
Allae Erraissi et al., International Journal of Emerging Trends in Engineering Research, 7(7), July 2019, 36-43

36

ABSTRACT

Nowadays, the magnitude of data generated daily through the
technological environment has increased enormously. This
massive amount of heterogeneous data led to the emergence
of a large number of big data systems and technologies that
share similar architectures but with different
implementations. In essence, the common architecture is
composed of many components: Data sources, Ingestion,
Hadoop Storage, Hadoop Platform management,
Visualization, Monitoring, and Security Layers. In our way
for a unified abstract implementation, we proposed, in
previous works, meta-models for data sources, ingestion,
storage, and visualization layers. We also relied on our
previous comparatives studies to define key concepts of
management layer in Big Data. Thus, we shall present in this
paper our meta-model for management layer in Big Data by
applying techniques related to Model Driven Engineering.
The main goal of this universal meta-modeling is to enable
Big Data distribution providers to offer standard and unified
solutions for a Big Data system.

Key words: Meta-model, Model Driven Engineering, Big
Data, Management layer, MapReduce, Zookeeper, Hive, Pig.

1. INTRODUCTION

As evident, huge volume of data are generated daily by all
kind of devices, programs, and Social networks. The data
includes social media sites, email, communication, blogs, and
videos and so on. The rapid increase in the amount of
published information or data establishes a new dimension
called Big Data and, hence, raises huge issues. For efficient
and retrieval data management, Database engines, based on
SQL standard, were created in the 1970s [8]. They can
perform well only when they process small amounts of
relational data. Therefore, these tools remain very limited in
the face of data expansion in volume and complexity.
Similarly, Massively Parallel Processing ‘MPP’ [2], initially
created in the early 1980s, improved slightly performance
indicators for complex data volumes. However, this
processing could not be used for processing non-relational
data with permanent expansion. Powerful tools are required
to store and exploit this daily expanding data in order to
provide simple and reliable processing of the data collected
from users. Traditional modeling operators face their
limitations in this challenge, as information multiplies in
volume and complexity, something that currently can only be

managed by non-relational modeling techniques. In fact,
Hadoop MapReduce [3] is the most efficient and reliable
processing technique, compared to SQL databases and MPP
processing. It has many characteristics that differentiate it
from the other data processing system. For instance, Hadoop
has a performance proportional to the complexity of large
data. It is not only an effective tool for solving massive data
problems but also it is a concept that has changed the
organization of large-scale processing systems. However,
despite its success, this model has not yet reached its final
appearance as a mature computer solution. On the contrary, it
is a starting point for other perspectives. Hadoop can support
other types of distributed programming paradigms, whose
tasks will be deployed relying always on the MapReduce
resource manager and application manager. Ultimately, the
ecosystem of Hadoop is very rich. For example, there are
notably higher level applications to process data in a
formalism close to SQL using HIVE [4] (as in a relational
database), and tools for importing external data into Hadoop
distributed file system or exporting Hadoop data to the
outside, ie Sqoop [30], Pig [29], etc. At this point, we deem it
necessary to point out that in our earlier studies we have
identified key concepts of Hadoop management through
comparative studies of major Big Data distributions [5]. Our
aim there was to outline the weakness and the strength of each
distribution and thus collect the appropriate raw material
necessary for the study. Yet, the following work is a progress
report of our previous proposals for meta-models for layers:
Data Sources, Ingestion [6], Storage [7,35], and Visualization
[36]. It is also an extended version of our work that has
already been published in the Proceeding of a Conference [1].
In this article, we shall propose a universal meta-model for
Big Data management layer by applying techniques related to
Model Driven Engineering ‘MDE' [9]. These meta-models
together with the previous ones, which we have proposed for
the other layers, can be used as an independent cross-platform
Domain Specific Language.

