

International Journal of Emerging Trends in Engineering Research, Vol.4. No.10, Pages : 188-193 (2016)
Special Issue of ICACSSE 2016 - Held on September 30, 2016 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2016sp34.pdf

188

ISSN 2347-3983

NEW METRICS FOR SYSTEM MODIFIAILITY OF INHERITANCE
HIERARCHIES

Mr.P.S.Naveen Kumar,G.Subba Rao and Mr.D.N.V.Syam Kumar*
Asst.Professor,Dept.of MCA,St.ann's College of Engineering & Technology,Chirala,,Ap.,India
Asst.Professor,Dept.of MCA,St.ann's College of Engineering & Technology,Chirala,,Ap.,India

*Assoc.Professor,Dept.of CSE,St.ann's College of Engineering & Technology,Chirala,,Ap.,India
ABSTRACT

 Modifiability is the term stands for the how much amount of the information would be modified in the class
and system level of the object-oriented system with inheritance hierarchies. Previously there is some metrics were
existed for modification of the system in the issue of maintainability. Existed metrics were giving the more
complexity values means time taken for the modification of the system is more. In this paper we are proposing new
metrics for the modifiability at class and system levels. Our proposed metrics were evaluated through the weyker’s
properties. These proposed modifiability metrics gives the lowest complexity values when comparing with previous
existed metrics. The manager of the system takes less time to modify the class and entire system for easy
maintenance of the system.

KEYWORDS: software metrics, object-oriented, inheritance hierarchy, DAG, system modifiability, system
maintenance, weyker’s properties.

INTRODUCTION

 A metric would be needed for measurement
of the given software program either it may be
traditional program or object oriented program
….etc. In the measurement of the inheritance
hierarchy several object –oriented metrics were
existed. Several studies were existed [1, 2] on
software metrics for improving the software quality.
Several programming languages and fields [3] were
utilized the object-oriented metrics in effective
manner. In object-oriented techniques inheritance
causes to reduce the redundancy and system
maintenance to improve the efficiency of the
system[17,18,19,20,21,22]proved by many
researchers in their researches. In the inheritance
hierarchy several object-oriented inheritance metrics
were existed [18,4,5,6,7,8,24].

 The software metric used to measure the
software program have to show its mathematical and
theoretical background by fulfilling the some of the
well-known properties. For developing the good
software metrics weyker’s[9] proposed nine
properties which have to be satisfied by every
proposed metric. The weyker’s properties are
evaluated by different developers [18, 4, 10, 11, 12,
13, 23, 25] against their proposed inheritance metrics.
In these weyker’s properties most of the properties
were satisfied by the well-known inheritance metrics
developed by the developers. Some of the weyker’s
properties were not satisfied by these well-known
properties also because that metrics were utilized on

the traditional programming [23]. Most of the object
oriented metrics were use the classes only not the
inside data of the classes. Hence many of the object-
oriented metrics were not suited for some of the
weyker’s properties.

This paper is organized in following
manner. Next topic covers the literature survey for
the proposed metrics. In this we were mentioned so
many well-known metrics like DIT,NOC,NAC,NDC
,AID and AM. Our proposed metrics were ACM and
ASM were discussed in detail in the topc3. In topic4
weyler’s properties were tested with our new metrics.
Previous existed metrics comparison with our
proposed metrics was done in the topic5. The results
comparing with AM and ASM were placed in topic6.
The finalized conclusion and future scope of this
paper was written in the topic and topic 8
respectively.

LITERATURE SURVEY

 In this literature survey we were discussed
well known inheritance metrics likely DIT, NAC,
NOC, NDC, AID and modifiability metrics of the
system is AM in detail manner.

 Depth of Inheritance Tree (DIT) developed
by chidember-kerner [14,15,18] state that maximum
depth from the root node to the present node. Here in
this DIT technique ambiguity may be raised in many
situations. To solve this problem W.Li[6] proposes
the new metric called Number of Ancestor

International Journal of Emerging Trends in Engineering Research, Vol.4. No.10, Pages : 188-193 (2016)
Special Issue of ICACSSE 2016 - Held on September 30, 2016 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2016sp34.pdf

189

ISSN 2347-3983

Classes(NAC) measure the number of classes
inherited by the individual class in the object-oriented
inheritance hierarchy.

