, in 
previous works, meta-models for data sources, ingestion, 
storage, and visualization layers. We also relied on our 
previous comparatives studies to define key concepts of 
management layer in Big Data. Thus, we shall present in this 
paper our meta-model for management layer in Big Data by 
applying techniques related to Model Driven Engineering. 
The main goal of this universal meta-modeling is to enable 
Big Data distribution providers to offer standard and unified 
solutions for a Big Data system.  
 
Key words: Meta-model, Model Driven Engineering, Big 
Data, Management layer, MapReduce, Zookeeper, Hive, Pig.  
 
1. INTRODUCTION 
 
As evident, huge volume of data are generated daily by all 
kind of devices, programs, and Social networks. The data 
includes social media sites, email, communication, blogs, and 
videos and so on. The rapid increase in the amount of 
published information or data establishes a new dimension 
called Big Data and, hence, raises huge issues. For efficient 
and retrieval data management, Database engines, based on 
SQL standard, were created in the 1970s [8]. They can 
perform well only when they process small amounts of 
relational data. Therefore, these tools remain very limited in 
the face of data expansion in volume and complexity. 
Similarly, Massively Parallel Processing ‘MPP’ [2], initially 
created in the early 1980s, improved slightly performance 
indicators for complex data volumes. However, this 
processing could not be used for processing non-relational 
data with permanent expansion. Powerful tools are required 
to store and exploit this daily expanding data in order to 
provide simple and reliable processing of the data collected 
from users. Traditional modeling operators face their 
limitations in this challenge, as information multiplies in 
volume and complexity, something that currently can only be 

managed by non-relational modeling techniques. In fact, 
Hadoop MapReduce [3] is the most efficient and reliable 
processing technique, compared to SQL databases and MPP 
processing. It has many characteristics that differentiate it 
from the other data processing system. For instance, Hadoop 
has a performance proportional to the complexity of large 
data. It is not only an effective tool for solving massive data 
problems but also it is a concept that has changed the 
organization of large-scale processing systems. However, 
despite its success, this model has not yet reached its final 
appearance as a mature computer solution. On the contrary, it 
is a starting point for other perspectives. Hadoop can support 
other types of distributed programming paradigms, whose 
tasks will be deployed relying always on the MapReduce 
resource manager and application manager. Ultimately, the 
ecosystem of Hadoop is very rich. For example, there are 
notably higher level applications to process data in a 
formalism close to SQL using HIVE [4] (as in a relational 
database), and tools for importing external data into Hadoop 
distributed file system or exporting Hadoop data to the 
outside, ie Sqoop [30], Pig [29], etc. At this point, we deem it 
necessary to point out that in our earlier studies we have 
identified key concepts of Hadoop management through 
comparative studies of major Big Data distributions [5]. Our 
aim there was to outline the weakness and the strength of each 
distribution and thus collect the appropriate raw material 
necessary for the study. Yet, the following work is a progress 
report of our previous proposals for meta-models for layers: 
Data Sources, Ingestion [6], Storage [7,35], and Visualization 
[36]. It is also an extended version of our work that has 
already been published in the Proceeding of a Conference [1]. 
In this article, we shall propose a universal meta-model for 
Big Data management layer by applying techniques related to 
Model Driven Engineering ‘MDE' [9]. These meta-models 
together with the previous ones, which we have proposed for 
the other layers, can be used as an independent cross-platform 
Domain Specific Language. 
 