2. RELATED WORK

Big data is an important subject that has recently attracted the
interest of academics in the field of information technology. It
is extremely important since it can help to identify and extract
valuable and relevant knowledge, which is a vital factor for
the success and prosperity of companies and industries.
Indeed, many researchers have worked on big data,
particularly on its value chain and on its processing tools. To
start with, Mohammed, Humbe, and Chowhan (2016) [10]
aimed to provide an overview of the big data context. They

Meta-modeling of Big Data management layer
Allae Erraissi1, Abdessamad Belangour2

1,2Laboratory of Information Technology and Modeling, Hassan II University, Faculty of sciences Ben M’Sik,
Casablanca, Morocco, erraissi.allae@gmail.com

 ISSN 2347 - 3983
Volume 7, No.7 July 2019

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter01772019.pdf

https://doi.org/10.30534/ijeter/2019/01772019

Allae Erraissi et al., International Journal of Emerging Trends in Engineering Research, 7(7), July 2019, 36-43

37

defined the big data value chain in 5V. These authors focused
on a classification based on five categories: data stores,
content format, data sources, data processing and the staging
of the data. Siddiqa and al. (2016) [11] focused on large data
management by studying big data management techniques in
storage, preprocessing, processing and security [37]. They
also presented future directions for research in this field such
as data integration and governance. As for Philip Chen and
Zhang (2014) [12], they gave a brief overview of the problems
of big data such as data mining, volume, variety, and velocity
management in different areas including trade,
administrations, and scientific research. They were also
interested in the opportunities and challenges of storage,
transmission, analysis, and visualization related to big data
through current techniques and technologies. Big data and its
processing tools are developing rapidly, reaching and
affecting more and more domains. Skourletopoulos and al.
(2017) [13] and Hashem (2015) [14] explored the
opportunities, challenges, and techniques of big data and their
relationship with cloud technologies, such as Big
Data-As-A-Service. They identified some data analysis
challenges such as scalability, availability, data integrity, and
data transformation. As one of the main subjects of big data is
the ability to manage constraints in real time, Liu, Iftikhar
and Xie (2014) [15], Zheng and al. (2015) [16], Mohamed
and Al-Jaroodi (2014) [17] addressed the topic by providing
an overview of the current state of the art tools for dealing
with big data. Liu, Iftikhar, and Xie (2014) [18] presented an
analysis of open source real-time processing technologies
with a focus on real-time architectures. Zheng and al. (2015)
[16] discussed the challenges of big data and in particular
those of real-time processing. They also presented a
multilevel storage model and some deployment methods to
meet the requirements of big data in real time and in
heterogeneity. Mohamed and Al-Jaroodi (2014) [17]
presented some technical challenges to real-time applications
in big data. Besides, they provided a performance analysis
and some big data requirements in real time. Other
researchers have focused on the comparison of big data
processing tools. Indeed, Lopez, Lobato, and Duarte (2016)
[19] described, analyzed and compared three main open
source distributed flow processing platforms such as Spark,
Flink, and Storm. They provided experimental performance
results focusing on throughput and parallelism in a threat
detection application in network traffic. Urmila (2016) [20]
introduced and compared Hive, Pig, and MapReduce for big
data analysis. The comparison is based on the type of
language: the user interface, the available algorithms and the
scale of data supported in each tool.
According to this research and the research studies we have
done on the Big Data world, we found that big data system
contains several tools that allow the analysis and processing
of massive data. This jungle of tools is grouped in several
distributions depending on the provider of the solution
(HortonWorks, Cloudera, Pivotal, etc.) [5]. Hence the need to
standardize concepts through the application of techniques
related to Model-driven Engineering 'MDE' become an
urgent factor to efficiently manage a substantial amount of

data. Correspondingly, in our previous works [5], we gave a
detailed comparison of the top five big data solution
providers. These comparatives studies along with the
evaluation made by Forrester Wave [21] on the same Hadoop
distributions helped us to define the key concepts of
Management layer in a Big Data system. We also rely on two
other comparative studies made by Robert D. Schneider [22]
and V. Starostenkov [23] on the three HortonWorks,
Cloudera, and MapR distributions.
In earlier works, we proposed meta-modeling of the layers of
a Big Data system, namely: Data Sources, Ingestion [6],
Storage [35], and visualization [36]. Yet, we shall propose in
this paper a universal meta-modeling of Big Data
Management layer. The main goal of this universal
meta-modeling is to enable Big data distribution providers to
offer standard and unified solutions for a Big Data system.