 Chidember-kerner [14, 15, 18] proposes
another metric named Number of Childs(NOC). W.Li
[6] proposes new metric called Number Descendent
Classes (NDC) to consider total number of sub
classed in to the account.

 The Average Depth of Inheritance (AID)
metric was developed by Henderson-sellers[5] for
applying the average complexity values in the DIT
metric. Sheldon-jerath [8] proposed metric called
Average Modifiability [AM] for system modifiability
by considering the understandability and successors
of the individual classes.

NEW INHERITANCE METRICS

 Our proposed metrics in this paper are
Average Class Modifiability (ACM) and Average
System Modifiability (ASM). In our representations
of the inheritance hierarchies two more diagrams
were utilized. Figure1 involves with multiple
inheritance situation. So, figure1 was represented
with Directed Acyclic Graph (DAG) with no loops
[16]. Figure2 was represented with the normal tree
hierarchies.

 In the complexity values identification
preferred way is average case of representation.
Coming to our metrics modification consider the sub
classes of the specified class and that specified class
also for modification. In the best case of modification
all the classes information has to be modified. In the
worst case no one class has to be modified. If we
consider the Average case of half of the total class
information has to be modified.

 ACM states that the modifiability of the
given class is the number of subclasses by adding the
given class division by 2. That gives average
modification value for the given class. ASM states
that modifiability of the given system is the sum of
Average Class Modifiability (ACM) of the individual
classes with the number of classes in the system.

Average Class Modifiability is
ACM = (Number of Sub Classes +1) / 2
Average System Modifiability is
ASM = ∑ ܯܥܣ

ୀଵ i / n
ACMi = Average Class Modifiability of the Class i.
n= Number of classes.
Applying the above metrics on figure1

ACM(H)=3 ACM(G)=3.5 ACM(F)=2.5
ACM(E)=1 ACM(D)=0.5 ACM(C) =1.5
ACM(B)=ACM(A)=0.5
ASM of figure1 = 1.62
Applying the above metrics on figure2
ACM (P) =3.5 ACM (Q) =ACM(R) =1.5
ACM(S) =ACM (T) =ACM (U) =ACM (V)=0.5
ASU of figure2 = 1.21.
PROPOSED METRICS EVALUATION
WITH WEYUKER’S PROPERTIES

 The statistical evaluation of the software
metrics can be done against the satisfaction of the
weyker’s[9] properties. This may leads to good
metrics for measuring the system quality in better
way. Even some of research persons criticizing the
weyker’s properties these properties judge the
software metrics for effective system maintenance
and quality features. The most object-oriented well
known metrics not satisfies the some of the weyker’s
properties (5, 7, 9) [23].

Property-1:- Non-Coarseness –

For example class A and class B are having
the proposed metric M the Non-Coarseness found
that M (A) ≠ M (B).

The figure1 state that ACM of class H is
different from ACM of class G. Here ACM (H) =3
and ACM (G) =3.5 .So ACM(H) ≠ACM (G).consider
the figure2 ACM of class P is different from ACM of
class Q. Here ACM (P) =3.5 and ACM (Q) =1.5. It
means ACM (P) ≠ACM (Q). Hence ACM metric
satisfies the weyker’s property-1.The figure1 and
figure2 poses two different ASM values for the both
of the figures. ACM value of figure1 is 1.62 is
different from the figure2 ACM value 1.21. It means
that ASM metric satisfies the weyker’s property-1.

 Hence our proposed metrics ACM
and ASM were satisfied the weyker’s first property
Non-Coarseness successfully.

Property-2:- Granularity –

 It means that there is a metric value for the
finite number of programs.Ccomplexity value given
by the number of programs. Non-Negative value
must be taken for the complexity value.

