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ABSTRACT 
 

An improved architecture for the 
implementation of a delayed least mean square 
adaptive filter is proposed in this paper. THE LEAST 
MEAN SQUARE (LMS) adaptive filter is the most 
popular and most widely used adaptive filter, not 
only because of its simplicity but also because of its 
satisfactory convergence performance. But 
conventional LMS adaptive filter involves a long 
critical path due to an inner-product computation to 
obtain the filter output. That critical path is required 
to be reduced by pipelined implementation called 
delayed LMS (DLMS) adaptive filter. The 
conventional delayed LMS adaptive filter 
architecture occupies more area, more power wastage 
and less performance then compare with this 
proposed architecture. The proposed LMS design 
offers less area-delay product (ADP) and energy-
delay product (EDP). Moreover, the proposed 
adaptive filter design is extended by replacing LMS 
algorithm to RLS (Recursive least squares) algorithm 
which leads to better performance, and also by 
adding bit-level pruning of the proposed architecture, 
which improves ADP and EDP further.  
 
Keywords: adaptive filter, LMS, DLMS, RLMS, 
area-delay product and energy-delay product 
 

I. INTRODUCTION 
 

THE LEAST MEAN SQUARE (LMS) 
adaptive filter is the most popular and most widely 
used adaptive filter [1]. The direct-form LMS 
adaptive filter involves a long critical path due to an 
inner-product computation to obtain the filter output. 
The critical path is required to be reduced by 
pipelined implementation when it exceeds the desired 

sample period. Since the conventional LMS 
algorithm does not support pipelined implementation 
because of its recursive behavior, it is modified to a 
form called the delayed LMS (DLMS) algorithm [2], 
which allows pipelined implementation of the filter. 
A lot of work has been done to implement the DLMS 
algorithm in systolic architectures to increase the 
maximum usable frequency but, they involve an 
adaptation delay of   N cycles for filter length N, 
which is quite high for large order filters. Since the 
convergence performance degrades considerably for 
a large adaptation delay, Visvanathan have proposed 
a modified systolic architecture to reduce the 
adaptation delay. A transpose-form LMS adaptive 
filter is suggested in [3], where the filter output at any 
instant depends on the delayed versions of weights 
and the number of delays in weights varies from 1 to 
N. 
 

The existing work on the DLMS adaptive 
filter does not discuss the fixed-point implementation 
issues, e.g., location of radix point, choice of word 
length, and quantization at various stages of 
computation, although they directly affect the 
convergence performance, particularly due to the 
recursive behavior of the LMS algorithm. Therefore, 
fixed-point implementation issues are given adequate 
emphasis in this paper. Besides, we present here the 
optimization of our previously reported design [4], 
[5] to reduce the number of pipeline delays along 
with the area, sampling period, and energy 
consumption. The proposed design is found to be 
more efficient in terms of the power-delay product 
(PDP) and energy-delay product (EDP) compared to 
the existing structures.  
 

In the next section, we review the DLMS 
algorithm, and in Section III, we describe the 
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proposed optimized architecture for its 
implementation. Section IV deals with fixed-point 
implementation considerations. Section V contains 
RLS. Section VI deals with results analysis and 
Conclusions are given in Section VII. 

 
II. REVIEW OF DELAYED LMS ALGORITHM 
 

LMS adaptive filter is used worldwide 
because of its easy computation and flexibility. This 
algorithm is a member of stochastic gradient 
algorithm , and because of its robustness and low 
computational complexity it is used worldwide. The 
algorithm using the steepest distance is as given 
below. 

௡ାଵݓ = ௡ݓ + .ߤ ݁௡  (௡                                (1a)ݔ.
 
