
International Journal of Emerging Trends in Engineering Research, Vol.3. No.10, Pages : 222-227 (2015)
Special Issue of ICACSSE 2015 - Held on October 30, 2015 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2015sp39.pdf

222

ISSN 2347-3983

A Software Module for the Test Packet Generation

Y. Somaiah1, A.Thirupathaiah2
1II M.Tech. - II Sem., Dept. of CSE, St. Ann’s College of Engineering. & Technology. Chirala,

somu.y77@gmail.com

2Associate Professor, Dept. of IT,St. Ann’s College of Engineering. & Technology. Chirala,

athiru73@yahoo.in

ABSTRACT:-In Network Systems are getting

bigger and more perplexing, yet overseers depend on

simple instruments, for example, and to investigate

issues. We propose a computerized and precise

methodology for testing and troubleshooting systems

called "Programmed Test Packet Generation"

(ATPG). ATPG peruses switch designs and produces

a gadget autonomous model. The model is utilized to

produce a base arrangement of test parcels to

(insignificantly) practice each connection in the

system or (maximally) work out each principle in the

system. Test parcels are sent occasionally, and

recognized disappointments trigger a different

instrument to restrict the deficiency. ATPG can

recognize both useful (e.g., off base firewall tenet)

and execution issues (e.g., congested line). ATPG

supplements however go past prior work in static

checking (which can't identify liveners or execution

blames) or deficiency restriction (which just limit

flaws given livens results). We depict our model

ATPG execution and results on two genuine

information sets: Stanford University's spine system

and Internet2. We observe that a little number of test

bundles suffices to test all principles in these

systems: for instance, 4000 parcels can cover all

principles in Stanford spine system, while 54 are

sufficient to cover all connections. Sending 4000 test

parcels 10 times each second expends less than 1% of

connection limit. ATPG code and the information

sets are openly accessible

INTRODUCTION:- IT is famously difficult to
investigate systems. Consistently, system specialists
grapple with switch mis-configurations, fiber cuts,
broken interfaces, mislabeled links, programming
bugs, discontinuous connections, and a heap different
reasons that cause systems to get rowdy or come up
short totally. System engineers chase down bugs
utilizing the most simple instruments (e.g., , , SNMP,
and) and find main drivers utilizing a mix of
accumulated knowledge and instinct. Investigating
systems is just getting to be harder as systems are
getting greater (advanced server farms may contain
10 000 switches, a grounds system may serve 50 000
clients, a 100-Gb/s whole deal connection may
convey 100 000 streams) and are getting more
confused (with more than 6000 RFCs, switch
programming is in light of a huge number of lines of
source code, and Static versus dynamic checking.

 A policy is compiled to forwardingstate,which is
then executed by the forwarding plane. Static
checking (e.g.,)confirms that . Dynamic checking
(e.g., ATPG in this paper) confirm that the topology
is meeting liveness properties () and that.System
chips frequently contain billions of entryways). It is a
shopping center ponder that system specialists have
been marked "bosses of intricacy". Consider for
example. Illustration 2: Suppose that feature
movement is mapped to a particular line in a switch,
yet parcels are dropped on the grounds that the token
can rate is too low. It is not in any manner clear how
Alice can track down such an execution deficiency
utilizing and. investigating a system is troublesome
for three reasons.

International Journal of Emerging Trends in Engineering Research, Vol.3. No.10, Pages : 222-227 (2015)
Special Issue of ICACSSE 2015 - Held on October 30, 2015 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2015sp39.pdf

