
Khulood Al-lehaibi et al., International Journal of Emerging Trends in Engineering Research, 11(9), September 2023, 282– 290

282

ABSTRACT

The tremendous growth of digital data in cloud storage

systems is a critical issue, as many duplicate data in storage

systems cause extra load. Cloud Service Providers (CSPs)

often employ Data Deduplication techniques to eliminate

redundant data and store only one copy of data to save storage

space and reduce transmission costs. Data Deduplication is

mostly effective when multiple clients outsource the same data

to cloud storage, but it raises security and ownership issues.

This paper proposes a secure, Proof of Ownership

(PoW)-based Data Deduplication scheme that has a low

communication overhead and ensures that only valid cloud

clients can download and decrypt ciphertext from cloud

storage. The Advanced Encryption Standard (AES) is used as

the encryption algorithm in the proposed scheme. It utilizes

two modes of AES encryption, namely, Cipher Block

Chaining (CBC) and Galois Counter Mode (GCM), with

single-threading and multi-threading to upload and download

ciphertext between the client and the server to measure the

effect of upload and download times. We present a new

approach for PoW to reduce communication overhead. PoW

enables owners of the same data to prove to the cloud server

that they own the data in a robust way. The comparison

between CBC and GCM is implemented in a Java environment

with two scenarios: single-threading and multi-threading. The

simulation results show that AES-GCM with multi-threading

is better during the uploading and downloading times.

Key words: AES, Cloud Storage, CBC, Data Deduplication, GCM,

PoW

1. INTRODUCTION

One of the most widely used cloud computing applications

nowadays is remote data storage. Cloud data storage provides

consumers with a large pool of shared resources (such as

computing and storage) that they can use on a pay-per-use

basis to meet their needs [1]. The use of cloud services has

significantly increased as a result of the rapid evolution of

Internet technology. The cloud computing platform has risen

to prominence in the business due to its low operational and

maintenance costs. As data rates increase, it is becoming

increasingly important for Cloud Service Providers (CSPs) to

invest in new solutions capable of optimizing storage and

network bandwidth [2, 3]. CSPs use different techniques to

obtain these solutions, and one of the most important

techniques is data deduplication [4].

Data deduplication has been proven to achieve high-cost

savings. It can reduce storage needs by 90%–95% for backup

applications and up to 68% for standard file systems [5]. The

data deduplication technique eliminates the same data and

stores only one copy in the cloud to reduce storage space and

network bandwidth. It was initially used as secondary storage

before it was adapted for use as primary storage. Data

deduplication is widely used by various CSPs, such as

Dropbox, Amazon S3, and Google Drive [1, 5]. CSPs use data

deduplication techniques to eliminate data duplication, which

reduces the required storage space and network bandwidth and

increases storage efficiency [1]. Data deduplication techniques

based on Convergent Encryption (CE) are widely used in

cloud storage systems to eliminate data duplication [6]. CE is a

mechanism for ensuring data security while implementing data

deduplication. When a data owner wants to store an encrypted

file on a remote storage server, they must generate the

enciphering key from the plaintext hash, and the file is

encrypted using this key. The server receives the ciphertext,

and the client keeps the encryption key to decrypt it later.

Since CE is deterministic, identical files, regardless of who

encrypts them, are always encrypted into identical ciphertext.

As a result, the cloud server is able to perform Data

Deduplication on the ciphertext. The CE scheme, on the other

hand, has security flaws with tag consistency, PoW, and

dynamic ownership management.

The security and PoW challenges are manifested as follows:

original data content that is outsourced to cloud storage should

not be revealed to anyone except the clients who own that data.

The PoW process in the cloud efficiently allows data owners

to prove to the cloud server that they still own the data. Most

studies in this area focus on secure deduplication to provide

A Secure Deduplication Technique for Data in the Cloud

Khulood Al-lehaibi 1, Afnan A.Alharbi2

1 Department of Computer and Information Technology, Technical College for Girls in Makkah, Technical and Vocational

Training Corporation, Saudi Arabia, khulood.a@tvtc.gov.sa
2 Deanship of Scientific Research, Umm Al-Qura University, Saudi Arabia, aafharbi@uqu.edu.sa

Received Date: July 29, 2023 Accepted Date: August 21, 2023 Published Date : September 07, 2023

 ISSN 2347 - 3983

Volume 11. No.9, September 2023

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter011192023.pdf

https://doi.org/10.30534/ijeter/2023/011192023

mailto:khulood.a@tvtc.gov.sa

Khulood Al-lehaibi et al., International Journal of Emerging Trends in Engineering Research, 11(9), September 2023, 282– 290

283

space efficiency and data security against inside and outside

adversaries. However, the PoW approaches used in these

studies increased the communication overhead, thus affecting

their performance.