 Every object-oriented metric represented
with class level hierarchy must be satisfied this
property [4] because every object-oriented
inheritance hierarchy must having the class levels ,
that metric satisfies this property. Our proposed

International Journal of Emerging Trends in Engineering Research, Vol.4. No.10, Pages : 188-193 (2016)
Special Issue of ICACSSE 2016 - Held on September 30, 2016 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2016sp34.pdf

190

ISSN 2347-3983

metrics also follows the inheritance hierarchy with
class levels. So, our proposed ACM and ASM were
satisfied the weyker’s second property.

Property-3:- Non-Uniqueness-

 The proposed metric M value must be same
for the two different classes A and B. it means
M(A)=M(B).Consider the figure1 ACM value of
class D is same as ACM values of class B. Here
ACM(D)=0.5 and ACM(B)=0.5. . It means that
ACM(D)=ACM(B). Consider the figure2 ACM
value of the class Q is same as the class R. Here
ACM(Q)=1.5 and ACM(R)=1.5.So
ACM(Q)=ACM(R). Hence ACM was satisfies the
third property.

 At the system level consider the another
figure ASM values with the figure1. we found that
both the figurse shows the similar ASM value
is1.6..Hence ASM was satisfies the weyker’s third
property Non-Uniqueness successfully.

Property-4 :- Design Implementation-

 If two designers design the same class it has
to show the two different metric values. The designed
class must be utilized in the proposed metric.
 Our proposed metrics ACM and ASM were
satisfied the weyker’s fouth property because if two
designers develop the same class of the same
program they may follow the different inheritance
hierarchy and different class levels. Hence the
designs of the systems would be different. Our
metrics ACM and ASM also follows the different
designs for different designers. Hence ACM and
ASM metrics were satisfied the weyker’s fourth
property successfully.

Property-5:- Monotonicity –

 The metric value of the combination of two
different metric valued classes is greater than or
equal to the given individual classes. Suppose A and
B classes are having the two different metric values
,the combination of both denoted as A+B metric
value is greater than or equal to the individual A and
B classes metric values. It means that M(A+B)≥M(A)
and M(A+B)≥M(B).

 In object-oriented inheritance hierarchy
every metric has to fulfill the three possible cases for
satisfying the weyler’s monotonicity property.

1. If class A and class B are siblings.

Consider the figure1(b) shows that
ACM(A)=0.5 and ACM(B)=0.5.if we
combine the both siblings into one as A+B
the finalized metric of the ACM(A+B)=0.5 ,
which is equal to the both the metrics of A
and B. Consider figure2(b) shows that
ACM(Q)=1.5 and ACM(R)=1.5. If we can
combine the both siblings into one as Q+R,
the finalized result of the metric of the
ACM (Q+R)=2.5 which is greater than both
the metrics of classes Q and R individually.

Hence case-1 was successfully
satisfied by the ACM metric.

2. If one class is the child of another class.

Consider the figure 1(c) gives the
ACM(C)=1.5 and ACM(B)=0.5.The
Combination of the C+B gives metric value
as ACM(C+B)= 1 which is equal to class E
and less than class C. Consider the
figure2(c) gives the values of the metric
ACM(Q)=1.5 and ACM(S)=0.5 . The
combination of the Q+S gives the value of
metric as ACM (Q+S)=1,which is greater
than the metric value of S and less than Q.

Hence case-2 was not satisfied by
our proposed metric ACM, because the
combination of the one class is the child of
another class both the classes are combined
and treated as one unit. So ACM is not
satisfied the monotonicity property. The
well-known inheritance metrics like
DIT,NAC,NDC,AID and AM also not
satisfying the weyker’s fifth property[23]
because they were also focused on the class
only not the inside matter of the class.

3. If class A and class B are neither siblings
nor children of each other.

Consider the figure 1(d) shows that
the ACM (C) =1.5 and ACM (E) =1. The
combination of C+E gives the metric value
ACM(C+E) =1.5, which is equal to class C
metric value and greater than class E metric
value. Consider the figure 2(d) shows that
ACM (Q) =1.5 and ACM (V) =0.5. The
combination of both the classes as (Q+V)
metric value is ACM (Q+V) =1.5, which is
equal to the class Q metric value and the
greater than the class V metric value.