223

ISSN 2347-3983

 To begin with, the sending state is circulated over
different switches and firewalls and is characterized
by their sending tables, channel rules, what's more,
other design parameters. Second, the sending state
is difficult to watch on the grounds that it commonly
requires physically signing into each container in the
system. Third, there are a wide range of projects,
conventions, and people upgrading the state at the
same time. At the point when Alice utilizes and, she
is utilizing an unrefined lens toanalyze the current
sending state for intimations to find the
disappointment. Fig. 1 is an improved perspective of
system state. At the base of the figure is the sending
state used to forward every parcel, comprising of the
L2 and L3 sending data base (FIB), access control
records, and so on. The sending state is composed by
the control plane (that can be nearby or remote as in
the SDN model) and ought to effectively execute the
system head's strategy. Samples of the arrangement
include: "Securitygroup X is separated from security
Group Y," "Use OSPF for steering," and "Feature
activity ought to get no less than 1 Mb/s." We can
think about the controller assembling the
arrangement (An) into gadget particular design
documents (B), which thusly focus the sending
conduct of every parcel (C). To guarantee the system
carries on as outlined, every one of the three stages
ought to stay reliable at all times, i.e.,. Furthermore,
the topology, demonstrated to the base right in the
figure, ought to additionally fulfill a set of liveners
properties. Insignificantly, obliges that adequate
connections and hubs are working; if the control
plane indicates that a tablet can get to a server, the

coveted result can fizzle if joins fall flat. Can
likewise determine execution ensures that recognize
flaky links.

 Recently, scientists have proposed
instruments to watch that, upholding consistency in
the middle of arrangement and the
design[1],[2],[3],[4]. While these methodologies can
discover (alternately avert) programming rationale
mistakes in the control plane, they are not intended to
recognize liveness disappointments brought on by
fizzled connections also, switches, bugs brought on
by broken switch equipment or programming,
alternately execution issues brought on by system
clogging. Such disappointments oblige checking for
and whether. Alice's in the first place issue was with
(connection not living up to expectations), and her
second issue was with (low level token pail state not
reflecting approach for feature data transfer
capacity)..

FIBs,ACL’s and set config files, as well gaining the
topology. ATPG useranalysis the Header Space
Analysis to calculate reachability between all the end
terminals.

Step3: The result is then used by the test packet
selection algorithm to compute a minimal set of test
packets that can test all rules

Step4: These packets will be sent periodically by the
test terminals

.Step5:If an error is detected, the fault
localizationalgorithm is invoked to narrow down the
cause of the error.

 Algorithm: We expect an
arrangement of test terminals in the system can send
and get test parcels. Our objective is to create a set of
test parcels to practice each principle in every switch
capacity,that any shortcoming will be seen by no less
than one test bundle. This is comparable to
programming test suites that attempt to test each
conceivable branch in a system.

 The more extensive objective can be
constrained to testing each connection or each line.
At the point when creating test bundles, Our
objective is to consequently identify these sorts of

International Journal of Emerging Trends in Engineering Research, Vol.3. No.10, Pages : 222-227 (2015)
Special Issue of ICACSSE 2015 - Held on October 30, 2015 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2015sp39.pdf

224

ISSN 2347-3983

disappointments. The principle commitment of this
paper is the thing that we call an Automatic Test
Packet Generation (ATPG) system that naturally
produces an insignificant arrangement of bundles to
test the liveness of basic topology and the
harmoniousness between information plane state and
design particulars. The apparatus can likewise
naturally produce bundles to test execution
statements such as bundle dormancy. In Example, the
instrument verifies that it must send bundles with
specific headers to "work out" the feature line, and at
that point verifies that these parcels are being
dropped. ATPG identifies and analyze slips by freely
and comprehensively testing every single sending
entire, firewall rules, and any bundle handling
principles in the system. In ATPG, test bundles are
produced algorithmically from the gadget setup
documents furthermore, FIBs, with the base number
of parcels needed for complete scope. Test parcels
are sustained into the system so that each standard is
practiced specifically from the information plane.
Since ATPG treats connects simply like ordinary
sending principles, its full scope insurances testing of
each connection in the system. It can likewise be
particular to create a negligible arrangement of
parcels that only test each connection for system
liveness. At any rate in this essential structure, we
feel that ATPG or some comparative strategy is
central to arranges: Instead of responding to
disappointments, numerous system administrators for
example, Internet proactively check the strength of
their system utilizing pings between all sets of
sources. On the other hand, all-sets does not ensure
testing of all connections and has been observed to be
unsalable for vast systems, for example, Planet Labs.
Organizations can tweak ATPG to address their
issues; for illustration[5], they can decide to simply
check for system liveness (connection cover) or
check each principle (tenet spread) to guarantee
security strategy. ATPG can be modified to check
just for reachability on the other hand for execution
also. ATPG can adjust to requirements such as
obliging test bundles from just a couple puts in the
system on the other hand utilizing exceptional
switches to produce test bundles from each port.
ATPG can likewise be tuned to assign more test
parcels to work out more discriminating standards.
For instance, a social insurance system might devote

more test parcels to Firewall standards to guarantee
HIPPA agreeability.

