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Abstract—Flash  memory-based caches  inside  VM hy- 
pervisors  can  reduce I/O  latencies  and  offload  much  of 
the I/O traffic from network-attached storage systems 
deployed  in virtualized  data centers.  This paper 
e x p l o r e s  the effectiveness  of content  deduplication in  
these  large (typically  100s of GB) host-side  caches. 
Previous  dedupli- cation  studies  focused  on  data  mostly  
at  rest in  backup and  archive  applications. This study 
focu s e s  on cached data and dynamic workloads within the 
shared VM infrastructure.  We  analyse  I/O  traces   from  
six  virtual desktop  infrastructure (VDI)  I/O  storms  and  
two  long- term CIFS studies and show that deduplication 
can reduce the  data  footprint inside  host-side  caches by 
as much  as 67%.  This  in turn  allows for caching  a larger  
portion  of the data set and improves the effective cache hit 
rate. More importantly, such increased caching efficiency 
can alleviate load  from  networked storage  systems  during  
I/O  storms when most VM instances perform the same 
operation such as virus  scans, OS patch  installs,  and  
reboots. 

 
I.    INTRODUCTION 

Deduplication is a well-known technique to improve 
storage efficiency and reduce the cost of on-line storage 
in corporate data centers [11]. For virtualized 
environments, and in particular for virtual desktop in- 
frastructure (VDI), centrally managed networked stor- 
age can greatly reduce the overall data footprint because 
the virtual machine (VM) disk images have largely the 
same content. However, the network storage systems 
may also experience bursts of extremely high load when 
hundreds of VM instances perform essentially the same 
operations such as virus scans, OS patch installs (a.k.a. 
update storms), and reboots (a.k.a. boot storms). 

To shed load from the shared infrastructure, recent 
work by Byan et al. [1] suggested employing flash 
memory-based host-side block caches and showed they 
could be effective for read-mostly workloads with stable 
working sets. However, it is not clear how well they 
would work in a dynamic environment where virtual 
machines migrate frequently from one physical server 
(hypervisor) to another or where VM working sets 
change over time. First, since these caches are large, 
warming them after a VM boot or migration can take as 

much as 12 hours  [1]. Second, as each VM disk image 
is a separate entity, the caches might contain many 
copies of the same content even though the network- 
attached shared storage system would store only a single 
instance, unnecessarily polluting the cache and reducing 
the overall cache hit rate Previous deduplication  
studies  focused  on   primary [2,13], backup and 
archival [10,11] storage or on reducing the network 
traffic [12]. Our work explores the effectiveness of 
cache content deduplication for large host-side caches in 
a virtualized data center environments where virtual 
machines can migrate among a set of hypervisors and 
working sets change frequently. Previous work [1] 
suggested this approach without addressing how such 
caches would be structured. Our goal is to provide hints 
for designing more effective host-side caches. Thus, we 
consider different deduplication techniques, cache 
organizations (i.e., fix- sized blocks vs.  variable-length 
extents) and  analyse traces captured from VDI 
environments and corporate environment with hundreds 
of clients (see Section II). 

Our trace analysis aims to highlight the opportunities 
for cache content deduplication intrinsic to the data and 
specific workloads. We understand that the cache size 
and replacement policies affect the cache hit rate. Thus 
our  study  provides  an  upper  bound  on  the  effective 
cache hit rate based on the cache organization alone. 
We show that deduplication at host-side flash caches 
can save 54% to 67% of cache space for VDI workloads 
and 24% to 31% for long-term CIFS workloads. This 
can increase the effective cache hit rate, reduce network 
traffic, and offload I/Os from the shared storage system. 
 

II.    HOST-SIDE CACHE AND DEDUPLICATION 
We review the trends in virtual server environments, 

including the emergence of host-side flash caches to mo- 
tivate our cache content deduplication study that focuses 
on transient caches with highly dynamic workloads. 
 
A.  Data sharing through consolidation 

In a virtualized infrastructure, each VM disk image 
is a separate logical entity, yet with mostly identical 
content: an operating system image, runtime libraries, 
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and the server application code. The only data that is 
typically unique to each VM instance is a handful of 
configuration files (e.g., in UNIX typically residing in 
the /etc directory).  

 
Deduplication exists in shared network-attached 

storage systems in the form of block deduplication 
across different VM OS images, and VM hypervisors in 
the form of sharing common memory pages of different 
guest OSes [3,8]. However, to the best of our 
knowledge there are no proposed or deployed systems 
where it occurs in the OS or file system buffer caches. 
Hence, without explicit provisions, a hypervisor-based 
buffer  cache  may  store  multiple copies  of  the  same 
file simply  because  it  belongs  to  different  VM  disk 
images. Polluting the shared buffer cache with the same 
data reduces its effective hit rate and in turn leads to 
increased I/O load on the networked storage system. 

 

B.  New memory technologies 
Flash  memory  provides  a  new  tier  in  the  mem- 

ory hierarchy between DRAM and hard disk. A flash 
memory-based SSD can be deployed effectively as a 
persistent host-side cache [1] to reduce data traffic and 
I/O between the host and network-attached disks. Host- 
side caches provide advantages for virtualized environ- 
ments where VMs use similar data, run similar software 
stacks,  or  where  VM  migration  from  one  physical 
server to another is common. A cache integrated with 
a hypervisor can obviate the need to read data from the 
shared storage infrastructure upon VM move. 