Security is a major issue in cloud-based deduplication

systems. As clients share files, there is a security risk in which

clients’ private data can be leaked to unauthorized clients. As

the majority of cloud services are provided in public domains,

it is critical to ensure their security because public platforms

can be accessed by a large number of users. Therefore, service

providers must prioritize cloud data security and privacy when

providing these services to cloud consumers. Ensuring the

privacy of consumers data is one of the most concerns for

security and privacy in cloud-based systems [7].

To overcome these problems, this study proposes a secure,

PoW-based data deduplication scheme with a low communi-

cation overhead. The main objective of this paper is to

implement a cloud-based Data Deduplication scheme capable

of achieving a high degree of security and enhancing overall

system performance. The main contributions of this paper are

as follows:

• Design a file-level deduplication scheme to satisfy the

following security requirements: data privacy, data integrity,

forward secrecy, and backward secrecy.

• Select the best mode of the Advanced Encryption

Standard (AES) encryption algorithm to achieve high security

with high performance.

• Improve the performance of uploading and downloading

in cloud computing using multi-threading.

• Present a new approach for PoW to reduce communication

overhead.

2. RELATED WORK

Secure data deduplication with high performance has

become an essential issue in modern storage systems,

particularly in the cloud storage environment. In recent years,

there has been a significant increase in research interest in data

integrity and file deduplication. Several CE-based

deduplication schemes have been proposed to address the

issue of data deduplication on cloud data storage [1].

However, there are several security risks associated with

CE-based deduplication schemes such as tag consistency,

PoW, and dynamic ownership management.

In [8], a Message-Locked Encryption (MLE) with

Randomized Convergent Encryption (RCE) scheme was

introduced to address the tag consistency problem by

introducing an additional integrity check phase for decrypted

data. However, the revocation of ownership poses a security

risk in this scheme. As a result, revoked cloud clients can

access the corresponding data in the cloud storage as long as

they keep the encryption key, regardless of the validity of their

ownership. The study in [9] introduces a cryptographic

method for secure PoW, based on CE and the Merkle-based

Tree, to improve data security in the cloud, provide dynamic

sharing between users, and ensure efficient Data

Deduplication. Their approach used the Merkle-based Tree

over encrypted data to derive a unique identifier. It is used to

check the availability of the same data in a cloud server. If the

file does not exist, the client sends the encrypted file. If the file

exists, the CSP verifies client ownership by sending random

leaves indices of the associated Merkle Tree. The client will

compute each leaf’s associated sibling path to prove his

ownership. Thus, their approach raises communication

overhead due to the transmission of the complete Merkle Tree.

It requires high computation at the cloud client side and cloud

server side. The CSP identifies clients as data owners while

outsourcing the same data. The scheme also allows a

data-sharing process. The client stores data in the cloud and

authorizes a group of users to access the data by enciphering

the decryption key with the public keys of authorized users and

sending it with the encrypted file that they want to store in the

cloud and share. The authorized user will be decrypting the

key using his private key. Then, the user uses the derived key

to decrypt the requested data file. In [10], a PoW solution was

proposed that depends on previous data owners and a trusted

third party. The server provides a file to previous owners and a

trusted third party for defining PoW.