2. RELATED WORK  
 
Big data is an important subject that has recently attracted the 
interest of academics in the field of information technology. It 
is extremely important since it can help to identify and extract 
valuable and relevant knowledge, which is a vital factor for 
the success and prosperity of companies and industries. 
Indeed, many researchers have worked on big data, 
particularly on its value chain and on its processing tools. To 
start with, Mohammed, Humbe, and Chowhan (2016) [10] 
aimed to provide an overview of the big data context. They 
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defined the big data value chain in 5V. These authors focused 
on a classification based on five categories: data stores, 
content format, data sources, data processing and the staging 
of the data. Siddiqa and al. (2016) [11] focused on large data 
management by studying big data management techniques in 
storage, preprocessing, processing and security [37]. They 
also presented future directions for research in this field such 
as data integration and governance. As for Philip Chen and 
Zhang (2014) [12], they gave a brief overview of the problems 
of big data such as data mining, volume, variety, and velocity 
management in different areas including trade, 
administrations, and scientific research. They were also 
interested in the opportunities and challenges of storage, 
transmission, analysis, and visualization related to big data 
through current techniques and technologies. Big data and its 
processing tools are developing rapidly, reaching and 
affecting more and more domains. Skourletopoulos and al. 
(2017) [13] and Hashem (2015) [14] explored the 
opportunities, challenges, and techniques of big data and their 
relationship with cloud technologies, such as Big 
Data-As-A-Service. They identified some data analysis 
challenges such as scalability, availability, data integrity, and 
data transformation. As one of the main subjects of big data  is 
the ability to manage constraints in real time, Liu, Iftikhar 
and Xie (2014) [15], Zheng and al. (2015) [16], Mohamed 
and Al-Jaroodi (2014) [17] addressed the topic  by providing 
an overview of the current state of the art tools for dealing 
with big data. Liu, Iftikhar, and Xie (2014) [18] presented an 
analysis of open source real-time processing technologies 
with a focus on real-time architectures. Zheng and al. (2015) 
[16] discussed the challenges of big data and in particular 
those of real-time processing. They also presented a 
multilevel storage model and some deployment methods to 
meet the requirements of big data in real time and in 
heterogeneity. Mohamed and Al-Jaroodi (2014) [17] 
presented some technical challenges to real-time applications 
in big data. Besides, they provided a performance analysis 
and some big data requirements in real time. Other 
researchers have focused on the comparison of big data 
processing tools. Indeed, Lopez, Lobato, and Duarte (2016) 
[19] described, analyzed and compared three main open 
source distributed flow processing platforms such as Spark, 
Flink, and Storm. They provided experimental performance 
results focusing on throughput and parallelism in a threat 
detection application in network traffic. Urmila (2016) [20] 
introduced and compared Hive, Pig, and MapReduce for big 
data analysis. The comparison is based on the type of 
language: the user interface, the available algorithms and the 
scale of data supported in each tool. 
According to this research and the research studies we have 
done on the Big Data world, we found that big data system 
contains several tools that allow the analysis and processing 
of massive data. This jungle of tools is grouped in several 
distributions depending on the provider of the solution 
(HortonWorks, Cloudera, Pivotal, etc.) [5]. Hence the need to 
standardize concepts through the application of techniques 
related to Model-driven Engineering 'MDE' become an 
urgent factor to efficiently manage a substantial amount of 

data. Correspondingly, in our previous works [5], we gave a 
detailed comparison of the top five big data solution 
providers. These comparatives studies along with the 
evaluation made by Forrester Wave [21] on the same Hadoop 
distributions helped us to define the key concepts of 
Management layer in a Big Data system. We also rely on two 
other comparative studies made by Robert D. Schneider [22] 
and V. Starostenkov [23] on the three HortonWorks, 
Cloudera, and MapR distributions.  
In earlier works, we proposed meta-modeling of the layers of 
a Big Data system, namely: Data Sources, Ingestion [6], 
Storage [35], and visualization [36]. Yet, we shall propose in 
this paper a universal meta-modeling of Big Data 
Management layer. The main goal of this universal 
meta-modeling is to enable Big data distribution providers to 
offer standard and unified solutions for a Big Data system. 

