

International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.5, Pages : 98-104 (2014)
Special Issue of ICACSSE 2014 - Held on October 10, 2014 in St.Ann’s College of Engineering & Technology, Chirala, Andhra Pradesh

98

ISSN 2278-3091

A Novel Framework Lime Lighting Dedup Over
Caches in an Tacit Dope Center

B. SriLakshmi 1 , Dr P. Harini 2

1M.Tech II year in CSE, St.Ann’s College Of Engineering & Technology, Chirala,
Andhra Pradesh-523167,India,

1Email:Krishna.dhanvi@hotmail.com

2Professor & Hod of CSE Department, St.Ann’s College Of Engineering &Technology, Chirala,

Andhra Pradesh-523167,India,
2Email: hpogadadanda@yahoo.co.in

Abstract—Flash memory-based caches inside VM hy-
pervisors can reduce I/O latencies and offload much of
the I/O traffic from network-attached storage systems
deployed in virtualized data centers. This paper
e x p l o r e s the effectiveness of content deduplication in
these large (typically 100s of GB) host-side caches.
Previous dedupli- cation studies focused on data mostly
at rest in backup and archive applications. This study
focu s e s on cached data and dynamic workloads within the
shared VM infrastructure. We analyse I/O traces from
six virtual desktop infrastructure (VDI) I/O storms and
two long- term CIFS studies and show that deduplication
can reduce the data footprint inside host-side caches by
as much as 67%. This in turn allows for caching a larger
portion of the data set and improves the effective cache hit
rate. More importantly, such increased caching efficiency
can alleviate load from networked storage systems during
I/O storms when most VM instances perform the same
operation such as virus scans, OS patch installs, and
reboots.

I. INTRODUCTION

Deduplication is a well-known technique to improve
storage efficiency and reduce the cost of on-line storage
in corporate data centers [11]. For virtualized
environments, and in particular for virtual desktop in-
frastructure (VDI), centrally managed networked stor-
age can greatly reduce the overall data footprint because
the virtual machine (VM) disk images have largely the
same content. However, the network storage systems
may also experience bursts of extremely high load when
hundreds of VM instances perform essentially the same
operations such as virus scans, OS patch installs (a.k.a.
update storms), and reboots (a.k.a. boot storms).

To shed load from the shared infrastructure, recent
work by Byan et al. [1] suggested employing flash
memory-based host-side block caches and showed they
could be effective for read-mostly workloads with stable
working sets. However, it is not clear how well they
would work in a dynamic environment where virtual
machines migrate frequently from one physical server
(hypervisor) to another or where VM working sets
change over time. First, since these caches are large,
warming them after a VM boot or migration can take as

much as 12 hours [1]. Second, as each VM disk image
is a separate entity, the caches might contain many
copies of the same content even though the network-
attached shared storage system would store only a single
instance, unnecessarily polluting the cache and reducing
the overall cache hit rate Previous deduplication
studies focused on primary [2,13], backup and
archival [10,11] storage or on reducing the network
traffic [12]. Our work explores the effectiveness of
cache content deduplication for large host-side caches in
a virtualized data center environments where virtual
machines can migrate among a set of hypervisors and
working sets change frequently. Previous work [1]
suggested this approach without addressing how such
caches would be structured. Our goal is to provide hints
for designing more effective host-side caches. Thus, we
consider different deduplication techniques, cache
organizations (i.e., fix- sized blocks vs. variable-length
extents) and analyse traces captured from VDI
environments and corporate environment with hundreds
of clients (see Section II).

Our trace analysis aims to highlight the opportunities
for cache content deduplication intrinsic to the data and
specific workloads. We understand that the cache size
and replacement policies affect the cache hit rate. Thus
our study provides an upper bound on the effective
cache hit rate based on the cache organization alone.
We show that deduplication at host-side flash caches
can save 54% to 67% of cache space for VDI workloads
and 24% to 31% for long-term CIFS workloads. This
can increase the effective cache hit rate, reduce network
traffic, and offload I/Os from the shared storage system.

II. HOST-SIDE CACHE AND DEDUPLICATION
We review the trends in virtual server environments,

including the emergence of host-side flash caches to mo-
tivate our cache content deduplication study that focuses
on transient caches with highly dynamic workloads.