Hence case-3 is satisfied by ACM
metric successfully.

International Journal of Emerging Trends in Engineering Research, Vol.4. No.10, Pages : 188-193 (2016)
Special Issue of ICACSSE 2016 - Held on September 30, 2016 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2016sp34.pdf

191

ISSN 2347-3983

Only one case of weyker's monotonicity
property was not satisfied by our proposed metrics.
Hence our proposed ACM and ASM metrics were
not satisfies this property similar to the evaluation
of the well known inheritance metrics like DIT,
NAC, NDC, AID and AM.

Property-6:- Non-Equivalence of Interaction-

 If suppose class A and class B shows the
same metric value combine these individual classes
with another class C the finalized metric values of
A+C not equal to the metric values of B+C.

 Consider the figure1 gives the metric values
of ACM(B)=ACM(D)=0.5. Here combining these
classes with another class C as displayed in
figure1(e) and 1(f) would give the finalized metric
values as ACM(B+C)=1 and ACM(D+C)=1.5 both
are not equal. So ACM(B+C)≠ACM(D+C). Consider
the figure2 gives the metric values of ACM (Q) =
ACM (R) =1.5. Here combining these classes with
class T as displayed in figure2 (e) and figure2 (f)
would give the finalized metric values of
ACM (Q+T)=1 and ACM(R+T)=1.5 both are not
equal. So ACM (Q+T) ≠ACM(R+T). Hence our
proposed metric ACM was satisfies the weyker’s
sixth property. At the system level modifiability
metric ASM also satisfies the weyker’s sixth
property.

Property-7:- Significance of Permutation-

 If program B is formed with program A’s
permuting order of statements then the measured
metrics for the individual metric values were not
equal.

 This metric was suitable for traditional
programming where the inside matter of the program
taken major place in the selection of the metrics. This
metric not suitable to most of the object-oriented
metrics because these metrics were consider the class
as single unit not the inside data of the class.
Well-know metrics like DIT, NOC, NAC, NDC, AID
and AM also not satisfies this property [23]. Hence
our proposed metrics ACM and ASM also not
supporting the weyker’s seventh property.

Property-8:- No Change of Remaining-

 If the class name is renamed with another
name the metric values of the classes need not
changed with the previous values.

 This property must be satisfied by every
object-oriented inheritance metric because changing

of the name of the class not shown the effect on the
metric value. Here our proposed metrics were also
object-oriented inheritance hierarchy metrics. Hence
our proposed ACM and ASM metrics were satisfied
the weyker’s eighth property successfully.

Property-9:- Interaction complexity-

 Suppose two classes A and B combination
denoted as A+B metric value is greater than the
summation of the individual classes A and B. It
means

M(A+B)>M(A)+M(B)

Our proposed metrics not supported the
weyker’s ninth property because these metrics
follows the object-oriented design [23]. Hence our
proposed metrics ACM and ASM were also not
satisfying the weyker’s ninth property.

METRICS COMPARISION

 In this topic we were evaluated our proposed
ACM and ASM metrics against weyker’s properties
and compare with the well-known metrics
DIT,NOC,NAC,NDC,AID and AM. For the DIT,
NOC, NAC, NDC and AID metrics previously
existed results were taken with respect to the
weyker’s properties. Weyker’s properties were tested
on the proposed metrics and results were displayed in
below table

Property
DIT

NOC

NAC

NDC

AID

AM

ACM

ASM
1 √ √ √ √ √ √ √ √
2 √ √ √ √ √ √ √ √
3 √ √ √ √ √ √ √ √
4 √ √ √ √ √ √ √ √
5 × √ × × × × × ×
6 √ √ √ √ √ √ √ √
7 × × × × × × × ×
8 √ √ √ √ √ √ √ √
9 × × × × × × × ×

Table1: Measurement of Inheritance Metrics in view of Weyker’s
properties.
√ - weyker’s property satisfied by the metric.
× - weyker’s property not satisfied by the metric.