3. MAPREDUCE

3.1 MapReduce phases

MapReduce [3] refers to both the programming model and the
framework originally developed by Google [25] for
large-scale parallel data processing. Users only need to
provide two functions, called map and reduce, and the system
handles all the other issues related to parallelization, fault
tolerance, data distribution, and load balancing. The map and
reduce functions are set to key-value pairs. The map function
consumes key-value input pairs and produces a (possibly
empty) list of intermediate key-value pairs. Then, the
framework groups the intermediate pairs by key and delivers
each group (the key and all associated values) to the reduce
function, which in turn produces a (possibly empty) list of
key-value output pairs. The MapReduce framework runs
parallel programs in a shared-nothing cluster. There are two
types of processes, the workers, who execute the map and
reduce tasks, and the master, which is in charge of controlling
the execution of the workers. Typically, input and output data
is stored in a distributed file system, for example, Google File
System [26], which runs in the same nodes where MapReduce
jobs are run. In a MapReduce job, the input is divided into M
parts (splits), which are consumed by M map tasks, one per
part. The output of the map tasks is partitioned according to
the intermediate key in R fragments using a partitioning
function, by default (hash (k2) mod R), which are then
processed by R reduce tasks.

Figure 1 summarizes the execution steps of a Map/Reduce
program that consist of:

 The Map Phase: Each Mapper (the node that executes
the Map function) works on one or more pieces of the
initial data that are in its node. According to the
processing described by the Map function, Mappers
produce results in pairs (key, value).

 The pairs (key, value) produced by the different
Mappers are grouped and sorted according to their
keys. Then, they are directed to the different Reduce

Allae Erraissi et al., International Journal of Emerging Trends in Engineering Research, 7(7), July 2019, 36-43

38

nodes so that all pairs that have the same key will be in
the same Reduce node.

 Each Reducer processes the values associated with
each key at a time.

This processing is fixed by the Reduce function written by the
programmer.

Figure 1: Typical structure of a MapReduce application [27].

3.2 Meta-model of MapReduce
This figure shows the meta-model that we proposed for the
MapReduce process within Hadoop:

Figure 2: Meta-model of MapReduce.

Figure 2 presents the meta-model that we proposed to specify
the program structure of the analysis applications at a higher
level of abstraction. The AnalyticsTask meta-class presents
the problem to be solved using the analysis. Typically, each
scan task is divided into a set of small subtasks. These
subtasks are modeled as Job. Each Job may need to refer to
input data files. These input data files are modeled as DataFile
with the file path. As a rule, several subtasks of a scan task
must be executed sequentially. They are designed in a way
that the output of a Job is used as input by a subsequent Job.
This Job execution sequence is modeled with the nextJob
association. Each Analysis Job uses a set of input files and
generates output data in a set of output files. The path for
input and output is specified using the properties of the Job

inputPath and outputPath, respectively. The format of these
input/output files may be different. For instance, data
contained in files can be structured in vector form or as
unstructured text, etc. StreamFormat specifies this format
information. The default value for input/output files is the
text. Each job has a mapper and may have a gearbox. Mapper
transforms input records into intermediate records. It maps
the key-value pairs into a set of intermediate key-value pairs.
The Mapper class has many properties: keyInType,
keyOutType, valueInType, and valueOutType. These
properties specify the data types of the input key and the
output key, the input data values, and the output data values,
respectively. Combiners may optionally be used to reduce the
amount of data transferred from Mapper to Reducer. They are

Allae Erraissi et al., International Journal of Emerging Trends in Engineering Research, 7(7), July 2019, 36-43

39

intermediate reducers and they are modeled with the
hasCombiner association whose target is Reducer. The
Reducer class has properties named keyOutType and
valueOutType which to specify the data types of the output.
Each Job MapReduce has a default partitioner. Hadoop
MapReduce also provides a mechanism to have a user-defined
partitioning class. This is modeled as a Partitioner. To take
advantage of parallel data processing capabilities, machine
learning [28] algorithms must be implemented in the
MapReduce paradigm. The meta-model shows representative
classes of algorithms. These inherit the structure of the Job
class. At this stage, we deem it necessary to note that
MapReduce has a direct relationship with the other
components of Hadoop management layer like Hive [4], Pig
[29], Sqoop [30], Zookeeper [31], etc. In the next parts, we
will propose meta-models for these components.

4. ZOOKEEPER

4.1 Definition

ZooKeeper [31] is a Hadoop cluster management solution.
This solution allows coordinating the tasks of the services of a
Hadoop cluster and provides Hadoop components with
distribution capabilities. Zookeeper is an open-source project
that provides services like the presentation of configuration
information and gives a distributed synchronization.
Zookeeper has ephemeral nodes representing different
Region Server [32]. Master servers use these nodes to
discover the available servers. In addition to availability,
nodes are also used to track server failures or network
partitions. Zookeeper also offers a coordination service as the
client finds and communicates with the Region Server via
Zookeeper.