In [11], the researchers proposed a decentralized

block-level data de-duplication framework for big data

management in cloud Systems. In order to improve deduction

efficacy and reduce workload, the proposed approach

employed a two-level routing decision for directing the file

after clients based on data similitude and locality. Chouhan et

al. [12] presented a secure data de-duplication framework for

encrypted data. The proposed method improves data and key

privacy and reliability by securely storing their fragments in a

distributed fashion based on the duplicateless encryption for a

simple storage scheme. According to the results, the proposed

approach achieved reliability while incurring an average

storage overhead of 66.66%. In [13], the researchers presented

a block-level data deduplication technique. The CE algorithm

is used to check for duplicate data copies in the CSP. Then, to

ensure secure data storage, an enhanced symmetric key

encryption algorithm is used. The proposed approach also

employs the Spider Monkey Optimization algorithm to

optimally select the secret key. The results of simulations

revealed that the proposed approach performed well in terms

of encryption time, decryption time, and computation time.

In [14] Wu et al. proposed a secure file deduplication

method for encrypted files to enhance availability to the cloud

data storage. The proposed solution maintains data

confidentiality during file deduplication by combining

convergent encryption and random masking techniques. In

[15], the researchers proposed a secure data deduplication

technique that utilizes convergent and modified Elliptic Curve

Cryptography algorithms. The proposed method determines

data redundancy at the block level, files are first encrypted

using convergent encryption, and then re-encrypted using the

Modified Elliptic Curve Cryptography algorithm. According

to the performance analysis, the recommended system has

96% security.

Khulood Al-lehaibi et al., International Journal of Emerging Trends in Engineering Research, 11(9), September 2023, 282– 290

284

3. METHODOLOGY AND IMPLEMENTATION

This section presents the methodology and implementation

of the proposed system model.

3.1 Component of the proposed System Model

The system model as illustrated in Figure 1 has two entities,

namely, the cloud client and the cloud server, which are

involved in file-level deduplication. Cloud client: This is an

entity that stores files in cloud storage and accesses these files

later. It uploads encrypted files and requests to download the

uploaded files later. Cloud server: This server provides cloud

storage services, including deleting redundant files and storing

only a single copy of these files. The cloud server manages the

metadata that includes tags of the stored files, the identities of

cloud clients’ and the corresponding signatures. Furthermore,

it checks the cloud client’s identification before it downloads

the file. The cloud server is assumed to be honest but curious.

It executes the protocol honestly and is curious about the

contents of the stored files.

3.2 Methodology of the Proposed System Model

In general, the proposed system model consists of two main

parts: the client side, which is managed by the cloud user, and

the server side, which is managed by the cloud server. They

utilize multi-threading to ensure parallel running in the upload

and download processes to enhance overall system

performance. The proposed model as shown in Figure 2

executes the deduplication workflow stages between the client

side and the server side, as follows:

• The first three stages of the deduplication workflow

(hashing, chunking, and encryption) are set on the client side.

• Both indexing and PoW verification are set on the server

side.

The rest of this section discusses the methodology used to

build the proposed model.

3.2.1 Hashing Stage

The hashing stage is developed on the client side. The

proposed scheme is based on CE, that is, deriving an

encryption key by applying a one-way hash function on data

content. The hash function adopted in the proposed scheme is

SHA-256, which is used on the file to generate an encryption

key. The encryption key is then used with AES symmetric

encryption to encrypt the file. Afterward, SHA-256 is used to

generate a tag from the encrypted file. This hash value is also

used with a private client key to generate the signature. Figure

3 shows how SHA-256 converts files into a fixed hash value.

3.2.2 Indexing Stage

This stage indexes the fingerprints produced to distinguish

between duplicate and non-duplicate files by comparing the

new tag with those in the index. The duplicated files are

deleted, leaving only a unique file to be stored. This can be

considered the most critical stage in the deduplication

workflow. In the proposed scheme, the client sends the tag to

the cloud server during the upload request and searches the

index table for the presence of the tag. If the tag is not present,

the client uploads encrypted chunks of the file. The client is

called the “First Uploader.” Any other file with the same tag

will not be allowed to be uploaded. A new record for the client

in the metadata will be created without uploading the file to

avoid duplicating data. By doing so, the storage space will be

saved, and the transfer time will be reduced.

Figure 1: The Proposed System Model.

Figure 2: The Data Deduplication Stages.

Figure 3: The SHA-256 Algorithm.