 
3. MAPREDUCE 
 
3.1 MapReduce phases  
 
MapReduce [3] refers to both the programming model and the 
framework originally developed by Google [25] for 
large-scale parallel data processing. Users only need to 
provide two functions, called map and reduce, and the system 
handles all the other issues related to parallelization, fault 
tolerance, data distribution, and load balancing. The map and 
reduce functions are set to key-value pairs. The map function 
consumes key-value input pairs and produces a (possibly 
empty) list of intermediate key-value pairs. Then, the 
framework groups the intermediate pairs by key and delivers 
each group (the key and all associated values) to the reduce 
function, which in turn produces a (possibly empty) list of 
key-value output pairs. The MapReduce framework runs 
parallel programs in a shared-nothing cluster. There are two 
types of processes, the workers, who execute the map and 
reduce tasks, and the master, which is in charge of controlling 
the execution of the workers. Typically, input and output data 
is stored in a distributed file system, for example, Google File 
System [26], which runs in the same nodes where MapReduce 
jobs are run. In a MapReduce job, the input is divided into M 
parts (splits), which are consumed by M map tasks, one per 
part. The output of the map tasks is partitioned according to 
the intermediate key in R fragments using a partitioning 
function, by default (hash (k2) mod R), which are then 
processed by R reduce tasks. 
 
Figure 1 summarizes the execution steps of a Map/Reduce 
program that consist of: 

 The Map Phase: Each Mapper (the node that executes 
the Map function) works on one or more pieces of the 
initial data that are in its node. According to the 
processing described by the Map function, Mappers 
produce results in pairs (key, value). 

 The pairs (key, value) produced by the different 
Mappers are grouped and sorted according to their 
keys. Then, they are directed to the different Reduce 
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nodes so that all pairs that have the same key will be in 
the same Reduce node. 

 Each Reducer processes the values associated with 
each key at a time.  

This processing is fixed by the Reduce function written by the 
programmer. 
 

Figure 1: Typical structure of a MapReduce application [27]. 

3.2 Meta-model of MapReduce 
This figure shows the meta-model that we proposed for the 
MapReduce process within Hadoop: 

 
 

Figure 2: Meta-model of MapReduce. 

Figure 2 presents the meta-model that we proposed to specify 
the program structure of the analysis applications at a higher 
level of abstraction. The AnalyticsTask meta-class presents 
the problem to be solved using the analysis. Typically, each 
scan task is divided into a set of small subtasks. These 
subtasks are modeled as Job. Each Job may need to refer to 
input data files. These input data files are modeled as DataFile 
with the file path. As a rule, several subtasks of a scan task 
must be executed sequentially. They are designed in a way 
that the output of a Job is used as input by a subsequent Job. 
This Job execution sequence is modeled with the nextJob 
association. Each Analysis Job uses a set of input files and 
generates output data in a set of output files. The path for 
input and output is specified using the properties of the Job 

inputPath and outputPath, respectively. The format of these 
input/output files may be different. For instance, data 
contained in files can be structured in vector form or as 
unstructured text, etc. StreamFormat specifies this format 
information. The default value for input/output files is the 
text. Each job has a mapper and may have a gearbox. Mapper 
transforms input records into intermediate records. It maps 
the key-value pairs into a set of intermediate key-value pairs. 
The Mapper class has many properties: keyInType, 
keyOutType, valueInType, and valueOutType. These 
properties specify the data types of the input key and the 
output key, the input data values, and the output data values, 
respectively. Combiners may optionally be used to reduce the 
amount of data transferred from Mapper to Reducer. They are 
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intermediate reducers and they are modeled with the 
hasCombiner association whose target is Reducer. The 
Reducer class has properties named keyOutType and 
valueOutType which to specify the data types of the output. 
Each Job MapReduce has a default partitioner. Hadoop 
MapReduce also provides a mechanism to have a user-defined 
partitioning class. This is modeled as a Partitioner. To take 
advantage of parallel data processing capabilities, machine 
learning [28] algorithms must be implemented in the 
MapReduce paradigm. The meta-model shows representative 
classes of algorithms. These inherit the structure of the Job 
class. At this stage, we deem it necessary to note that 
MapReduce has a direct relationship with the other 
components of Hadoop management layer like Hive [4], Pig 
[29], Sqoop [30], Zookeeper [31], etc. In the next parts, we 
will propose meta-models for these components. 