A. Data sharing through consolidation

In a virtualized infrastructure, each VM disk image
is a separate logical entity, yet with mostly identical
content: an operating system image, runtime libraries,

International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.5, Pages : 98-104 (2014)
Special Issue of ICACSSE 2014 - Held on October 10, 2014 in St.Ann’s College of Engineering & Technology, Chirala, Andhra Pradesh

99

ISSN 2278-3091

and the server application code. The only data that is
typically unique to each VM instance is a handful of
configuration files (e.g., in UNIX typically residing in
the /etc directory).

Deduplication exists in shared network-attached

storage systems in the form of block deduplication
across different VM OS images, and VM hypervisors in
the form of sharing common memory pages of different
guest OSes [3,8]. However, to the best of our
knowledge there are no proposed or deployed systems
where it occurs in the OS or file system buffer caches.
Hence, without explicit provisions, a hypervisor-based
buffer cache may store multiple copies of the same
file simply because it belongs to different VM disk
images. Polluting the shared buffer cache with the same
data reduces its effective hit rate and in turn leads to
increased I/O load on the networked storage system.

B. New memory technologies
Flash memory provides a new tier in the mem-

ory hierarchy between DRAM and hard disk. A flash
memory-based SSD can be deployed effectively as a
persistent host-side cache [1] to reduce data traffic and
I/O between the host and network-attached disks. Host-
side caches provide advantages for virtualized environ-
ments where VMs use similar data, run similar software
stacks, or where VM migration from one physical
server to another is common. A cache integrated with
a hypervisor can obviate the need to read data from the
shared storage infrastructure upon VM move.

As large host-side caches become more prevalent,
we must understand how effective they will be in
environments with dynamic workloads. For example, it
takes more than 10 hours to warm up a 320 GB host-side
cache and reach a steady-state hit rate after a live VM
migration [1]. Recognizing shared pages that are already

 ers to evaluate the trade-off between additional design
complexity and a potentially higher deduplication ratio.

III. IMPROVING CACHE EFF EC TI V EN ESS

We use a metric we term deduplication degree,

which allows us to directly measure the effectiveness
of content deduplication for a class of workloads in
virtualized data centers and express the cache metadata
overheads in managing buffers shared by multiple files.

A. Deduplication degree metric definition

We seek to answer three basic questions with our
study: 1) how much space can be reclaimed by elimi-
nating duplicate content, 2) how will the cache hit rate
be affected, and 3) how to structure the cache metadata
so that different contexts (e.g., buffer headers) can point
to the same buffer. We also want to explore the trade-off
whereby a smaller block size can lead to more duplicate
content elimination, but increases metadata overheads.

Our metric is similar to those used in previous stud-

ies. These metrics focus on space saving for primary or
secondary storage and are similar to each other. In
the context of caching dynamic workloads, we want to
express directly the number of references to a unique
bock. Thus, we define deduplication degree, d, as

 (1)

cached can shorten this period; content deduplication
ensures storing them only once, leaving room for other
data and thus increasing the effective cache hit rate.

C. Deduplication approaches and cache organization
There are three main hash-based methods to discover

identical content within a dataset: (i) whole file content
hashes, (ii) fixed size block hashes, and (iii) content-
defined variable-length chunk hashes, for which Rabin
fingerprinting [18] is an effective method used both in
primary and secondary storage [7,9,10].

Which method can be deployed in virtualized en-
vironments is governed by the shared host-side cache
organization. File-based caching is not very practical – it
would require the hypervisor-based cache to understand
the format of the VM disk image to identify individual
blocks as belonging to the same file. In contrast, fixed
block-based cache designs are most prevalent and can
transparently allow for duplicate content elimination of
the same files in different VM disk images. Finally,
variable extent-based cache organization meshes well
with Rabin fingerprinting — it would define boundaries
for the cached extents. While this approach might yield

potentially better results, the cache organization for
variable content-defined extents would be much more
complex compared to fixed-size buffers. Therefore, we
focus in our study on fixed-length chunks. However,
we also do compare fixed-length and variable-length
chunking in Section IV. This comparison allows design-

International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.5, Pages : 98-104 (2014)
Special Issue of ICACSSE 2014 - Held on October 10, 2014 in St.Ann’s College of Engineering & Technology, Chirala, Andhra Pradesh

100

ISSN 2278-3091

where n is the number of unique cached blocks and
L(i) is the number of references to the i-th block (i.e.,
the number of addresses that have the same contents).
Recall that for each cached block, say 4 KB, the
cache uses additional memory to store the buffer header
information. With deduplication, it would additionally
need to store the buffer content fingerprint, as well as
references to all the files that share the same buffer.

