
 International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.6, Pages : 219-223 (2013)
 Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India

219

ISSN 2278-3091

Impact of Length of Test Sequence on Coverage in
Software Testing

B.Raveendranath Singh
Professor – CSE

Visvesvaraya Institute of Technology &Science ,
Hyderabad

ABSTRACT
Testing is an essential phase of software
development life cycle (SDLC). A series of
function calls is required to test software.
When there is internal state in the software,
there might be a need for invoking
previously invoked functions and then call a
method in order to ensure the correct
internal state. In software testing
consideration of internal state of software is
important both in procedural and object
oriented approaches. The length of test
sequences in order to ensure complete
structural coverage in the software is the
area less studied. This paper aims at
analyzing the role of length of test
sequences for complete branch coverage.
Towards achieving it we use multiple
techniques. Empirical results revealed that
the length of test sequences has its role to
play in software testing.

Index Terms –SDLC, software testing,
internal state, search-based techniques, test
case, test sequence, test suite

INTRODUCTION
Software testing has become a branch of
computer science and much importance is
given for it as it ensures the quality of
software. There are many kinds of testing.
Black box testing is a process of testing the
software to see whether it gives intended
outputs. The white box testing focuses on
generating a suite of test cases in order to
ensure the complete structural coverage in
terms all branches in the software [1]. Test
case is nothing but a program which invokes

a function and with test input values. The
output of the function call is compared with
the expected output. If both are same, the
test case is success else failure. This way the
functionalities in the software are tested with
all possible input values even wrong input
values. Thus the robustness of the software
is tested. When the software is found with
inconsistencies, then the test engineer sends
it back to the development team thus life
cycle of software development starts again.

When the software has internal state, testing
requires more test cases. This is because, the
software is likely to have many branches
and all are to be covered to have complete
structural coverage. In order to ensure that
the internal state is present correctly and
then test all branches needs more test cases
i.e. test sequences or test suites.

Fig. 1 –A sample program with internal state
(excerpt from [12])

 International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.6, Pages : 219-223 (2013)
 Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India

220

ISSN 2278-3091

As seen in fig. 1, the bank account program
has internal state i.e. numberOfWithdrawals
variable. As withdrawals are allows only 10
times, to have complete branch coverage,
the method needs to be called minimum of
10 times so as to test the condition
effectively. Therefore it is essential to know
the shortest possible sequence length that
covers all branches in the program.

In this paper, we study the role of the test
sequence length to have complete structural
coverage. As described in [2] there is a
common practice that applies random testing
then followed by other techniques to cover
all branches. This has been proven in [3]. In
this context two things are important. First
of all a decision has to be made as to how
long the random testing is to be applied.
Second, effort required to cover all
branches. According to [4] we can target a
single branch at any given point of time but
keeping track of rest of the branches might
be required. Only the second one is the
focus of this paper. After generating test
cases through random testing, specialized
test sequences are required to cover rest of
the branches. In the process we try to reduce
number of test cases while ensuring
complete branch coverage. In [5] search
based techniques are used to test software.
The author of [5] compared four algorithms
namely Random Search (RS), Genetic
Algorithm (GA), Evolutionary Algorithm
(EA), and Hill Climbing (HC). Bench mark
container classes in Java language [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15],
[16], [17] are used here to perform testing.
The author of [5] also performed empirical
and theoretical analysis to know the length
of test sequences.

The contribution of this paper to use more
techniques in order to find the role of the
length of test sequences for complete
structural coverage of the software under

test. The remainder of this paper is
structured as follows. Section II reviews
literature on the role of test sequence length
in software testing. Section III provides
insights into the proposed techniques.
Section IV analyzes experiments and results
while section V concludes the paper.

PRIOR WORK
In the literature there are prior works that
focused on test sequences [8], [9], [10]. In
the process of analyzing the length of test
sequences, they used various techniques to
prune the search space in order to find
shortest solution. In [7] a new approach is
followed to reduce test sequences. That
approach suggests havingdata structures
equipped with a model checker.
Evolutionary techniques are used to reduce
the number of test sequences. In such
experiments fitness is calculated using
heuristics. Branch distance and approach
level are the typical heuristics found in the
literature [18]. However, only approach
level is used in [6] which can find length of
test sequences but can’t minimize the test
sequences required for structural coverage.
Same work was carried out in [11] but with
the help of Genetic Programming. Here also
the fitness function is not aimed at reducing
number of test sequences. Object reuse and
purity analysis are the techniques used by
Ribeiro et al. [15], [16] in order to reduce
search space.