 
4. ZOOKEEPER 

4.1 Definition 

ZooKeeper [31] is a Hadoop cluster management solution. 
This solution allows coordinating the tasks of the services of a 
Hadoop cluster and provides Hadoop components with 
distribution capabilities. Zookeeper is an open-source project 
that provides services like the presentation of configuration 
information and gives a distributed synchronization. 
Zookeeper has ephemeral nodes representing different 
Region Server [32]. Master servers use these nodes to 
discover the available servers. In addition to availability, 
nodes are also used to track server failures or network 
partitions. Zookeeper also offers a coordination service as the 
client finds and communicates with the Region Server via 
Zookeeper. 

4.2 Meta-model of Zookeeper 

The following figure shows the meta-model we proposed for 
the Zookeeper: 

 
Figure 3: Meta-model of Zookeeper. 

ZooKeeper uses several great ideas to ensure that node failure 
does not affect the system as a whole. In principle, it defines 

its own algorithm, the ZooKeeper Atomic Broadcast based on 
the algorithm of Paxos [33] that it improves. The Paxos 
algorithm guarantees a form of consensus, which is also the 
case at ZooKeeper. 
 
The meta-model we proposed for ZooKeeper expresses the 
general behavior of ZooKeeper. We note that there are several 
major steps: 

1. A customer submits a request. 

2. A leader node is elected and takes care of the request. 
The election is based on a version number: the node 
with the highest version number is considered a 
leader. 

3. The leader asks a set of followers (together called 
quorum) to help it to deal with the problem. Followers 
receive a request and respond to the leader. If the 
leader does not respond, a new one is chosen. In this 
way, we prevent the leader from becoming a SPOF 
(Single Point Of Failure). 

4. The leader establishes a point-to-point connection 
with each element of the quorum and submits the 
request to them. There is an advantage in having a 
quorum available: if a quorum node does not respond, 
others can do it. 

5. The quorum sends the result to the leader, which 
sends the end of processing (commit). The consensus 
is respected, the result is usable. 

 
We note that the manipulation permissions of a ZNode are 
handled by the ACLs (AC for access control). 
 
5. PIG 
 
Pig [29] is a brick that allows the querying of Hadoop data 
from a scripting language (language that interprets the code 
line by line instead of making a compilation). Pig is based on 
a high-level language called PigLatin. It transforms data 
streams step by step either by running MapReduce programs 
in sequence or by using predefined methods such as 
averaging, minimum value, or by allowing the user to define 
his own methods called User Defined Functions (UDF). 
Three steps in a typical Pig program: 
 

 Loading: Loading HDFS data. 
 Transformation: Translates the data to a list of Map 

and Reduce tasks, and the application of relational 
operators: FILTER, FOREACH, GROUP, UNION, 
etc. 

 Unloading or Storage: Display the results on the 
screen or store them in a file. 

 
The following figure shows the meta-model that we proposed 
for PIG: 
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Figure 4: Meta-model of PIG. 

 
6. HIVE 
 
Hive [4] is a data query tool that allows the execution of SQL 
queries on the Hadoop cluster to analyze and aggregate data. 
The language used by Hive is named HiveQL. This is a 
visualization language only, thus wise only "Select" 
statements are supported for data manipulation. First, 
Facebook developed Hive, but Apache Software Foundation 
took it subsequently to make it Open Source under the name 
of Apache Hive [38]. The features of HIVE: 
 

 Hive is at first familiar, fast, scalable, and extensible. 
 It is not designated for transactional operations, but it 

can be said that it is closer to OLAP operations 
(OnLine Analysis Processing). 

 Hive does not process data in real time, 
 Its databases are not relational, 
 Structure of the data in a well-known model: Tables, 

Columns, Lines, etc. 
 
This figure presents the meta-model that we proposed for 
Hive: 
 

 
Figure 5: Meta-model of Hive. 

 
Our meta-model shows that Hive is a software with a data 
warehouse infrastructure. It allows interactions between the 
user and the file system. The user interfaces that Hive 
supports are Hive WebUI, Hive command line, and Hive HD 
Insight (for Windows server). We represent them in our 
meta-model by the meta-class Interface, which consists of 
WebUI and HiveCommandLine. The MetaStore represents 
the database server chosen by Hive respectively to store table 
schemas, databases, table columns, their data types, and 
HDFS Mapping. 