3.2.3 Chunking Stage

Chunking involves breaking a large file into small pieces

called “chunks” or “blocks.” The proposed scheme only

considers file-level deduplication and uses chunking to

improve performance. As encryption and decryption take

Khulood Al-lehaibi et al., International Journal of Emerging Trends in Engineering Research, 11(9), September 2023, 282– 290

285

time, the file is encrypted in chunks through multi-threading,

which will reduce encryption and decryption times. Then, the

client uploads the encrypted chunks to the server. The upload

and download processes are performed in parallel mode for

higher speed. The same procedures are applied for

downloading the file. In the end, all chunks will be merged.

3.2.4 Cryptography Stage

Cryptography is an important stage in deduplication-based

cloud storage systems to provide confidentiality. The original

data content outsourced to cloud storage should not be

revealed to anyone except the client that owns the data. There

are many cryptographic algorithms in the literature, and

deciding which one to use is an important issue. The method

used in this study is based on In-House key management. The

encryption keys are stored on the client side without sending

them to the server side. An encryption algorithm capable of

quick encryption using the two modes of AES, namely, Cipher

Block Chaining (CBC) and Galois Counter Mode (GCM), is

chosen. The reason for selecting these two modes is that CBC

is considered the most common mode for general use, while

GCM is parallelizable [16]. Although the AES-CBC and

AES-GCM modes involve a block cipher and an exclusive-OR

(XOR), they work differently internally.

1. In the CBC mode, a block of data is encrypted by taking

the current plaintext block and XORing it with the previous

ciphertext block.

2. In the GCM mode, a counter is assigned for each block of

data, and the current value of the counter is sent to the block

cipher. The output of the block cipher is XORed with the

plaintext to obtain the ciphertext. The counter mode of the

operation is designed by transforming block encryption into

stream encryption.

3.2.5 PoW Stage

PoW in the proposed scheme is implemented by ECDSA

using the NIST P256 curve. ECDSA is used for the

verification process without retrieving data, which reduces the

communication overhead. The steps involved in ECDSA are

the formation of the key pair generator, signature generation,

and signature verification.

1. Key Pair Generator

The ECDSA method has the advantage of having a lower

key size. It helps to minimize the computation overhead and

computation time of the integrity check [17]. ECDSA allows

constructing strong public and private key pairs with key

lengths that are far shorter than those of Rivest, Shamir, and

Adleman encryption algorithms (RSA). Furthermore, a

256-bit Elliptic Curve Cryptography (ECC) key should

provide similar security to a 3072-bit RSA key [18]. This

algorithm generates a private–public key pair for every client.

The client’s key pair is constant.

2. Signature Generation

The sender is the client. The client signs the file hash with its

private key to generate the signature and sends it to the cloud

server. The cloud server then stores this signature in the

metadata. If another client tries to upload the same file, it

needs to generate a signature and send it to the cloud server to

be saved in the metadata. As each file has a distinct signature,

any client that does not have the file cannot convince the cloud

server that it owns the file.

3. Signature Verification

The cloud server verifies the client’s signature, which is

present in the metadata against the client certificate during the

download request. If the signature is verified, the client is

authorized and will be able to download the file, as the client

has been confirmed to be the file owner. Decryption is

conducted on the client side. When a client deletes a file, the

cloud server deletes the client’s identity and his/her signature

from the metadata. This means that the client cannot retrieve

the deleted file. If a new client uploads a file, the cloud server

inserts the client’s identity and the client’s signature into the

metadata. Note that a client cannot access and download the

file until it verifies its certificate. Moreover, any client cannot

download another client’s files.

3.3 Design Proposed Scheme Algorithms

This section presents the algorithms of the proposed scheme

for uploading, downloading, and deleting operations.

3.3.1 Upload Operation

Algorithm 1 shows a detailed overview of the upload

operation in the proposed scheme, in which the file is

transferred from a client machine and uploaded to cloud

storage. First, the proposed scheme uses the hash of a file and

splits a file into multiple chunks. Second, it encrypts all chunks

in parallel. Finally, it uploads all chunks to cloud storage in

parallel. Algorithm 2 provides an overview of the cloud server

to verify the tag presence in the metadata. Algorithm 3 shows

an overview of the cloud server verifying the corresponding

tag with the encrypted file for the “First Uploader.” The cloud

server calculates tag1 for the received encrypted file and then

compares tag1 with the provided tag.