Deduplication degree allows us to find the “right”
number of references to each data block, and thus
illuminate the trade-offs between content deduplication
and metadata overheads. We thus express the distri-
bution of the number of references for each unique
block using the Cumulative Distribution Function (See
Section IV-E). Based on a previous study of clustered
SAN file systems [2], we expect the majority of blocks
to be referenced fewer than 10 times with a few very
popular blocks having 100s of references.

B. Effective cache hit rate

Ideally, we would like to express directly how
employing deduplication in a shared cache improves
the effective cache hit rate. Unfortunately, the hit rate
depends not only on the cache size but also on the
policies it employs. Given our traces, we can express
only the effective cache size i.e., the increased cache

International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.5, Pages : 98-104 (2014)
Special Issue of ICACSSE 2014 - Held on October 10, 2014 in St.Ann’s College of Engineering & Technology, Chirala, Andhra Pradesh

101

ISSN 2278-3091

D
ed

up
lic

at
io

n
de

gr
ee

 (
d)

TABLE I. GE N E R A L T R AC E S TAT I S T I C S .

 CIFS [10] Virtualized Desktop Infrastructure (VDI)
Corp Eng Upd B-1 B-2 B-3 BL-1 BL-2

Clients/VMs
Duration

5261
65 days

2654
97 days

3
8 mins

10
2 mins

10
2 mins

15
2 mins

10
2 mins

15
2 mins

Data read
Data written
R:W bytes ratio
R:W I/O ratio

364.3 GB
177.7 GB

2.1
3.2

723.4 GB
364.4 GB

2.0
2.3

1.34 GB
1.99 GB

0.7
1.3

92.0 MB
22.5 MB

4.1
7.5

117.9 MB
35.0 MB

3.4
5.8

131.8 MB
41.8 MB

3.2
5.4

138.0 MB
46.3 MB

3.0
5.0

216.9 MB
61.6 MB

3.5
5.7

size perceived due to the elimination of the duplicate
content. System designers can then take our results and
use cache simulators configured with their cache sizes
and policies to determine the actual cache hit rate. For
fixed-length chunking systems, effective cache size is
computed as s = d ∗ s′ , where s′ is the real space size for
cached data, d is the deduplication degree, and s is the
effective cache size, which is the space needed without
deduplication while the same hit ratio is guaranteed.

For variable-length chunking, deduplication degree
cannot be used to derive effective cache size directly
because the size of every chunk is different. To get an
accurate number, we need to sum the space saved by

4

3.5

3

2.5

2

1.5

1

0.5

0

Comparison of deduplication degrees

Read
Write
R+W

Corp Eng Upd B-1 B-2 B-3 BL-1 BL-2

Workloads

each chunk. We can approximate this number by using
the average chunk size.

IV. EVALUATION

A. Traces
We analyzed two sets of traces: two long-term

CIFS traces collected in a production enterprise data
center and six VDI traces with 3–15 VMs. The CIFS
traces capture activities within the corporate ad-
ministrative and engineering departments of a single
company and represent systems accessing over 22 TB of
storage accessed by workstations of 1500+ employees.
We collected the VDI traces in a lab environment while
the VMs performed a variety of typical tasks including
users logging in, propagating patch updates, and reboot-
ing. For the Upd trace, we applied the KB2604521 patch
set to Windows Server 2008 R2. The B-1, B-2 and B-
3 are three different boot traces with 10 and 15 VMs
booting simultaneously, and BL-1 and BL-2 are traces
from VM booting followed immediately by a user login
to VMs running MS Windows 7 guest OS.