4.2 Meta-model of Zookeeper

The following figure shows the meta-model we proposed for
the Zookeeper:

Figure 3: Meta-model of Zookeeper.

ZooKeeper uses several great ideas to ensure that node failure
does not affect the system as a whole. In principle, it defines

its own algorithm, the ZooKeeper Atomic Broadcast based on
the algorithm of Paxos [33] that it improves. The Paxos
algorithm guarantees a form of consensus, which is also the
case at ZooKeeper.

The meta-model we proposed for ZooKeeper expresses the
general behavior of ZooKeeper. We note that there are several
major steps:

1. A customer submits a request.

2. A leader node is elected and takes care of the request.
The election is based on a version number: the node
with the highest version number is considered a
leader.

3. The leader asks a set of followers (together called
quorum) to help it to deal with the problem. Followers
receive a request and respond to the leader. If the
leader does not respond, a new one is chosen. In this
way, we prevent the leader from becoming a SPOF
(Single Point Of Failure).

4. The leader establishes a point-to-point connection
with each element of the quorum and submits the
request to them. There is an advantage in having a
quorum available: if a quorum node does not respond,
others can do it.

5. The quorum sends the result to the leader, which
sends the end of processing (commit). The consensus
is respected, the result is usable.

We note that the manipulation permissions of a ZNode are
handled by the ACLs (AC for access control).

5. PIG

Pig [29] is a brick that allows the querying of Hadoop data
from a scripting language (language that interprets the code
line by line instead of making a compilation). Pig is based on
a high-level language called PigLatin. It transforms data
streams step by step either by running MapReduce programs
in sequence or by using predefined methods such as
averaging, minimum value, or by allowing the user to define
his own methods called User Defined Functions (UDF).
Three steps in a typical Pig program:

 Loading: Loading HDFS data.
 Transformation: Translates the data to a list of Map

and Reduce tasks, and the application of relational
operators: FILTER, FOREACH, GROUP, UNION,
etc.

 Unloading or Storage: Display the results on the
screen or store them in a file.

The following figure shows the meta-model that we proposed
for PIG:

Allae Erraissi et al., International Journal of Emerging Trends in Engineering Research, 7(7), July 2019, 36-43

40

Figure 4: Meta-model of PIG.

6. HIVE

Hive [4] is a data query tool that allows the execution of SQL
queries on the Hadoop cluster to analyze and aggregate data.
The language used by Hive is named HiveQL. This is a
visualization language only, thus wise only "Select"
statements are supported for data manipulation. First,
Facebook developed Hive, but Apache Software Foundation
took it subsequently to make it Open Source under the name
of Apache Hive [38]. The features of HIVE:

 Hive is at first familiar, fast, scalable, and extensible.
 It is not designated for transactional operations, but it

can be said that it is closer to OLAP operations
(OnLine Analysis Processing).

 Hive does not process data in real time,
 Its databases are not relational,
 Structure of the data in a well-known model: Tables,

Columns, Lines, etc.

This figure presents the meta-model that we proposed for
Hive:

Figure 5: Meta-model of Hive.

Our meta-model shows that Hive is a software with a data
warehouse infrastructure. It allows interactions between the
user and the file system. The user interfaces that Hive
supports are Hive WebUI, Hive command line, and Hive HD
Insight (for Windows server). We represent them in our
meta-model by the meta-class Interface, which consists of
WebUI and HiveCommandLine. The MetaStore represents
the database server chosen by Hive respectively to store table
schemas, databases, table columns, their data types, and
HDFS Mapping.

HiveQL is similar to SQL for querying schema information in
the Meta Store. HiveQL Process Engine is one of the
replacements for the traditional approach of the MapReduce
program. Instead of writing the MapReduce program in Java,
you can write a query for the MapReduce job and execute it.
The ExecutionEngine meta-class represents the link between
HiveQL Process Engine and MapReduce. It executes the
queries and generates the same results as MapReduce.