Khulood Al-lehaibi et al., International Journal of Emerging Trends in Engineering Research, 11(9), September 2023, 282– 290

286

̸

̸

3.3.2 Download Operation

Algorithms 4 and 5 show a detailed overview of the

download operation in the proposed scheme, in which the file

is transferred from cloud storage until it is downloaded to a

client machine. First, the cloud server checks which file the

client wants to download through the tag and verifies the

client’s signature, which is presented in the metadata against

the client’s certificate sent during the download process.

Second, if it passes the verification process, the server

downloads the file chunks from cloud storage in parallel.

Finally, the client decrypts and assembles all chunks to obtain

the original file.

3.3.3 Delete Operation

Algorithm 6 provides a detailed overview of the delete file

operation in the proposed scheme. First, the cloud server

checks which file the client wants to delete through the tag and

verifies the client’s signature, which is presented in the

metadata against the client’s certificate. Second, if it passes the

verification process, the cloud server deletes the client’s

identity and the client’s signature from the metadata. However,

the file remains until the last owner deletes it.

4. EXPERIMENTAL RESULTS AND COMPARISON

4.1 Investigation of the Proposed Scheme’s Security

Requirements

This section presents four theorems for the security

requirement investigation in the proposed scheme: data

privacy, data integrity, forward secrecy, and backward

secrecy.

4.1.1 The Proposed Scheme Data Privacy Investigation

Data privacy is defined as keeping data secret from the

cloud server and unauthorized clients that cannot prove

ownership. In the proposed scheme, the cloud server is

considered honest but curious. Two scenarios were applied to

verify data privacy. First, assuming that an unauthorized client

wants to download a file, the client sends a tag and a certificate

along with the request. The server verifies whether the client’s

signature is present in the metadata or not through the

certificate. The server then rejects it as an invalid signature. In

this case, the client’s signature does not exist in the metadata,

thus preventing the client from downloading the encrypted

file. Moreover, the encryption key is only on the authorized

client side. The second scenario can be launched by the cloud

server. The cloud server can know the encrypted file but

cannot guess the key because it is derived from the hash of

plaintext. Therefore, the cloud server cannot decrypt the

encrypted file and obtain the original file. This shows that data

privacy has been verified for the proposed scheme.

4.1.2 The Proposed Scheme Data Integrity Investigation

Integrity of the data means it must validate all information,

and it must be what it claims to be, originally sent. The

deduplication algorithm guarantees tag consistency against

any poison attacks and allows valid clients to verify that the

data downloaded from the cloud have not been altered. Let us

assume that an attacker and a cloud client have the same data

M. The attacker uses the correct tag T and other ciphertexts to

damage data integrity. Initially, T is generated from M and

ciphertext Cˆ from Mˆ = M, and then Cˆ is uploaded with T . In

the proposed scheme, a poison attack on tag consistency can

be detected, as the tag is generated from ciphertext instead of

plaintext. Therefore, when the “First Uploader” wants to

upload a file, it will send the tag (T) and the encrypted file.

The cloud server will compute the tag Tˆ from the encrypted

file. Then, If Tˆ = T , then it will store the tag with the

corresponding encrypted file. If Tˆ = T , then it will delete the

encrypted file and cancels the upload request.

4.1.3 The Proposed Scheme Forward Secrecy

Investigation

Forward secrecy means that when a group of clients shares

the same data in cloud storage, some clients may request this

data deletion from cloud storage. The cloud server should

prevent them from accessing the data after deletion. To some

extent, the proposed scheme can guarantee forward secrecy.

Khulood Al-lehaibi et al., International Journal of Emerging Trends in Engineering Research, 11(9), September 2023, 282– 290

287

When a cloud client deletes a file, the owners of the file are

updated immediately. Hence, the cloud server deletes the

client’s identity and the client’s signature from the metadata.

Therefore, the cloud client cannot pass on the PoW to

download the deleted file.

4.1.4 The Proposed Scheme Backward Secrecy

Investigation

Backward secrecy means that the cloud server should

prevent any client from accessing the data before uploading.

The proposed scheme can guarantee backward secrecy to

some extent. It means that before the second cloud client

uploads the file, this file already exists in cloud storage (by the

"First Uploader"), and the client identity and signature of the

second cloud client do not exist in the metadata. As a result,

this client cannot pass on the PoW and is prevented from

accessing and downloading the file.