 We tried our strategy on two genuine
information sets—the spine systems of Stanford
University, Stanford, CA, USA, and Internet2,
speaking to an undertaking system and an across the
country ISP. The outcomes are empowering: Thanks
to the structure of true rule sets, the quantity of test
bundles required is shockingly little. For the Stanford
system with more than 757 000 rules and more than
100 VLANs, we just need 4000 bundles to practice
every single sending tenet and ACLs. On Internet2,
35 000 parcels suffice to practice all IPv4 sending
principles[6]. Put another way, we can weigh each
principle in every switch on the Stanford spine 10
times consistently by sending test parcels that expend
under 1% of system data transmission. The
connection spread for Stanford is significantly littler,
around 50 parcels, which permits proactive liveness
testing each millisecond utilizing 1% of system
transmission capacity.

ATPG Systems:

 In light of the system model, ATPG creates
the negligible number of test bundles so that each
sending manage in the system is practiced and
secured by no less than one test packet. When a
mistake is distinguished, ATPG utilizes a
shortcoming restriction calculation to focus the
falling flat standards or connections.

The below diagram shows the process of Automatic
Test Packet Generation system

Step1: system first gathers all the required and the
forwarding states from the network.

Step2: This normally including reading ATPG must
regard two key requirements:

1) Port: ATPG should just utilize test terminals that
are accessible;

2)Header: ATPGmust just utilize headers that every
test terminal is allowed to send.

International Journal of Emerging Trends in Engineering Research, Vol.3. No.10, Pages : 222-227 (2015)
Special Issue of ICACSSE 2015 - Held on October 30, 2015 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2015sp39.pdf

225

ISSN 2347-3983

Overview diagram of ATPG System

RELATED WORK:-

We are ignorant of prior strategies that consequently
create test bundles from setups. The nearest related
lives up to expectations we know of are logged off
devices that weigh invariants in systems. In the
control plane, NICE endeavors to comprehensively
spread the code ways typically in controller
applications with the assistance of improved
switch/host models. In the information plane,
Anteater models invariants as boolean satisfiability
issues and checks them against arrangements with a
SAT solver. Header Space Analysis utilizes a
geometric model to check reachability, identify
circles, and confirm cutting. As of late, Delicate was
proposed to check consistency between distinctive
OpenFlow operators executions that are mindful for
connecting control and information planes in the
SDN setting.

 ATPG supplements these checkers by
straightforwardly testing the information plane
furthermore, covering a huge arrangement of element
or execution blunders that can't generally be caught.
End-to-end tests have long been utilized as a part of
system deficiency determination[7] in work, for
example,. As of late, mining low-quality,

unstructured information, for example, switch setups
what's more, system tickets, has pulled in interest. By
difference, the essential commitment of ATPG is not
blame restriction, be that as it may, deciding a
reduced arrangement of end-to-end estimations that
can cover each principle or each connection. The
mapping between Min-Set-Cover and system
observing has been already investigated. ATPG
enhances the discovery granuality to the guideline
level by utilizing switch design what's more,
information plane data. Moreover, ATPG is not
restricted to liveness testing, however can be
connected to checking larger amount properties, for
example, execution. There are numerous proposition
to build up an estimation inviting building design for
systems. Our methodology is integral to these
proposition: By fusing data and port requirements,
ATPG can produce test bundles and infusion focuses
utilizing existing arrangement of estimation gadgets.

 Our work is firmly identified with work in
programming dialects furthermore, typical
investigating. We made a preparatory endeavor to
utilize KLEE and observed it to be 10 times slower
than indeed, even the unoptimized header space
system. We conjecture that this is in a far-reaching
way in light of the fact that in our structure we
straightforwardly reproduce the forward way of a
parcel as opposed to illuminating imperatives
utilizing a SMT solver. On the other hand, more work
is needed to comprehend the distinctions and
potential open door.