7. SQOOP

Sqoop [30] is a brick for data integration. It allows the
transfer of data between a cluster and a relational database.
With Sqoop, the Apache Software Foundation connects
Hadoop to databases and storage systems. As more and more
companies use Hadoop to analyze large amounts of
information, they realize that they may also need to transfer
data between Hadoop and their existing databases, storage
systems, and other databases. Volunteer developers are
behind the development of a new connector to speed up these
data exchanges. Consequently, they gained full support from
the Apache Software Foundation (ASF). Indeed, the
foundation, which supports the development of open source
software, has promoted a tool, called Sqoop, which
accelerates the transfer of data, to the rank of priority project.
Figure 6 shows the usefulness of the Sqoop tool:

Figure 6: Sqoop utility [30].

The following figure 7 shows the meta-model that we
proposed for Sqoop:

Figure 7: Meta-model of Sqoop.

Sqoop Import is the process of taking the data from a
relational database management system and putting it in
Hadoop, Sqoop Export is the process of taking the data from
Hadoop and putting it back into a database management
system relational. Sqoop can handle both these processes
using the Sqoop Import and Sqoop Export functions.

Allae Erraissi et al., International Journal of Emerging Trends in Engineering Research, 7(7), July 2019, 36-43

41

8. GENERIC META-MODEL OF HADOOP MANAGEMENT LAYER

Figure 8: Generic meta-model of Hadoop management layer.

Allae Erraissi et al., International Journal of Emerging Trends in Engineering Research, 7(7), July 2019, 36-43

42

After the creation of meta-models for Hadoop management
layer, our next step in our future studies will focus on the
creation of models respecting these meta-models.
Subsequently, we shall define the transformation rules
between these meta-models using the transformation
language ATL (Atlas Transformation Language) [34].

9. DISCUSSION AND PERSPECTIVES

In the age of the web giants, all our actions generate digital
traces. We find a huge amount of data generated daily that is
hugely related to personal life and that can be exploited in
different areas. There is also internally generated data, called
offline data, which is created by the operations of
organizations. The processing of this massive data plays a key
role in decision-making. Big data has become essential in
today's world. Therefore, this work relies more particularly on
our three research studies that we have already done in the
world of Big Data and its different solutions. We have found
that there are several distributions that can handle Big Data
(HortonWorks, Pivotal HD, IBM Big Insights, etc.). Each
distribution provider designs a solution in its own way
without respecting standard references such as meta-models,
the fact that caused the diversity of solutions and the
non-interoperability between the different solutions. In our
research project, we apply techniques related to the
engineering of the models to propose a universal
meta-modeling including all layers of the architecture of a
Big Data system. After the creation of these meta-models, in
the next step, we shall work on the creation of models
respecting these meta-models. Then we shall define the
transformation rules between these meta-models using the
transformation language ATL (Atlas Transformation
Language) [24]. These meta-models are platform
independent according to Model Driven Architecture pattern
[9], which describes the structures of Data Sources, Ingestion,
and Hadoop Storage independently from any specific
platform.

10. CONCLUSION

Many scientific fields are now facing a deluge of data. One of
the approaches proposed to allow the processing of such
volumes is the MapReduce programming paradigm
introduced by Google, and the various other tools constitute
the management layer in the overall architecture of a Big Data
system. In this paper, we have studied this layer, which is very
useful for the proper functioning of a Big Data system. We
have also applied techniques related to Model Driven
Engineering (MDE) to propose a universal meta-modeling for
Big Data management layer. These meta-models together,
which we have suggested for the other layers, can be used as
an independent cross-platform Domain Specific Language.

REFERENCES
1. Erraissi, A., and A. Belangour. « Meta-modeling of

Zookeeper and MapReduce processing ». In 2018
International Conference on Electronics, Control,
Optimization and Computer Science (ICECOCS), 1�5,
2018. https://doi.org/10.1109/ICECOCS.2018.8610630

2. Inmon, W. H., and Daniel Linstedt. « 2.1 - A Brief History
of Big Data ». In Data Architecture: a Primer for the Data
Scientist, édité par W. H. Inmon et Daniel Linstedt, 45-48.
Boston: Morgan Kaufmann, 2015.
https://doi.org/10.1016/B978-0-12-802044-9.00008-8.

3. Blokdyk, Gerardus. MapReduce Complete
Self-Assessment Guide. CreateSpace Independent
Publishing Platform, 2017.

4. Dayong Du. Apache Hive Essentials: Essential
techniques to help you process, and get unique insights
from, big data, 2nd Edition eBook: Dayong Du: Gateway.