Collectively, the traces are a cross-section of activi-
ties in a virtualized data center: VDI environments with
many similar instances and disk images may generate
a lot of similar read and write requests while the CIFS
traces represent traffic to network file systems deployed
inside enterprises. Table I summarizes these traces and
lists their names we use throughout this section.

B. Deduplication degree

Figure 1 shows the deduplication degree for the eight
different traces. The values range from 1.2 to 3 for
combined reads and writes. For the VDI traces, this
translates to saving between 54% and 67% of space.
Larger values for deduplication degree occur when we
consider reads and writes separately. As expected, the
boot and login traces exhibit different behavior from
write-heavy update storms. We observe more duplica-

Fig. 1. Comparison of deduplication degree for different workloads.
Note the different profiles for read-heavy and write-heavy workloads.

tion in update storm write requests compared to the five
boot traces, which show little or no duplication for write
requests. The deduplication degree for writes in these
read-heavy traces is close to one: thus, on average, the
hypervisor sees each unique block only once.

The write-heavy update storms show high dedupli-
cation degree for reads as well. Yet, we see little or
no increase for the boot storm traces as the number of
virtual machines per hypervisor increases from 10 to 15
(B-1 and B-2 vs. B-3). For the boot+login storm traces,
deduplication degree increases slightly for the reads as
more VMs are added (BL-1 vs. BL-2).

We are also interested in determining whether intra-
VM redundancy is more prevalent than redundancy
across VM disk images. Generally, if most of the dedu-
plication occurs within a single VM image, the trend of
increasing consolidation (i.e., more VMs running on a
single hypervisor) will not yield more opportunities for
deduplication within the shared host-side cache.

Figure 2 compares deduplication degree within each
VM image and across all VMs combined for the Upd
and B-2 traces. Due to space constraints, we show
only one boot trace; the other boot and login traces
exhibit similar trends regardless of number of VMs.
The right-most group of columns shows deduplication
degree for all the VMs combined, the other groups show
the deduplication degree for each individual VM image
(intra-VM deduplication).

We notice that for the Upd trace, the intra-VM
deduplication degree is only slightly larger than 1 for
reads while it is about 2.7 for writes. More importantly,
the inter-VM deduplication degree is larger for both
reads and writes. Similar trends hold for the B-2 trace.
There are almost no opportunities for deduplication in

International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.5, Pages : 98-104 (2014)
Special Issue of ICACSSE 2014 - Held on October 10, 2014 in St.Ann’s College of Engineering & Technology, Chirala, Andhra Pradesh

102

ISSN 2278-3091

Th
e

fra
ct

io
n

of
 V

M
s

D
ed

up
lic

at
io

n
de

gr
ee

 (
d)

D

ed
up

lic
at

io
n

de
gr

ee
 (

d)

D
ed

up
lic

at
io

n
de

gr
ee

 (
d)

Update trace: Inter-VM vs. Intra-VM duplication
4

Read

Deduplication degrees of different block sizes (Update)
4

Read
3.5

3

Write
R+W

3.5

3

Write
R+W

2.5

2.5

2 2

1.5

1.5

1 1

0.5

0.5

0

V1 V2 V3 All
Virtual machines

0

4KB 8KB 16KB
Block Size

4

3.5

3

2.5

2

1.5

1

0.5

0

B-2 trace: Inter-VM vs. intra-VM duplication

Read
Write
R+W

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 All

Virtual machines

Fig. 4. Deduplication degree as a function of block size for the Upd
trace. Other traces show similar trends.

in Figure 3, with the exception of the Upd trace, the
average number of VMs that access each block is much
lower than the number of total VMs running on the
same hypervisor, because the fractions are all less than
0.4. The reason is that different VMs may access the
same files, but these files have VM-unique content.

When we inspected the block content, we found a
large amount of data that is only slightly different on
each VM. Thus, variable-length chunking can increase
deduplication degree as we show below. Delta differ-
encing could also be an effective technique, but it does

Fig. 2. Intra-VM vs. inter-VM deduplication for the Update and B-2
traces. Other boot traces show similar profile. The Vx bars shows the
intra-VM deduplication for each VM, while the All bar shows the
inter-VM deduplication when all VMs share the same cache.

The fraction of VMs accessing the same block

not lend itself to an easy integration to existing cache
designs. Thus, we do not consider it here.