Where  
݁௡ = ݀௡ − ௡ݕ ௡ݕ          = ௡்ݓ  ௡ݔ                           (1b)  
 
Where the input vector xn, and the weight vector wn 
at the nth iteration are, respectively, given by 
 

௡ݔ = ௡ݔ   ] ,௡ିଵݔ, … … … … … . . , ௡ݔ −ܰ + 1 ]் 
 
௡ݓ = ,௡(1)ݓ,௡(0)ݓ   ] … … … … … . . ܰ)௡ݓ, − 1) ]்  

 
dn is the desired response, yn is the filter output, and 
en denotes the error computed during the nth 
iteration. μ is the step-size, and N is the number of 
weights used in the LMS adaptive filter. In the case 
of pipelined designs with m pipeline stages, the error 
en becomes available after m cycles, where m is 
called the “adaptation delay.” The DLMS algorithm 
therefore uses the delayed error en−m, i.e., the error 
corresponding to (n − m)th iteration for updating the 
current weight instead of the recent-most error. The 
weight-update equation of DLMS adaptive filter is 
given by 
 

wn+1 = wn + μ · en−m · xn−m. (2) 
 

The above (1a) (1b) two equations are required 
output of LMS algorithm where yn is the filter output 
and en is the error. Figure below shows the block 
diagram of adaptive filter 

 
Figure 1: Structure of the conventional delayed LMS 
adaptive filter. 
 
If the values of dn and yn will become equal we will 
get zero error (en). This filter could be used in 
combination of various other applications. There are 
number of parameters related to LMS adaptive filter, 
which could differently play an important role in 
order to reduce the error. Various applications are 
also there, which can also be analyzed using LMS 
filter. The block diagram of the DLMS adaptive filter 
is shown in Fig. 1, where the adaptation delay of m 
cycles amounts to the delay introduced by the whole 
of adaptive filter structure consisting of finite impulse 
response (FIR) filtering and the weight-update 
process. The adaptation delay of conventional LMS 
can be decomposed into two parts: one part is the 
delay introduced by the pipeline stages in FIR 
filtering, and the other part is due to the delay 
involved in pipelining the weight update process. 
 

III. PROPOSED ARCHITECTURE 

 
Figure 2: Structure of the modified delayed LMS 

adaptive filter. 
 

The DLMS adaptive filter can be implemented by a 
structure shown in Fig. 2. Assuming that the latency 
of computation of error is n1 cycles, the error 
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computed by the structure at the nth cycle is en−n1 , 
which is used with the input samples delayed by n1 
cycles to generate the weight-increment term. The 
weight- update equation of the modified DLMS 
algorithm is given by 
 

wn+1 = wn + μ · en-n1· xn-n1 (3a) 
 

Where 
en-n1= dn-n1− yn-n1               (3b) 

 
And 

yn = wT
n-n2· xn                    (3c) 

 
We notice that, during the weight update, the error 
with n1 delays is used, while the filtering unit uses 
the weights delayed by n2 cycles. The modified 
DLMS algorithm decouples computations of the 
error-computation block and the weight-update block 
and allows us to perform optimal pipelining by feed 
forward cut-set retiming of both these sections 
separately to minimize the number of pipeline stages 
and adaptation delay.  
 
As shown in Fig. 2, there are two main computing 
blocks in the adaptive filter architecture:  
1) The error-computation block, and  
2) weight-update block.  
In this Section, we discuss the design strategy of the 
proposed structure to minimize the adaptation delay 

A. Pipelined Structure of the Error-Computation 
Block   

 
Fig. 3. Proposed structure of the error-computation block. 

 
The proposed structure for error-computation unit of 
an N-tap DLMS adaptive filter is shown in Fig. 3. It 
consists of N number of 2-b partial product 
generators (PPG) corresponding to N multipliers and 
a cluster of L/2 binary adder trees, followed by a 
single shift–add tree. Each sub block is described in 
detail.  
 
1) Structure of PPG:  

 
Fig. 4. Proposed structure of PPG.  
 