5. Allae Erraissi, Abdessamad Belangour, and Abderrahim
Tragha, “Digging into Hadoop-based Big Data
Architectures,” Int. J. Comput. Sci. Issues IJCSI, vol. 14,
no. 6, pp. 52–59, Nov. 2017.

6. Erraissi, A., & Belangour, A. (2018). Data sources and
ingestion big data layers: meta-modeling of key concepts
and features. International Journal of Engineering &
Technology, 7(4), 3607-3612.

7. Erraissi A., Belangour A. (2019) Capturing Hadoop
Storage Big Data Layer Meta-Concepts. In: Ezziyyani M.
(eds) Advanced Intelligent Systems for Sustainable
Development (AI2SD’2018). AI2SD 2018. Advances in
Intelligent Systems and Computing, vol 915. Springer,
Cham

8. Codd, Edgar F. (June 1970). "A Relational Model of Data
for Large Shared Data Banks". Communications of the
ACM. 13 (6): 377–87. CiteSeerX 10.1.1.88.646.
doi:10.1145/362384.362685

9. Royer, Jean-Claude, and Hugo Arboleda. Model-Driven
and Software Product Line Engineering. 1st Edition.
London, UK : Hoboken, NJ, USA: Wiley-ISTE, 2012.

10. Mohammed, A. F., V. T. Humbe, and S. S. Chowhan. 2016.
“A Review of Big Data Environment and Its Related
Technologies.” In 2016 International Conference on
Information Communication and Embedded Systems
(ICICES), 1–5.

11. Siddiqa, Aisha, Ibrahim Abaker Targio Hashem, Ibrar
Yaqoob, Mohsen Marjani, Shahabuddin Shamshirband,
Abdullah Gani, and Fariza Nasaruddin. 2016. “A Survey of
Big Data Management: Taxonomy and
State-of-the-Art.” Journal of Network and Computer
Applications 71 (August): 151–66.

12. Philip Chen, C. L., and Chun-Yang Zhang. 2014.
“Data-Intensive Applications, Challenges, Techniques
and Technologies: A Survey on Big Data.” Information
Sciences 275 (August): 314–47.

Allae Erraissi et al., International Journal of Emerging Trends in Engineering Research, 7(7), July 2019, 36-43

43

13. Skourletopoulos, Georgios, Constandinos X.
Mavromoustakis, George Mastorakis, Jordi Mongay
Batalla, Ciprian Dobre, Spyros Panagiotakis, and Evangelos
Pallis. 2017. “Big Data and Cloud Computing: A Survey
of the State-of-the-Art and Research Challenges.” In
Advances in Mobile Cloud Computing and Big Data in the
5G Era, edited by Constandinos X. Mavromoustakis,
George Mastorakis, and Ciprian Dobre, 23–41. Studies in
Big Data 22. Springer International Publishing.

14. Hashem, Ibrahim Abaker Targio, Ibrar Yaqoob, Nor Badrul
Anuar, Salimah Mokhtar, Abdullah Gani, and Samee Ullah
Khan. 2015. “The Rise of ‘big Data’ on Cloud
Computing: Review and Open Research Issues.”
Information Systems 47 (January): 98–115.
https://doi.org/10.1016/j.is.2014.07.006.

15. Liu, Xiufeng, Nadeem Iftikhar, and Xike Xie. 2014.
“Survey of Real-Time Processing Systems for Big Data.”
In Proceedings of the 18th International Database
Engineering & Applications Symposium, 356–361. IDEAS
’14. New York, NY, USA: ACM.
https://doi.org/10.1145/2628194.2628251.

16. Zheng, Z, P Wang, J Liu, and S Sun. 2015. “Real-Time Big
Data Processing Framework: Challenges and Solutions.”
Applied Mathematics and Information Sciences 9 (January):
3169–90.

17. Mohamed, N., and J. Al-Jaroodi. 2014. “Real-Time Big
Data Analytics: Applications and Challenges.” In 2014
International Conference on High Performance Computing
Simulation (HPCS), 305–10.
https://doi.org/10.1109/HPCSim.2014.6903700.

18. Liu, Xiufeng, Nadeem Iftikhar, and Xike Xie. 2014.
“Survey of Real-Time Processing Systems for Big Data.”
In Proceedings of the 18th International Database
Engineering & Applications Symposium, 356–361. IDEAS
’14. New York, NY, USA: ACM.
https://doi.org/10.1145/2628194.2628251.