From the above table we may understand
that most of the inheritance metrics which were
focused on the classes only not the inside information
of the class ,that metrics need not to satisfy all the
properties suggested by the weyker’s .

RESULTS

International Journal of Emerging Trends in Engineering Research, Vol.4. No.10, Pages : 188-193 (2016)
Special Issue of ICACSSE 2016 - Held on September 30, 2016 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2016sp34.pdf

192

ISSN 2347-3983

 In this topic our main focus is to reduce
average modifiability of the system when comparing
with previously existed metric AM. In this regard we
were got the very much reduced results than the AM
results. The finalized results of the Average system
modifiability of our proposed metrics ASM by
comparing with the AM

Figure AM ASM
1 4.37 1.62

2 3.1 1.21
Table2: Modifiability complexity values at system
level for figure 1&2.

CONCLUSION

 In this paper we were mentioned various
inheritance metrics and discussed their existence with
the weyker’s properties. Here our man concentration
is on the modifiability of the class with in minimum
amount of time. For this reason we want to reduce the
average system modifiability complexity value by
comparing with existed metric AM. In this
connection we were drastically reduced the finalized
values of the average system modifiability
complexity values and compared them with AM
values.

FUTURE WORK

 Our proposed metrics were got the good
results rather than the previously existed metrics for
average modifiability. Yet we were not concentrated
on the inside data of the class. In future we want to
focus on the class data and methods and study their
behavior on the class and system level modifiability.

REFERENCES

[1] Amjan Shaik,C. R. K. Reddy, Bala Manda, Prakashini. C,
Deepthi. K Metrics for Object Oriented Design Software Systems:
A Survey Journal of Emerging Trends in Engineering and Applied
Sciences (JETEAS) 1 (2): 190-198.
[2] M.S.Ranwat,A.Mittal,S.K.Dubey Survey on impact of software
metrics on software quality (IJACSA)International journal of
Advanced Computer Science and Applications, Vol.3,No.1,2012.
[3] Darcy, D.P.—Kemerer, C. F.: OO Metrics in Practice. IEEE
Softw. 22,6 November 2005, pp. 17–19. DOI:
http://dx.doi.org/10.1109/MS.2005.
 [4] Abreu, F.B.—Carapuca, R.: Candidate Metrics for Object-
Oriented Software within a Taxonomy Framework. Journal of
System Software, Vol. 26, 1994,pp.87–96
[5] Henderson-Sellers, B.: Object Oriented Metrics: Measures of
Complexity. Pren-tice Hall PTR: Englewood Cliffs, NJ, 1996; pp.
130–132.