The structure of each PPG is shown in Fig. 4. It 
consists of L/2 number of 2-to-3 decoders and the 
same number of AND/OR cells (AOC).1 Each of the 
2-to-3 decoders takes a 2-b digit (u1u0) as input and 
produces three outputs b0 = u0 · . u1, b1 = . u0 · u1, 
and b2 = u0 · u1, such that b0 = 1 for (u1u0) = 1, b1 
= 1 for (u1u0) = 2, and b2 = 1 for (u1u0) = 3. The 
decoder output b0, b1 and b2 along with w, 2w, and 
3w are fed to an AOC, where w, 2w, and 3w are in 
2’s complement representation and sign-extended to 
have (W + 2) bits each. To take care of the sign of the 
input samples while computing the partial product 
corresponding to the most significant digit (MSD), 
i.e., (uL−1uL−2) of the input sample, the AOC (L/2 − 
1) is fed with w, −2w, and −w as input since 
(uL−1uL−2) can have four possible values 0, 1, −2, 
and −1.  
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2) Structure of AOCs:  
 

 
Fig. 5. Structure and function of AND/OR cell. Binary 
operators · and + in (b) and (c) are implemented using 
AND and OR gates, respectively. 
The structure and function of an AOC are depicted in 
Fig. 5. Each AOC consists of three AND cells and 
two OR cells. The structure and function of AND 
cells and OR cells are depicted by Fig. 5(b) and (c), 
respectively. Each AND cell takes an n-bit input D 
and a single bit input b, and consists of n AND gates. 
It distributes all the n bits of input D to its n AND 
gates as one of the inputs. The other inputs of all the 
n AND gates are fed with the single-bit input b. As 
shown in Fig. 5(c), each OR cell similarly takes a 
pair of n-bit input words and has n OR gates. A pair 
of bits in the same bit position in B and D is fed to 
the same OR gate.  
 
The output of an AOC is w, 2w, and 3w 
corresponding to the decimal values 1, 2, and 3 of the 
2-b input (u1u0), respectively. The decoder along 
with the AOC performs a multiplication of input 
operand w with a 2-b digit (u1u0), such that the PPG 
of Fig. 5 performs L/2 parallel multiplications of 
input word w with a 2-b digit to produce L/2 partial 
products of the product word wu. 
 
3) Structure of Adder Tree     
 
    Conventionally, we should have performed the 
shift-add operation on the partial products of each 
PPG separately to obtain the product value and then 
added all the N product values to compute the desired 
inner product. However, the shift-add operation to 

obtain the product value increases the word length, 
and consequently increases the adder size of N − 1 
additions of the product values. To avoid such 
increase in word size of the adders, we add all the N 
partial products of the same place value from all the 
N PPGs by one adder tree. All the L/2 partial 
products generated by each of the N PPGs are thus 
added by (L/2) binary adder trees. The outputs of the 
L/2 adder trees are then added by a shift-add tree 
according to their place values. Each of the binary 
adder trees require log2 N stages of adders to add N 
partial product, and the shift–add tree requires log2 L 
− 1 stages of adders to add L/2 output of L/2 binary 
adder trees.2 The addition scheme for the error-
computation block for a four-tap filter and input word 
size L = 8 is shown in Fig. 6. 
 

 
Fig. 6. Adder-structure of the filtering unit for N = 4 and L 
= 8. 
 
For N = 4 and L = 8, the adder network requires four 
binary adder trees of two stages each and a two-stage 
shift–add tree. In this figure, we have shown all 
possible locations of pipeline latches by dashed lines, 
to reduce the critical path to one addition time. If we 
introduce pipeline latches after every addition, it 
would require L(N − 1)/2 + L/2 − 1 latches in log2 N 
+ log2 L − 1 stages, which would lead to a high 
adaptation delay and introduce a large overhead of 
area and power consumption for large values of N 



 
         International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6,  Pages : 328  - 335  (2015)   

    Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati                           
    http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp62.pdf 

 

332 
 

                   ISSN  2347 - 3983 

and L. On the other hand, some of those pipeline 
latches are redundant in the sense that they are not 
required to maintain a critical path of one addition 
time.  
 

The final adder in the shift–add tree 
contributes to the maximum delay to the critical path. 
Based on that observation, we have identified the 
pipeline latches that do not contribute significantly to 
the critical path and could exclude those without any 
noticeable increase of the critical path. The location 
of pipeline latches for filter lengths N = 8, 16, and 32 
and for input size L = 8 are shown in Table I. The 
pipelining is performed by a feed forward cut-set 
retiming of the error-computation block.  
 