D. Sensitivity to cache block size

For a given workload, system designers must choose
an appropriate block size that improves the effective

1

0.8

0.6

0.4

0.2

0

Read
Write
R+W

(3)

(10) (10)

(10)

(15)

cache hit rate without excessive metadata overheads.
Figure 4 describes the sensitivity of deduplication de-
gree to block size. In VDI update storms, as block size
increases up to 16 KB, deduplication degree drops; this
drop is not significant for update storms. Thus, systems
with well-provisioned networks may opt to use larger
blocks to improve cache metadata efficiency.

Although content-based variable-length chunking
complicates design of storage caches, we examine how
much additional opportunity for content deduplication it

Update B-1 BL-1 B-2 BL-2
Workloads

Fig. 3. The (number) shows the total number of VMs. A small
fraction of VMs access the same block because of VM-unique content.

a single VM, while the inter-VM deduplication degrees
are much higher. There is a difference between the
intra-VM data of the two traces because update storms
involve more data transfer than boot and login storms.
The inter-VM results suggest that more VM consolida-
tion would yield better content deduplication and likely
increase the effective cache hit rate.

C. Similarity of VDI traffic

The number of VMs that access one block is less
than or equal to the reference count of that block. The
average number of VMs that touch each block suggests
whether all VMs read or write the same data. As shown

could provide compared to fixed-length chunking. We
use Rabin fingerprinting with the minimum, mean, and
maximum chunk sizes set to 2 KB, 4 KB, and 16 KB
respectively, and a sliding window of 48 bytes, which
has been shown to provide good results [9].

Table II shows how much additional deduplication
is possible with variable-length chunking relative to
the best-case fixed-length 4 KB blocks. We use space
savings because the deduplication degree metric does
not apply directly to saved space when variable length
is used. Variable-length chunking can provide additional
savings ranging from 10% to 15% for most traces with
the exception of the Upd trace for which it provides
no benefit. If we consider read and write requests
separately, differences of write in B-3 and BL-1 could
as much as 40%. However, the volume of data written
in these traces is very small: only 10s of MB.

International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.5, Pages : 98-104 (2014)
Special Issue of ICACSSE 2014 - Held on October 10, 2014 in St.Ann’s College of Engineering & Technology, Chirala, Andhra Pradesh

103

ISSN 2278-3091

 25% 50% 75% 90% 95% 99% 100%
Upd
B-1
B-2
B-3
BL-1
BL-2
Corp
Eng

2
1
1
1
1
1
1
1

3
3
6
6
9
9
1
1

44
7
8
9

11
11
3
2

47
9
9

11
13
13
6
4

80
9
9

12
13
13
23
9

17433
12 56
20 119
29 128
22 140
22 180

2936 382102
1952618

TABLE II. AD D I T I O NA L S PAC E S AV I N G S AC H I E V E D B Y
VA R I A B L E C H U N K S R E L AT I V E TO FI X E D 4 KB C H U N K S . TH E FI R S T
L I N E S H OW S T H E S PAC E S AV I N G S B Y U S I N G FI X E D 4KB C H U N K S ,

T H E L A S T L I N E S H OW S T H E A D D I T I O NA L S PAC E S AV I N G S .

TABLE III. RE F E R E N C E C O U N T D I S T R I BU T I O N QUA N T I L E S .

 Upd B-1 B-2 B-3 BL-1 BL-2
Fixed
Variable

67%
67%

54%
66%

56%
68%

56%
71%

54%
69%

60%
70%

Incr. 0% 12% 12% 15% 15% 10%

1

0.8

0.6

0.4

Eng

Corp

CDF of reference count

boot and login

Corp
Eng

Update

update

with high reference counts were blocks containing all
0s or 1s. Additionally, other blocks in this group had
regular bit patterns repeated across the entire block and
containing mostly 0s. We speculate that these blocks
hold file system metadata such as bitmaps, but, given
our traces, we could not map back the block content to
the file they belonged to.

0.2

0

B-1
B-2
B-3

BL-1
BL-2

1 10 100
Block reference count

V. DESIGN HINTS
We conclude our study by providing some hints for

designing an optimized host-side cache with deduplica-
tion. Our results show that there is a substantial degree
of duplication in the studied dynamic workloads that can

Fig. 5. CDF of block reference counts for all studied traces.