In [12] a combined approach was studied.
First of all the problems encountered in [8],
[9], and [10] are overcome using
evolutionary algorithm and then symbolic
execution approach is used to get rid of
problems in evolutionary algorithm. For
testing object oriented software, search
algorithms are used in [13], [14] and [5].
Table 1 summarizes the research carried out
current state of the art in software testing

 International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.6, Pages : 219-223 (2013)
 Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India

221

ISSN 2278-3091

that focuses in finding the role of the length
of test sequences.

Andrea Arcuri 2012
 100% [5]
Table 1 –Summary of Related Work
(excerpt from [12])

More research went into search algorithms
[19], [20] but very less was dedicated to
apply those techniques for software testing.
The exceptions include [21], [22] and [23]
where some attempt is made to use search
algorithms in software testing. In [5] four
search techniques are used for software
testing. This paper uses multiple techniques
to study the role of the length of test
sequences for complete structural coverage.
PROPOSED APPROACH
The application of techniques such as RS,
HC, EA, and GA are as described in [5].
However, in this paper we implemented a
variation of GA with different search
operator. Instead of using mutation
uniformally, higher probabilities are given
for function call mutating in the process of
finding test sequence length. For this
purpose, the GA algorithm which has been
presented in [5] is modified.

Fig. 2 – Pseudocode for GA (Excerpt from
[5])

As can be seen in fig. 2, it is evident that the
GA algorithm is using uniform mutation.
We changed in our prototype built in Java to
give higher probabilities for first function
call mutations in the test sequence. The
results of the techniques are presented in the
next section.

EXPERIMENTAL RESULTS
Experiments are made with a prototype
application that has been built using Java
programming language with Graphical User
Interface (GUI). Other software used
includes Net Beans IDE, JUnit and JDK 1.7.
The application is tested in a PC with 3 GB
RAM and Core 2 Dual processor. The
datasets or software for testing are taken
from Java collection API and also other
source codes. The results are presented
below.

Fig. 3 –Average Number of Method Calls

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8

Fi
na

l L
en

gt
h

Maximum Length

HC

(1+1) EA

GA

Proposed

 International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.6, Pages : 219-223 (2013)
 Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India

222

ISSN 2278-3091

Fig. 4 – Average Length of Final Solutions

Fig. 5 – Sequence Length for Linked List

Fig. 6 – Sequence Length for Hashtable

Fig. 7–Size of Container vs. Function Calls

V. CONCLUSION
In this paper, we studied on the role of the
length of test sequences in software testing
for complete structural coverage. We used
the search techniques such as RS, HC, EA,
GA and other variations of GA. We have
tested containers and other software
products using a prototype application. The
application is built using Java language in
order to test software in user-friendly
fashion. The software under test contains
internal state as well. With internal state, we
made experiments with various techniques
in order to find the optimal test sequence
length. We found that test sequence length
plays a crucial role in software testing for
complete structural coverage. The
experimental results revealed that the
proposed application is useful in testing
software and generate test cases for full
branch coverage.

REFERENCES
[1] G. Myers, The Art of Software Testing.
Wiley, 1979.
[2] J.W. Duran and S.C. Ntafos, “An
Evaluation of Random Testing,”IEEE Trans.
Software Eng., vol. 10, no. 4, pp. 438-444,
July 1984.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

Fi
na

l L
en

gt
h

Maximum Length

HC

(1+1) EA

GA

Proposed

0
0.2
0.4
0.6
0.8

1
1.2

1 2 3 4 5 6 7 8 9 10

Ra
tio

 G
lo

ba
l o

pt
im

a

Sequence length

id 1

id 2

id 3

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Ra
tio

 o
f G

lo
ba

l O
pt

im
a

Sequence Length

id 3

id 4

id 5

id 6

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Av
er

ag
e

si
ze

 o
f C

on
ta

in
er

s

Function Calls

LinkedList

HashMap

Vector

TreeMap

BinomialH
eap

BinTree

 International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.6, Pages : 219-223 (2013)
 Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India