 
 
TABLE I 

N ERROR 
COMPUTATION 

BLOCK 

WEIGHT 
UPDATE 
BLOCK 

ADDER 
TREE 

SHIFT 
ADD 
TREE 

SHIFT 
ADD 
TREE 

8 STAGE 2 STAGE 1 
AND 2 

STAGE 1 

16 STAGE 3 STAGE 1 
AND 2 

STAGE 1 

32 STAGE 3 STAGE 1 
AND 2 

STAGE 2 

LOCATION OF PIPELINE LATCHES FOR L=8 AND 
N=8, 16, 32 
  
B. Pipelined Structure of the Weight-Update 
Block 
 
The proposed structure for the weight-update block is 
shown in Fig. 7. It performs N multiply-accumulate 
operations of the form (μ × e) × xi + wi to update N 
filter weights.  
 

 
Fig. 7. Proposed structure of the weight-update block. 

 
The step size μ is taken as a negative power of 2 to 
realize the multiplication with recently available error 
only by a shift operation. Each of the MAC units 
therefore performs the multiplication of the shifted 
value of error with the delayed input samples xi 
followed by the additions with the corresponding old 
weight values wi . All the N multiplications for the 
MAC operations are performed by N PPGs, followed 
by N shift– add trees. Each of the PPGs generates L/2 
partial products corresponding to the product of the 
recently shifted error value μ × e with L/2, the 
number of 2-b digits of the input word xi , where the 
sub expression 3μ×e is shared within the multiplier. 
Since the scaled error (μ×e) is multiplied with the 
entire N delayed input values in the weight-update 
block, this sub expression can be shared across all the 
multipliers as well. This leads to substantial reduction 
of the adder complexity. The final outputs of MAC 
units constitute the desired updated weights to be 
used as inputs to the error-computation block as well 
as the weight-update block for the next iteration 
  
C. Adaptation Delay 
As shown in Fig. 2, the adaptation delay is 
decomposed into n1 and n2. The error-computation 
block generates the delayed error by n1 −1 cycles as 
shown in Fig. 3, which is fed to the weight-update 
block shown in Fig. 8 after scaling by μ; then the 
input is delayed by 1 cycle before the PPG to make 
the total delay introduced by FIR filtering be n1. In 
Fig. 7, the weight-update block generates wn−1−n2, and 
the weights are delayed by n2+1 cycle. However, it 
should be noted that the delay by 1 cycle is due to the 
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latch before the PPG, which is included in the delay 
of the error-computation block, i.e., n1. Therefore, the 
delay generated in the weight-update block becomes 
n2. If the locations of pipeline latches are decided as 
in Table I, n1 becomes 5, where three latches are in 
the error-computation block, one latch is after the 
subtraction in Fig. 3, and the other latch is before 
PPG in Fig. 7. Also, n2 is set to 1 from a latch in the 
shift-add tree in the weight-update block. 
 
IV. FIXED-POINT IMPLEMENTATION, 
OPTIMIZATION, SIMULATION, AND 
ANALYSIS 
 
In this section, we discuss the fixed-point 
implementation and optimization of the proposed 
DLMS adaptive filter. A bit level pruning of the 
adder tree is also proposed to reduce the hardware 
complexity without noticeable degradation of steady 
state MSE. 

 

Fig. 8. Fixed-point representation of a binary number (Xi: 
integer word length; X f : fractional word-length). 
TABLE II 
FIXED-POINT REPRESENTATION OF THE SIGNALS 
OF THE PROPOSED 

Signal Name Fixed-Point Representation 
x (L, Li ) 
W (W,Wi ) 
p (W + 2, Wi + 2) 
q (W + 2 + log2 N, Wi + 2 + log2 N) 

y, d, e (W,Wi + Li + log2 N) 
μe (W,Wi ) 
r (W + 2, Wi + 2) 
s (W,Wi ) 

 
x, w, p, q, y, d, and e can be found in the error-
computation block of Fig. 3. μe, r, and s are defined 
in the weight-update block in Fig. 7. It is to be noted 
that all the subscripts and time indices of signals are 
omitted for simplicity of notation. For fixed-point 
implementation, the choice of word lengths and radix 
points for input samples, weights, and internal signals 
need to be decided. Fig. 8 shows the fixed-point 

representation of a binary number. Let (X, Xi ) be a 
fixed-point representation of a binary number where 
X is the word length and Xi is the integer length. The 
word length and location of radix point of xn and wn 
in Fig. 4 need to be predetermined by the hardware 
designer taking the design constraints, such as 
desired accuracy and hardware complexity, into 
consideration. Assuming (L, Li ) and (W,Wi ), 
respectively, as the representations of input signals 
and filter weights, all other signals in Figs. 3 and 7 
can be decided as shown in Table II. 
 