Figure 4: AES-CBC Upload Time Computation Using

Single-threading and Multi-threading.

Figure 5: AES-CBC Download Time Computation Using

Single-threading and Multi-threading.

4.2 Performance of the Proposed Scheme

The performance was improved using multi-threading and

AES-GCM. The effects of multi-threading were measured by

comparing it with single-threading. The AES encryption was

changed from CBC to GCM in order to measure its effect on

performance. The performance improvement was evaluated by

comparing the upload and download computation times for

different file sizes using single-threading and multi-threading.

The AES-CBC upload time and download time computations

using single-threading and multi-threading are shown in

Figures 5 and 5, respectively. The AES-GCM upload time and

download time computations using single-threading and

multi-threading are shown in Figures 4 and 5, respectively.

The AES-CBC comparisons between the upload and

download times when single-threading and multi-threading are

used to upload and download different file sizes are 1, 2, 4, 6,

8, and 10 MB. In the multi-threading mode, the chunks were

partitioned by 200 KB. As shown in Figures 5 and 5,

AES-CBC with a multi-threading mode is better than

AES-CBC with a single-threading mode in terms of upload

and download time costs.

The AES-GCM comparisons between the upload and

download times when single-threading and multi-threading are

used to upload and download different file sizes are 1, 2, 4, 6,

8, and 10 MB. In the multi-threading mode, the chunks were

partitioned by 200 KB. As shown in Figures 6 and 7,

AES-GCM with a multi-threading mode is better than

AES-GCM with a single-threading mode in terms of upload

and download time costs. Therefore, the AES-GCM

multi-threading mode is considered to be better than the

AES-CBC multi-threading mode in terms of upload and

download time costs as highlighted in Figures 8 and 9.

Figure 7 AES-GCM Download Time Computation Using

Single-threading and Multi-threading.

4.3 Comparison with Related Works

This section compares the familiar and different aspects of

this study with other works. The common feature between this

work and other works in the literature is that they both focus on

data security and file-level data deduplication in the cloud and

providing PoW. In what follows, we compare our propose

approach with previous works. We found that the main

difference lies in the PoW technique. Specifically, this work is

based on ECDSA, which reduces the communication overhead

because the verification process does not involve retrieving

the data. Conversely, most previous research used PoW

approaches that enable the cloud server to act like a

challenger, which sends challenges to the cloud client and

waits for its response. Table 1 shows a comparison between

the existing schemes and the proposed scheme based on the

Khulood Al-lehaibi et al., International Journal of Emerging Trends in Engineering Research, 11(9), September 2023, 282– 290

288

type of Data Deduplication and the pow.

As shown in Table 1, the PoW technique used for the

scheme [9] is the Merkle tree. This approach increases the

communication overhead due to the transmission of the

complete Merkle tree. It requires high computation on the

client side and the server side. Conversely, the PoW used in

SDDOM [19] is KEK, which does not support new client

cloud joining. If a new client wants to insert a new leaf node of

the binary KEK tree, it will take considerable overhead to

reconstruct the binary KEK tree. In the DedupDUM [20]

scheme, PoW is the ElGamal algorithm. Before a cloud client

can download data, the cloud server encrypts a random

number using the cloud client’s public key to check its

identity. The cloud client with the corresponding secret key

can obtain the encrypted number. If the cloud client passes the

verification process, the cloud server transmits the ciphertext

to the cloud client. This process increases both communication

and computational overhead. After measuring the effect of

multi-threading and AES-GCM on reducing both upload and

download times, the effectiveness of ECDSA in reducing

upload and download time was determined by comparing it

with an existing scheme [9]. The smaller scope was chosen for

two reasons. First, the two previous studies in Table 1,

SDDOM [19] and DedupDUM [20], did not explain their

algorithms; thus, they could not be reconstructed. Second, the

two previous studies [19, 20] in Table 1 did not measure

upload and download times. As mentioned before, Java

environment was used to implement the proposed scheme and

rebuild the existing scheme [9]. The experiment was

conducted on a Windows 10 laptop with an Intel (R) Core

(TM) i7-7500 CPU at 2.70 GHz and 16.0 GB RAM.