Implementation:

 We actualized a model framework to
consequently parse switch arrangements and produce
an arrangement of test parcels for the system. The
code is freely accessible.

A. Test Packet Generator The test bundle generator,
written in Python, contains a Cisco IOS arrangement
parser and a Juniper Junos parser. The dataplane data,
including switch arrangements, FIBs, MAC learning
tables, and system topologies, is gathered and parsed
through the charge line interface (Cisco IOS) or
XML documents (Junos). The generator then uses the
Hassel header space examination library[8] to build
switch and topology capacities. All-sets reachability

International Journal of Emerging Trends in Engineering Research, Vol.3. No.10, Pages : 222-227 (2015)
Special Issue of ICACSSE 2015 - Held on October 30, 2015 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2015sp39.pdf

226

ISSN 2347-3983

is figured utilizing the parallel-preparing module sent
with Python. Every procedure considers a subset of
the test ports and discovers all the reachable ports
from every one. After reachability tests are finished,
results are gathered, and the expert procedure
executes the Min- Set-Cover calculation. Test parcels
and the arrangement of tried tenets are put away in a
SQLite database.

B. System Monitor The system screen expect there
are uncommon test operators in the system that have
the capacity to send/get test bundles. The system
screen peruses the database and develops test bundles
and trains every specialists to send the proper
bundles. Right now, test operators separate test
bundles by IP Proto field and TCP/UDP number,
however different fields, for example, IP alternative,
can likewise be utilized. In the event that a
percentage of the tests fall flat, the screen chooses
extra test bundles from held parcels to pinpoint the
issue. The procedure rehashes until the deficiency has
been distinguished. The screen utilizes JSON[9] to
speak with the test operators, and employments
SQLite's string coordinating to lookup test bundles
proficiently.

C. Interchange Implementations Our model was
intended to be negligibly intrusive, needing no
progressions to the system but to include terminals at
the edge. In systems obliging quicker finding, the
accompanying augmentations are conceivable.
Agreeable Routers: another component could be
added to switches/switches, so that a focal ATPG
framework can train a router to send/get test parcels.
Truth be told, for assembling testing purposes, it is
likely that each business switch/switch can as of now
do this; we simply require an open interface to
control them. SDN-Based Testing: In a product
characterized system (SDN) for example, OpenFlow,
the controller could straightforwardly educate the
switch to send test bundles and to recognize and
forward got test parcels[10] to the control plane. For
execution testing, test parcels should be time-stamped
at the switches.

CONCLUSION:-Testing liveness of a system is
an essential issue for ISPs and expansive server farm
administrators. Sending tests between each pair of
edge ports is neither thorough nor versatile. It

suffices to locate an insignificant arrangement of end-
to-end parcels that cross every connection. Be that as
it may, doing this obliges a method for abstracting
crosswise over gadget particular setup records (e.g.,
header space), producing headers and the connections
they reach (e.g., all-sets reachability), lastly deciding
a base arrangement of test parcels (Min-Set-Cover).
Indeed, even the key issue of naturally producing test
parcels for effective liveness testing requires systems
much the same as ATPG. ATPG, on the other hand,
goes much more remote than liveness testing with the
same system. ATPG can test for reachability
arrangement (by testing all guidelines including drop
tenets) and execution wellbeing (by partner execution
measures, for example, inactivity and misfortune
with test bundles).

 Our execution likewise expands testing with
a straightforward flaw restriction plot additionally
built utilizing the header space structure. As in
programming testing, the formal model helps expand
test scope while minimizing test bundles. Our
outcomes demonstrate that every single sending
manage in Stanford spine or Internet2 can be
practiced by a shockingly little number of test parcels
(for Stanford, and for Internet2). System chiefs today
utilize primitive devices, for example,what's
more,.Our overview results demonstrate that they are
anxious for more modern devices. Different fields of
building show that these yearnings are not
preposterous: for instance, both the ASIC and
programming outline commercial enterprises are
buttressed by billion- dollar apparatus organizations
that supply methods for both static (e.g.,
configuration standard) and element (e.g., timing)
check. In certainty, numerous months after we
fabricated and named our framework, we found
shockingly thatATPGwas awell-known acronym in
equipment chip testing, where it remains for
Automatic Test Pattern Era. We trust system ATPG
will be similarly valuable for computerized element
testing of generation systems.