[6] Li, W.: Another Metric Suite for Object-Oriented
Programming. Journal of Systems and Software, Vol. 44, 1998, pp.
155–162.
[7] Lorenz, M.—Kidd, J.: Object-Oriented Software Metrics.
Prentice Hall 1994,ISBN: 013179292X.
[8] Sheldon, F.T.—Jerath, K.—Chung, H.: Metrics for
Maintainability of Class In-heritance Hierarchies. Journal of
Software Maintenance 14, 3 May 2002, pp. 147–160.
[9] Weyuker, E. J.: Evaluating Software Complexity Measures.
IEEE Transactions on Software Engineering, Vol. 14, 1988, No. 9,
pp. 1357–1365.
[10] Cherniavsky, J.—Smith, C.: OnWeyukers Axioms for
Software Complexity Mea-sures. IEEE Transaction on Software
Engineering, Vol. 17, 1991, No. 6, pp. 636–638.
[11] Gursaran, G.R.: On the Applicability of Weyuker Property
Nine to Object-Oriented Structural Inheritance Complexity
Metrics. IEEE Transaction on Software Engineering, Vol. 27,
2001, No. 4, pp. 361–364.
[12] Sharma, N.—Joshi, P.—Joshi, R.K.: Applicability of
Weyuker’s Property 9 to Object-Oriented Metrics. IEEE
Transaction on Software Engineering, Vol. 32, 2006, No. 3, pp.
209–211.
[13] Deepti Mishra: New Inheritance complexity metricsfor object
– oriented software systems:An evaluation with weyker’s
properties Computing and Informatics, Vol. 30, 2011, 267–293.
[14] Chidamber, S.R.—Kemerer, C.F.: To wards A Metrics Suite
for Object Oriented Design,OOPSLA’91,pp. 197-211,1991.
[15] Chidamber, S.R.—Kemerer, C.F.: A Metrics Suite for Object
Oriented Design, M.I.T.Solan School of Management 1993.
[16] wang CC, shih TK ,paiWC An automatic approach to object –
oriented software testing and metrics for c++ inheritance
hierarchies, proceedings International Conference on Automated
Software Engineering (ASE’97), IEEE Computer Society press
1997;934-938
[17] Basili VR,Biand LC Melo WL A validation of object-oriented
metrics as quality indicators, Technical Report,University of
Maryland, Department of computer science,1995; 242-249.
[18] Chidamber, S.R.—Kemerer, C.F.: A Metrics Suite for Object
Oriented Design.IEEE Transactions on Software Engineering, Vol.
20, 1994, No. 6, pp. 476–493.
 [19] Ghassan alkadi, Application of a revised DIT metric to
Redesign an OO Design, Journal of Object technology , Vol.
2,Issue 3,pp 897-910,2005.
[20] Basili, V.R.:Viewing Maintenance As Reuse Oriented
Software Development. IEEE Software, Vol. 7, 1990, No. 1, pp.
19–25.
[21] Cartwright, M.—Shepperd, M.: An Empirical Analysis of
Object Oriented Soft-ware in Industry. In: Bournemouth Metrics
Workshop, April, Bournemouth, UK1996.
[22] Li, W.—Henry, S.: Object-Oriented Metrics That Predict
Maintainability. Journal of Systems and Software, Vol. 23, 1994,
No. 2, pp. 111–122.
[23] Sanjay Misra and Ibrahim Akman :Applicability of
weyuker’s Properties on OO Metrics: Some Misunderstandings ,
ComSIS Vol. 5, No. 1, June 2008.
[24] K. Rajnish, A. K. Choudhary, A. M. Agrawal, “Inheritance
Metrics for Object-Oriented Design”, IJCSIT, Vol. 2 No.6 ,
December2010,pp.13-26.
[25]K. Rajnish and V. Bhattacherjee, “Class Inheritance Metrics-
An Analytical and Empirical
Approach”, INFOCOMP-Journal of Computer Science, Federal
University of Lavras, Brazil, Vol. 7 No.3, pp. 25-34, 2008.

International Journal of Emerging Trends in Engineering Research, Vol.4. No.10, Pages : 188-193 (2016)
Special Issue of ICACSSE 2016 - Held on September 30, 2016 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2016sp34.pdf

193

ISSN 2347-3983

FIG 1(a) : Class Inheritance Hierarchy

FIG 1(d) : C+E combined for Class
Inheritance Hierarchy(case-3)property-5.

FIG 2(a) : Class Inheritance Hierarchy

 FIG 2(d) : Q+V combined for Class
Inheritance Hierarchy(case-2 property-5.

FIG 1(b) : A+B combined Class
Inheritance Hierarchy(case-
1)property-5.

FIG 1(e) : B+C combined for Class
Inheritance Hierarchy property-6.

FIG .2(b) :Q+R combined for Class
Inheritance Hierarchy(case-
1)property-5.

FIG 2(E) : Q+T combined for Class
Inheritance Hierarchy property-6.

FIG 1(c) : C+B combined for Class
Inheritance Hierarchy(case-2)property-5.

FIG 1(f) : D+Ccombined for Class
Inheritance Hierarchy property-6.

FIG 2(c) : Q+S combined for Class
Inheritance Hierarchy(case-2)property-5.

FIG 2(F) : R+T combined for Class
Inheritance Hierarchy property-6