The upload times of the different file sizes of 1, 2, 4 6, 8, and

10 MB were evaluated for the proposed scheme and existing

scheme [9]. The result of the upload time computation is

shown in Figure 10, which indicates that the proposed scheme

takes less time to upload the same files than the existing

scheme [9]. The download times of the different file sizes of 1,

2, 4 6, 8, and 10 MB were evaluated for the proposed scheme

and existing scheme [9]. The result of the download time

computation is shown in Figure 11, which indicates that the

proposed scheme takes less time to download the same files

than the existing study [9].

Figure 8: The Upload Time Comparison for AES-GCM vs.

AES-CBC.

Figure 9: The Download Time Comparison for AES-GCM vs.

AES-CBC.

Figure 10: Upload Time Computation of the Proposed Scheme

vs. Existing Scheme [9].

Figure 11: Download Time Computation of the Proposed

Scheme vs. Existing Scheme [9].

Khulood Al-lehaibi et al., International Journal of Emerging Trends in Engineering Research, 11(9), September 2023, 282– 290

289

5. CONCLUSION

Cloud services have become popular with the significant

growth of digital data, as they provide clients with efficient

and convenient storage services. CSPs usually employ data

deduplication techniques to eliminate data duplication and

save space on their platforms. Data deduplication is most

effective when multiple clients store the same data in cloud

storage, but it raises security and ownership issues. This paper

proposed a secure, with PoW Data Deduplication scheme that

has a low communication overhead and restricts unauthorized

cloud clients from accessing and downloading data owned by

valid clients. Two modes of AES encryption, CBC and GCM,

were studied using single-threading and multi-threading to

upload and download ciphertext between the client and the

server to measure the effect of upload and download times.

The ciphertext was uploaded from the client to the server, and

the encryption key was saved on the client side without

affecting the deduplication process. PoW was provided using

the signature algorithm ECDSA. The simulation results show

that AES-GCM with multi-threading is better during the

uploading and downloading times. The security requirements

that have been verified in this proposed scheme are data

privacy, data integrity, forward secrecy, and backward secrecy

for data deduplication in the cloud storage environment. The

proposed scheme outperforms the existing work in both

upload and download times.

REFERENCES

1. P. Prajapati and P. Shah, A review on secure data

deduplication: Cloud storage security issue, Journal of

King Saud University-Computer and Information

Sciences, vol. 34, no. 7, pp. 3996–4007, 2022.

2. A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, M.

Masdari, and H. Shakarami, Data replication schemes in

cloud computing: a survey, Cluster Computing, vol. 24,

no. 3, pp. 2545–2579, 2021.

3. H. Tabrizchi and M. Kuchaki Rafsanjani, A survey on

security challenges in cloud computing: issues,

threats, and solutions, The journal of supercomputing,

vol. 76, no. 12, pp. 9493–9532, 2020.

4. X. Yu, H. Bai, Z. Yan, and R. Zhang, Veridedup: A

verifiable cloud data deduplication scheme with

integrity and duplication proof, IEEE Trans. on

Dependable and Secure Computing, vol. 20, no. 1, pp.

680–694, 2023.

5. P. Puzio, R. Molva, M. Önen, and S. Loureiro,

Cloudedup: Secure deduplication with encrypted data

for cloud storage in 2013 IEEE 5th International

Conference on Cloud Computing Technology and

Science, vol. 1. IEEE, 2013, pp. 363–370.

6. G. Zhang, Z. Yang, H. Xie, and W. Liu, A secure

authorized deduplication scheme for cloud data based

on blockchain, Information Processing & Management,

vol. 58, no. 3, p. 102510, 2021.

7. W. Ahmad, A. Rasool, A. R. Javed, T. Baker, and Z. Jalil,

Cyber security in iot-based cloud computing: A

comprehensive survey, Electronics, vol. 11, no. 1, p. 16,

2022.

8. M. Bellare, S. Keelveedhi, and T. Ristenpart,

Message-locked encryption and secure deduplication,

in Advances in Cryptology–EUROCRYPT 2013: 32nd

Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Athens,

Greece, May 26-30, 2013. Proceedings 32. Springer,

2013, pp. 296–312.