19. Lopez, M. A., A. G. P. Lobato, and O. C. M. B. Duarte.
2016. “A Performance Comparison of Open-Source
Stream Processing Platforms.” In 2016 IEEE Global
Communications Conference (GLOBECOM), 1–6.
https://doi.org/10.1109/GLOCOM.2016.7841533.

20. Urmila, R. 2016. “Big Data Analysis: Comparision of
Hadoop MapReduce, Pig and Hive Dr. Urmila R. Pol
Assistant Professor, Department of Computer Science,
Shivaji University, Kolhapur, India” Vol. 5, Issue 6, June
2016 Copyright to IJIRSET.

21. Read, W., Report, T., & Takeaways, K. (2016). The
Forrester WaveTM: Big Data Hadoop Distributions, Q1
2016.

22. R. D. Schneider, “HADOOP BUYER’S GUIDE,” 2014.
23. V. Starostenkov, R. Senior, and D. Developer, “Hadoop

Distributions ”.
24. Mouad Banane and Belangour, A « RDFMongo: A

MongoDB Distributed and Scalable RDF Management
System Based on Meta-Model ». International Journal of
Advanced Trends in Computer Science and Engineering 8,
no 3 (25 June 2019): 734-41.
https://doi.org/10.30534/ijatcse/2019/62832019

25. J. Dean and S. Ghemawat, « MapReduce: simplified data
processing on large clusters », in 6th Symposium on

Operating System Design and Implementation, 2004, pp.
137–150.

26. S. Ghemawat, H. Gobioff, and S.-T. Leung, « The Google
file system », in Proceedings of the nineteenth ACM
symposium on Operating systems principles, vol. 37, 2003,
pp. 29–43.
https://doi.org/10.1145/1165389.945450

27. Leskovec, Jure, Anand Rajaraman, and Jeffrey David
Ullman. Mining of Massive Datasets. 2 edition.
Cambridge: Cambridge University Press, 2014.
https://doi.org/10.1017/CBO9781139924801

28. Theobald, Oliver. Machine Learning For Absolute
Beginners: A Plain English Introduction. Independently
published, 2018.

29. Gates, Alan, and Daniel Dai. Programming Pig: Dataflow
Scripting with Hadoop. 2 edition. O’Reilly Media, 2016.

30. Ting, Kathleen, and Jarek Jarcec Cecho. Apache Sqoop
Cookbook: Unlocking Hadoop for Your Relational
Database. 1 edition. Sebastopol, CA: O’Reilly Media,
2013.

31. Bagai, Chandan. Characterizing & Improving the
General Performance of Apache Zookeeper:
Sub-Project of Apache Hadoop. LAP AMBERT
Academic Publishing, 2016.

32. Vohra, Deepak. Apache HBase Primer. 1st ed. edition.
New York, NY: Apress, 2016.
https://doi.org/10.1007/978-1-4842-2424-3

33. L. Lamport, “Paxos Made Simple,” 2001.
34. “ATL: Atlas Transformation Language Specification of

the ATL Virtual Machine.”
35. Erraissi Allae, and Abdessamad Belangour. « Hadoop

Storage Big Data Layer: Meta-Modeling of Key
Concepts and Features ». International Journal of
Advanced Trends in Computer Science and Engineering 8,
nᵒ 3 (2019): 646�53.
https://doi.org/10.30534/ijatcse/2019/49832019

36. Erraissi Allae, and Abdessamad Belangour. «
Meta-Modeling of Big Data visualization layer using
On-Line Analytical Processing (OLAP) ». International
Journal of Advanced Trends in Computer Science and
Engineering 8, nᵒ 4 (2019).

37. A, Aditya Rahman, and Gusman Dharma. « Master Data
Management Maturity Assessment : A Case Study of a
Pasar Rebo Public Hospital ». International Journal of
Emerging Trends in Engineering Research 7, no 5 (5 June
2019): 15-20.
https://doi.org/10.30534/ijeter/2019/02752019

38. Banane, M., & Belangour, A. (2019). New Approach
based on Model Driven Engineering for Processing
Complex SPARQL Queries on Hive. International
Journal of Advanced Computer Science and Applications
(IJACSA), 10(4).
https://doi.org/10.14569/IJACSA.2019.0100474