REFERENCES:-

1. “ATPG code repository,” [Online].
Available: http://eastzone.github.com/atpg/

2. “Automatic Test Pattern Generation,” 2013
[Online].

International Journal of Emerging Trends in Engineering Research, Vol.3. No.10, Pages : 222-227 (2015)
Special Issue of ICACSSE 2015 - Held on October 30, 2015 in St. Ann’s College of Engineering & Technology, Chirala, AP, India
http://www.warse.org/IJETER/static/pdf/Issue/icacsse2015sp39.pdf

227

ISSN 2347-3983

Available:http://en.wikipedia.org/wiki/Auto
matic_test_pattern_generation

3. P. Barford, N. Duffield, A. Ron, and J.
Sommers, “Network performanceanomaly
detection and localization,” in Proc. IEEE
INFOCOM,Apr. , pp. 1377–1385.

4. “Beacon,” [Online]. Available:
http://www.beaconcontroller.net/

5. Y. Bejerano and R. Rastogi, “Robust
monitoring of link delays andfaults in IP
networks,” IEEE/ACM Trans. Netw., vol.
14, no. 5, pp.1092–1103, Oct. 2006.

6. C. Cadar, D. Dunbar, and D. Engler, “Klee:
Unassisted and automaticgeneration of high-
coverage tests for complex systems
programs,” inProc. OSDI, Berkeley, CA,
USA, 2008, pp. 209–224.

7. M. Canini,D.Venzano, P. Peresini,D.Kostic,
and J. Rexford, “A NICEway to test
OpenFlow applications,” in Proc. NSDI,
2012, pp. 10–10.

8. Dhamdhere, R. Teixeira, C. Dovrolis, and C.
Diot, “Netdiagnoser:Troubleshooting
network unreachabilities using end-to-end
probes androuting data,” in Proc. ACM
CoNEXT, 2007, pp. 18:1–18:12..

9. N. Duffield, “Network tomography of
binary network performancecharacteristics,”
IEEE Trans. Inf. Theory, vol. 52, no. 12,
pp.5373–5388, Dec. 2006.

10. N. Duffield, F. L. Presti, V. Paxson, and D.
Towsley, “Inferring linkloss using striped
unicast probes,” in Proc. IEEE INFOCOM,
2001,vol. 2, pp. 915–923.

11. P. Kazemian, G. Varghese, and N.
McKeown, “Header space analysis: Static
checking for networks,” in Proc. NSDI,
2012, pp. 9–9.

12. R. R. Kompella, J. Yates, A. Greenberg, and
A. C. Snoeren, “IP fault localization via risk
modeling,” in Proc. NSDI, Berkeley, CA,
USA,2005, vol. 2, pp. 57–70.

13. M. Kuzniar, P. Peresini, M. Canini, D.
Venzano, and D. Kostic, “A SOFT way for
OpenFlow switch interoperability testing,”
in Proc.ACM CoNEXT, 2012, pp. 265–276.

14. K. Lai and M. Baker, “Nettimer: A tool for
measuring bottleneck link, bandwidth,” in

Proc. USITS, Berkeley, CA, USA, 2001,
vol. 3, pp. 11–11.

15. Lantz, B. Heller, and N. McKeown, “A
network in a laptop: Rapid prototyping for
software-defined networks,” in Proc.
Hotnets, 2010, pp. 19:1–19:6.

AUTHORS :

Mr.Y.Somaiah

Studying II M.Tech

(SE) in St. Ann’s

College of Engineering

&Technology, Chirala,

He completed B.Tech.(IT) in 2012 in St.

Ann’s Engineering College, Chirala.

A.Thirupathaiah is

presently working as an

Associate professor, dept.

Of MCA in St. Ann’s

College of Engineering

and Technology, Chirala.

He has More than 14 Years of Experience in

Teaching and he is a lifetime member of

ISTE and CSI.