The signal pi j , which is the output of PPG block 
(shown in Fig. 3), has at most three times the value of 
input coefficients. Thus, we can add two more bits to 
the word length and to the integer length of the 
coefficients to avoid overflow. The output of each 
stage in the adder tree in Fig. 6 is one bit more than 
the size of input signals, so that the fixed-point 
representation of the output of the adder tree with 
log2 N stages becomes (W + log2 N + 2,Wi + log2 N 
+ 2). Accordingly, the output of the shift–add tree 
would be of the form (W+L+log2 N,Wi+Li+ log2 N), 
assuming that no truncation of any least significant 
bits (LSB) is performed in the adder tree or the shift–
add tree. However, the number of bits of the output 
of the shift–add tree is designed to have W bits. The 
most significant W bits need to be retained out of (W 
+ L + log2 N) bits, which results in the fixed-point 
representation (W,Wi + Li +log2 N) for y, as shown in 
Table II. Let the representation of the desired signal d 
be the same as y, even though its quantization is 
usually given as the input. For this purpose, the 
specific scaling/sign extension and truncation/zero 
padding are required. Since the LMS algorithm 
performs learning so that y has the same sign as d, the 
error signal e can also be set to have the same 
representation as y without overflow after the 
subtraction. 
 

V. RECURSIVE LEAST SQUARES 
The Recursive least squares (RLS) is an 

adaptive filter which recursively finds the 
coefficients that minimize a weighted linear least 
squares cost function relating to the input signals. 
This is in contrast to other algorithms such as the 
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least mean squares (LMS) that aim to reduce the 
mean square error. In the derivation of the RLS, the 
input signals are considered deterministic, while for 
the LMS and similar algorithm they are considered 
stochastic. Compared to most of its competitors, the 
RLS exhibits extremely fast convergence. However, 
this benefit comes at the cost of high computational 
complexity.Instead of LMS if we use RLMS in the 
same optimized architecture of proposed adaptive 
filter which leads to betterment in area, power and 
delay. 

  
VI. EXPERIMENTAL RESULTS ANALYSIS 
 
Below figure shows area slices and delay of delayed 
least mean square filter 

 
 
Below figure shows area slices and delay of delayed 
Recursive least mean square filter 

 
 

Table III Experiment Results 
Adaptive 

filters 
Area Delay  power 

DLMS 604 slices 186.712ns 0.034W 
DRLMS 539 slices 186.704ns 0.034W 

VII. CONCLUSION 
 

We proposed an area–delay-power 
economical low adaptation delay design for fixed-
point implementation of LMS adaptive filter. We 
have a tendency to used a unique PPG for economical 
implementation of general multiplications and inner-
product computation by common sub expression 
sharing. Besides, we've proposed AN economical 
addition theme for inner-product computation to cut 
back the variation delay considerably so as to realize 
quicker convergence performance and to cut back the 
important path to support high input-sampling rates. 
Other than this, we have a tendency to propose a 
method for optimized balanced pipelining across the 
long blocks of the structure to cut back the variation 
delay and power consumption, as well. The proposed 
structure concerned considerably less adaptation 
delay and provided vital saving of ADP and EDP 
compared to the prevailing structures. We have a 
tendency to propose a fixed-point implementation of 
the proposed design, and derived the expression for 
steady-state error. We have a tendency to found that 
the steady-state MSE obtained from the analytical 
result matched well with the simulation result. We 
also discussed a pruning scheme that provides better 
ADP and EDP over the proposed structure before 
pruning, without a noticeable degradation of steady-
state error performance.  
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