223

ISSN 2278-3091

[3] A. Arcuri, P. Lehre, and X. Yao,
“Theoretical Runtime Analysis inSearch
Based Software Engineering,” Technical
Report CSR-09-04,Univ. of Birmingham,
2009.
[4] A. Arcuri, M.Z. Iqbal, and L. Briand,
“Formal Analysis of theEffectiveness and
Predictability of Random Testing,” Proc.
ACMInt’l Symp.Software Testing and
Analysis, pp. 219-229, 2010.
[5] Andrea Arcuri, “A Theoretical and
Empirical Analysis of the Role of Test
Sequence Length in Software Testing for
Structural Coverage”, IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 38, NO. 3,
MAY/JUNE 2012.
[6] P. Tonella, “Evolutionary Testing of
Classes,” Proc. ACM Int’lSymp.Software
Testing and Analysis, pp. 119-128, 2004.
[7] W. Visser, C.S. Pasareanu, and S.
Khurshid, “Test Input Generationwith Java
Pathfinder,” Proc. ACM Int’l Symp.
Software Testingand Analysis, pp. 97-107,
2004.
[8] T. Xie, D. Marinov, and D. Notkin,
“Rostra: A Framework forDetecting
Redundant Object-Oriented Unit Tests,”
Proc. IEEE/ACM Int’l Conf. Automated
Software Eng., pp. 196-205, 2004.
[9] T. Xie, D. Marinov, W. Schulte, and D.
Notkin, “Symstra: AFramework for
Generating Object-Oriented Unit Tests
UsingSymbolic Execution,” Proc. 11th Int’l
Conf. Tools and Algorithms forthe
Construction and Analysis of Systems, pp.
365-381, 2005.
[10] W. Visser, C.S. Pasareanu, and R.
Pela`nek, “Test Input Generationfor Java
Containers Using State Matching,” Proc.
ACM Int’l Symp.Software Testing and
Analysis, pp. 37-48, 2006.
[11] S. Wappler and J. Wegener,
“Evolutionary Unit Testing of Object-
Oriented Software Using Strongly-Typed
Genetic Programming,”Proc. Genetic and

Evolutionary Computation Conf., pp. 1925-
1932,2006.
[12] K. Inkumsah and T. Xie, “Improving
Structural Testing of Object-Oriented
Programs via Integrating Evolutionary
Testing andSymbolic Execution,” Proc.
IEEE/ACM Int’l Conf. AutomatedSoftware
Eng., pp. 297-306, 2008.
[13] A. Arcuri and X. Yao, “Search Based
Software Testing of Object-Oriented
Containers,” Information Sciences, vol. 178,
no. 15,pp. 3075-3095, 2008.
[14] A. Arcuri, “Insight Knowledge in
Search Based Software Testing,”Proc.
Genetic and Evolutionary Computation
Conf., pp. 1649-1656,2009.
[15] J.C.B. Ribeiro, M.A. Zenha-Rela, and
F.F. de Vega, “Test CaseEvaluation and
Input Domain Reduction Strategies for
theEvolutionary Testing of Object-Oriented
Software,” Informationand Software
Technology, vol. 51, no. 11, pp. 1534-1548,
2009.
[16] J.C.B. Ribeiro, M.A. Zenha-Rela, and
F.F. de Vega, “EnablingObject Reuse on
Genetic Programming-Based Approaches
toObject-Oriented Evolutionary Testing,”
Proc. European Conf.Genetic Programming,
pp. 220-231, 2010.
[17] L. Baresi, P.L. Lanzi, and M. Miraz,
“Testful: An Evolutionary TestApproach for
Java,” Proc. IEEE Int’l Conf. Software
Testing,Verification and Validation, pp.
185-194, 2010.
[18] P. McMinn, “Search-Based Software
Test Data Generation: ASurvey,” Software
Testing, Verification and Reliability, vol.
14, no. 2,pp. 105-156, 2004.
[19] P.S. Oliveto, J. He, and X. Yao, “Time
Complexity of EvolutionaryAlgorithms for
Combinatorial Optimization: A Decade of
Results,”Int’l J. Automation and Computing,
vol. 4, no. 3, pp. 281-293,2007.