In contrast, Jin et al. [5] showed that, for stored VM
disk images, fixed-length chunking leads to better dedu-
plication compared to content-defined variable-length
chunking. In our VDI workload traces, we observed that
the majority of blocks in boot and login storms are less
than or equal to 4KB. Given that the mean block size
of variable-length chunking is less than 4 KB, this may
lead to more space savings than fixed-length chunking.

E. Reference count distribution

Figure 5 shows the reference count CDFs for our
traces. As shown in Table III, for most workloads, more
than 90% of the data blocks are referenced no more than
15 times. The CDFs have long tails, which means that
a few blocks have large number of duplicates. That is,
a single instance of the block in a cache would have a
large number of references. For example, in CIFS Eng
trace, 95% of blocks are referenced fewer than 10 times,
yet a few blocks are referenced more than a million
times. Thus a cache design could target less than 10
references and provide special handling for a few blocks
(e.g., an exceptions list) that are highly referenced to get
additional space savings.

Recent studies [4,6] reported that 1% of chunks
accounted for almost 30% of total space savings. We
have not observed such a high rate in our traces. The
CIFS traces show that around 22% of the total space
savings come from 1% unique blocks and VDI traces
show even less. The reason is that related works studied
primary/secondary storage data, which demonstrates
higher deduplication degrees than our I/O data set. In
addition, our VDI traces are too short for the top 1%
blocks to become outstanding.

To get a better understanding of which blocks con-
tribute to the distribution, we examined the content of
these blocks from the traces available to us. Blocks

be translated into increased effective cache hit rate. This
lowers system cost by reducing the real space cache
size for a targeted effective cache size or providing
better performance at a fixed cost. This optimization in
turn provides various benefits such as reducing network
traffic between hypervisors and shared storage systems,
lowering load on storage systems during VDI storms, or
decreasing cache warm-up time during VM migration.

Fixed-length chunking is prevalent in cache design
and our results show that using 4 KB blocks can yield
substantial savings. We can improve the cache hit rate
by using variable-sized chunks; however the modest
gains do not warrant the added design and implemen-
tation complexity of variable-extent-based caching.

Another potential issue with deduplicating fixed-
length blocks is that of misaligned I/Os or partial block
sharing. By choosing a suitable cache block size, system
designers can choose deduplication level of the system
for a given workload and cache replacement policy.
With our study, they can weigh the trade-off between
increased effective cache hit rate and space overheads
for metadata, especially when the metadata such as
buffer headers are kept in DRAM. Larger block sizes
lower the demands on DRAM that is taken away from
applications running inside VMs. A potential optimiza-
tion to increase cache hit rate is to provide support for
small (partial-block) reads for caches with deduplication
that have a large block size.

Deduplication degree is directly correlated with the
reference count (pointers) needed to link the single in-
stance copy of the data shared among multiple contexts
(e.g., VM disk images). Our data suggests a design point
where reference counts of less than 100 capture over
99% of all duplicates for most workloads.

VI. RELATED WORK
Data deduplication is an active research area. There

are many previous works that have studied the effects

International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.5, Pages : 98-104 (2014)
Special Issue of ICACSSE 2014 - Held on October 10, 2014 in St.Ann’s College of Engineering & Technology, Chirala, Andhra Pradesh

104

ISSN 2278-3091

of duplicate content elimination and proposed different
approaches and systems to improve data storage effi-
ciency in primary [21] and secondary storage [17, 25].
LBFS [14] was designed to deduplicate network traffic
in a low-bandwidth network file system, inspired by the
original work of Spring and Wetherall [20].

CZIP uses hashes of variable chunks combined
with chunk compression to reduce storage footprint
in content-delivery networks (CDNs) [15]. We use a
similar approach for studying the opportunities for
eliminating duplicate content of actively used data that
is cached. Kochut and Karve [9] studied provisioning
space for VM images for VDIs with locally attached
storage. Our work looks at data actively accessed for
the same VDI workloads; however, we assume VM
disk images provisioned on a shared storage system and
study the opportunities in eliminating redundant data
that is cached, i.e., data in active use by these VMs.