9. N. Kaaniche and M. Laurent, A secure client side

deduplication scheme in cloud storage environments,

in 2014 6th International Conference on New

Technologies, Mobility and Security (NTMS). IEEE,

2014, pp. 1–7.

10. C. Yang, J. Ren, and J. Ma, Provable ownership of files

in deduplication cloud storage, Security and Communi-

cation Networks, vol. 8, no. 14, pp. 2457–2468, 2015.

11. J. Gnana Jeslin and P. Mohan Kumar, Decentralized and

privacy sensitive data de-duplication framework for

convenient big data management in cloud backup

systems, Symmetry, vol. 14, no. 7, p. 1392, 2022.

12. V. Chouhan, S. K. Peddoju, and R. Buyya, dualdup: A

secure and reliable cloud storage framework to

deduplicate the encrypted data and key, Journal of

Information Security and Applications, vol. 69, p.

103265, 2022.

13. S. Elkana Ebinazer, N. Savarimuthu, and S. Mary Saira

Bhanu, Eskea: enhanced symmetric key encryption

algo- rithm based secure data storage in cloud

networks with data deduplication, Wireless Personal

Communications, vol. 117, no. 4, pp. 3309–3325, 2021.

14. J. Wu, Y. Li, T. Wang, and Y. Ding, Cpda: A

confidentiality-preserving deduplication cloud

storage with public cloud auditing, IEEE Access, vol. 7,

pp. 160 482–160 497, 2019.

15. S. PG, N. RK, V. G. Menon, M. Abbasi, M. R. Khosravi

et al., A secure data deduplication system for

Table 1: Features of the Proposed Scheme and Other Schemes.

Scheme
Scheme
[9]

DedupDUM
[20]

SDDOM
[19]

Proposed Scheme

Deduplication type File File File File
Hashing type SHA-256 SHA-128 MD5 SHA-256
Encryption type AES-CBC AES-CBC AES- ECB AES-GCM
PoW technique Merkle tree ElGamal KEK ECDSA

file:///C:/Users/USER/Downloads/New%20folder/A_Secure_Deduplication_Technique_with_Enhanced_Read_Performance_for_Data_in_the_Cloud__Version_719___Version_76_%20(1)%20(1).docx%23_bookmark22
file:///C:/Users/USER/Downloads/New%20folder/A_Secure_Deduplication_Technique_with_Enhanced_Read_Performance_for_Data_in_the_Cloud__Version_719___Version_76_%20(1)%20(1).docx%23_bookmark33
file:///C:/Users/USER/Downloads/New%20folder/A_Secure_Deduplication_Technique_with_Enhanced_Read_Performance_for_Data_in_the_Cloud__Version_719___Version_76_%20(1)%20(1).docx%23_bookmark32

Khulood Al-lehaibi et al., International Journal of Emerging Trends in Engineering Research, 11(9), September 2023, 282– 290

290

integrated cloud-edge networks, Journal of Cloud

Computing, vol. 9, no. 1, pp. 1–12, 2020.

16. S. Almuhammadi and I. Al-Hejri, A comparative

analysis of aes common modes of operation, in 2017

IEEE 30th Canadian conference on electrical and

computer engineering (CCECE). IEEE, 2017, pp. 1–4.

17. S. Pathakamuri, B. R. Reddy, and A. S. Kumar, Elliptic

curve digital signature algorithm for the third party

auditing, International Journal of Engineering and

Advanced Technology (IJEAT), vol. 9, no. 2, pp. 33–37,

2019.

18. D. Mahto and D. K. Yadav, Performance analysis of

rsa and elliptic curve cryptography. Int. J. Netw.

Secur., vol. 20, no. 4, pp. 625–635, 2018.

19. J. Hur, D. Koo, Y. Shin, and K. Kang, Secure data

deduplication with dynamic ownership management

in cloud storage, IEEE Trans. on Knowledge and Data

Engineering, vol. 28, no. 11, pp. 3113–3125, 2016.

20. H. Yuan, X. Chen, T. Jiang, X. Zhang, Z. Yan, and Y.

Xiang, Dedupdum: Secure and scalable data

deduplication with dynamic user management,

Information Sciences, vol. 456, pp. 159–173, 2018.