HiveQL is similar to SQL for querying schema information in 
the Meta Store. HiveQL Process Engine is one of the 
replacements for the traditional approach of the MapReduce 
program. Instead of writing the MapReduce program in Java, 
you can write a query for the MapReduce job and execute it. 
The ExecutionEngine meta-class represents the link between 
HiveQL Process Engine and MapReduce. It executes the 
queries and generates the same results as MapReduce. 

 
7. SQOOP 

 
Sqoop [30] is a brick for data integration. It allows the 
transfer of data between a cluster and a relational database. 
With Sqoop, the Apache Software Foundation connects 
Hadoop to databases and storage systems. As more and more 
companies use Hadoop to analyze large amounts of 
information, they realize that they may also need to transfer 
data between Hadoop and their existing databases, storage 
systems, and other databases. Volunteer developers are 
behind the development of a new connector to speed up these 
data exchanges. Consequently, they gained full support from 
the Apache Software Foundation (ASF). Indeed, the 
foundation, which supports the development of open source 
software, has promoted a tool, called Sqoop, which 
accelerates the transfer of data, to the rank of priority project. 
Figure 6 shows the usefulness of the Sqoop tool: 
  

 
Figure 6: Sqoop utility [30]. 

 
The following figure 7 shows the meta-model that we 
proposed for Sqoop: 
 

 
Figure 7: Meta-model of Sqoop. 

 
Sqoop Import is the process of taking the data from a 
relational database management system and putting it in 
Hadoop, Sqoop Export is the process of taking the data from 
Hadoop and putting it back into a database management 
system relational. Sqoop can handle both these processes 
using the Sqoop Import and Sqoop Export functions. 
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8. GENERIC META-MODEL OF HADOOP MANAGEMENT LAYER 

Figure 8: Generic meta-model of Hadoop management layer. 
 



Allae Erraissi et al., International Journal of Emerging Trends in Engineering Research, 7(7), July 2019, 36-43 
 

42 
 

 

After the creation of meta-models for Hadoop management 
layer, our next step in our future studies will focus on the 
creation of models respecting these meta-models. 
Subsequently, we shall define the transformation rules 
between these meta-models using the transformation 
language ATL (Atlas Transformation Language) [34]. 
 
9. DISCUSSION AND PERSPECTIVES 
 
In the age of the web giants, all our actions generate digital 
traces. We find a huge amount of data generated daily that is 
hugely related to personal life and that can be exploited in 
different areas. There is also internally generated data, called 
offline data, which is created by the operations of 
organizations. The processing of this massive data plays a key 
role in decision-making. Big data has become essential in 
today's world. Therefore, this work relies more particularly on 
our three research studies that we have already done in the 
world of Big Data and its different solutions. We have found 
that there are several distributions that can handle Big Data 
(HortonWorks, Pivotal HD, IBM Big Insights, etc.). Each 
distribution provider designs a solution in its own way 
without respecting standard references such as meta-models, 
the fact that caused the diversity of solutions and the 
non-interoperability between the different solutions. In our 
research project, we apply techniques related to the 
engineering of the models to propose a universal 
meta-modeling including all layers of the architecture of a 
Big Data system. After the creation of these meta-models, in 
the next step, we shall work on the creation of models 
respecting these meta-models. Then we shall define the 
transformation rules between these meta-models using the 
transformation language ATL (Atlas Transformation 
Language) [24]. These meta-models are platform 
independent according to Model Driven Architecture pattern 
[9], which describes the structures of Data Sources, Ingestion, 
and Hadoop Storage independently from any specific 
platform. 

 
10. CONCLUSION 
 
Many scientific fields are now facing a deluge of data. One of 
the approaches proposed to allow the processing of such 
volumes is the MapReduce programming paradigm 
introduced by Google, and the various other tools constitute 
the management layer in the overall architecture of a Big Data 
system. In this paper, we have studied this layer, which is very 
useful for the proper functioning of a Big Data system. We 
have also applied techniques related to Model Driven 
Engineering (MDE) to propose a universal meta-modeling for 
Big Data management layer. These meta-models together, 
which we have suggested for the other layers, can be used as 
an independent cross-platform Domain Specific Language. 
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