Our work shares the same goals of previous research
on techniques for hypervisors to eliminate guest OS
memory pages with the same content [13, 23]. We
do not claim our work invents a new technique. Its
contribution is in conducting a workload-specific study
for large (storage-based) caches and providing design
hints for these caches that are not integrated with the
hypervisor virtual memory subsystem using page tables.
In addition, these previous works typically proposed
background scanners [1, 4, 5] for eliminating duplicate
pages. In contrast, we envision flash-memory-based
caches to use in-band techniques as suggested by a
previous work on the Mercury system [2].

There are several deduplication studies of real-world
data and traces [12, 16].Our work studies the
implications when the images are cached and in
active use. Clemens [3] suggested a block-level
deduplication system for a clustered file system used in
virtualized environments. Some research has been done
to generate datasets to simulate real workloads [22].
Such trace or workload generators could be employed
in our context.

Some previous studies of large-scale I/O traces
provide comprehensive analysis on access, usage, and
sharing patterns [10, 19]. However, these studies do not
try to detect duplication related characteristics of these
workloads. Our work expands on these and, in the case
of the Leung et al. study, analyzes the same data.

ACK N OW LED G E M EN T S

We would like to thank Christopher Small who
contributed to our initial investigation and helped us
with the original concepts of this work. Our gratitude
goes to John Strunk, James Lentini, Luis Pabon, and the
anonymous reviewers for helping us refine this paper.
We thank Scott Dawkins for his insights and support.

REF ER EN C E S

[1] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,

S. Kleiman, C. Small, and M. Storer. Mercury: Host-side flash

caching for the data center. In MSST, 2012.
[2] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decen-

tralized deduplication in SAN cluster file systems. In USENIX
Annual Technical Conference, 2009.

 [3] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference engine:
harnessing memory redundancy in virtual machines. Commun.
ACM, 53(10):85–93, 2010.

[4] B. Hong and D. D. E. Long. Duplicate data elimination in a
san file system. In MSST, 2004.

[5] K. Jin and E. L. Miller. The effectiveness of deduplication on
virtual machine disk images. In SYSTOR, 2009.

 [6] D. Meister and A. Brinkmann. Multi-level comparison of data
deduplication in a backup scenario. In SYSTOR, 2009.

 [7] D. T. Meyer and W. J. Bolosky. A study of practical dedupli-
cation. In FAST, 2011.

 [8] G. Miłó s, D. G. Murray, S. Hand, and M. A. Fetterman.
Satori: enlightened page sharing. In USENIX Annual Technical
Conference, Berkeley, CA, USA, 2009. USENIX Association.

 [9] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth
network file system. In SOSP, 2001.
.

 [10] C. Policroniades and I. Pratt. Alternatives for detecting redun-
dancy in storage systems data. In USENIX ATC, 2004.

 [11] S. Quinlan and S. Dorward. Venti: A new approach to archival
storage. In FAST, 2002.

 [12] N. T. Spring and D. Wetherall. A protocol-independent tech-
nique for eliminating redundant network traffic. In Applications,
Technologies, Architectures, and Protocols for Computer Com-
munication, SIGCOMM, 2000.

 [13] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. iDedup:
latency-aware, inline data deduplication for primary storage. In
FAST, 2012.

 [14] C. A. Waldspurger. Memory resource management in VMware
ESX server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002.

 [15] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu. Characteristics of backup workloads
in production systems. In FAST, 2012.

 AUTHORS

B.SriLakshmi received B.tech from JNTUK in
May 2009.She is currently pursuing M.tech in

computer science & engineering
at St.Anns college of Engg. &
technology which is affiliated
under jntu Kakinada. Her areas
of interests are Computer
Networks , Network Security
and Mobile Computing.

Dr.P.Harini Professor and HOD of CSE
Department in St.Ann’s college
of Engg. & technology , chirala
which is affiliated under jntu
Kakinada which is permanent
NBA accreated Institue.She has
Completed her M. Tech. [RS]
and M. Tech. [CSE] and

Awarded Ph.D degree in Mobile Computing from
Jntu Anantapur. Her areas of interests are
Computer Networks , Network Security and
Mobile Computing.