As large host-side caches become more prevalent, 
we must understand how effective they will be in 
environments with dynamic workloads. For example, it 
takes more than 10 hours to warm up a 320 GB host-side 
cache and reach a steady-state hit rate after a live VM 
migration [1]. Recognizing shared pages that are already 

 ers to evaluate the trade-off between additional design 
complexity and a potentially higher deduplication ratio. 
 

III.    IMPROVING CACHE EFF EC TI V EN ESS 
 
We  use  a  metric  we  term  deduplication  degree, 

which allows us to directly measure the effectiveness 
of content deduplication for a  class of workloads in 
virtualized data centers and express the cache metadata 
overheads in managing buffers shared by multiple files. 
 
A.  Deduplication degree metric definition 

We seek to answer three basic questions with our 
study: 1) how much space can be reclaimed by elimi- 
nating duplicate content, 2) how will the cache hit rate 
be affected, and 3) how to structure the cache metadata 
so that different contexts (e.g., buffer headers) can point 
to the same buffer. We also want to explore the trade-off 
whereby a smaller block size can lead to more duplicate 
content elimination, but increases metadata overheads. 

 
Our metric is similar to those used in previous stud- 

ies. These metrics focus on space saving for primary or 
secondary  storage  and  are  similar  to  each  other.  In 
the context of caching dynamic workloads, we want to 
express directly the number of references to a unique 
bock. Thus, we define deduplication degree, d, as 

 
 
 
     
             (1)

cached can shorten this period; content deduplication       
ensures storing them only once, leaving room for other
data and thus increasing the effective cache hit rate. 

 

C. Deduplication approaches and cache organization 
There are three main hash-based methods to discover 

identical content within a dataset: (i) whole file content 
hashes, (ii) fixed size block hashes, and (iii) content- 
defined variable-length chunk hashes, for which Rabin 
fingerprinting [18] is an effective method used both in 
primary and secondary storage [7,9,10]. 

Which method can be deployed in virtualized en- 
vironments is governed by the shared host-side cache 
organization. File-based caching is not very practical – it 
would require the hypervisor-based cache to understand 
the format of the VM disk image to identify individual 
blocks as belonging to the same file. In contrast, fixed 
block-based cache designs are most prevalent and can 
transparently allow for duplicate content elimination of 
the same files in different VM disk images. Finally, 
variable extent-based cache organization meshes well 
with Rabin fingerprinting — it would define boundaries 
for the cached extents. While this approach might yield 

potentially better results, the cache organization for 
variable content-defined extents would be much more 
complex compared to fixed-size buffers. Therefore, we 
focus in our study on fixed-length chunks. However, 
we also do compare fixed-length and variable-length 
chunking in Section IV. This comparison allows design-
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where n is the number of unique cached blocks and 
L(i) is the number of references to the i-th block (i.e., 
the number of addresses that have the same contents). 
Recall  that  for  each  cached  block,  say  4  KB,  the 
cache uses additional memory to store the buffer header 
information. With deduplication, it would additionally 
need to store the buffer content fingerprint, as well as 
references to all the files that share the same buffer. 

Deduplication degree allows us to find the “right” 
number of references to each data block, and thus 
illuminate the trade-offs between content deduplication 
and  metadata overheads. We  thus  express the  distri- 
bution  of  the  number  of  references for  each  unique 
block using the Cumulative Distribution Function (See 
Section IV-E). Based on a previous study of clustered 
SAN file systems [2], we expect the majority of blocks 
to be referenced fewer than 10 times with a few very 
popular blocks having 100s of references. 
 
B.  Effective cache hit rate 

Ideally, we would like to express directly how 
employing deduplication in  a  shared cache improves 
the effective cache hit rate. Unfortunately, the hit rate 
depends not only on the cache size but also on the 
policies it employs. Given our traces, we can express 
only the effective cache size i.e., the increased cache 
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TABLE I.        GE N E R A L T R AC E S TAT I S T I C S . 
 

 CIFS [10] Virtualized Desktop Infrastructure (VDI) 
Corp Eng Upd B-1 B-2 B-3 BL-1 BL-2 

Clients/VMs 
Duration 

5261 
65 days 

2654 
97 days 

3 
8 mins 

10 
2 mins 

10 
2 mins 

15 
2 mins 

10 
2 mins 

15 
2 mins 

Data read 
Data written 
R:W bytes ratio 
R:W I/O ratio 

364.3 GB 
177.7 GB 

2.1 
3.2 

723.4 GB 
364.4 GB 

2.0 
2.3 

1.34 GB 
1.99 GB 

0.7 
1.3 

92.0 MB 
22.5 MB 

4.1 
7.5 

117.9 MB 
35.0 MB 

3.4 
5.8 

131.8 MB 
41.8 MB 

3.2 
5.4 

138.0 MB 
46.3 MB 

3.0 
5.0 

216.9 MB 
61.6 MB 

3.5 
5.7 

 

size perceived due to the elimination of the duplicate 
content. System designers can then take our results and 
use cache simulators configured with their cache sizes 
and policies to determine the actual cache hit rate. For 
fixed-length chunking systems, effective cache size is 
computed as s = d ∗ s′ , where s′ is the real space size for 
cached data, d is the deduplication degree, and s is the 
effective cache size, which is the space needed without 
deduplication while the same hit ratio is guaranteed. 

For variable-length chunking, deduplication degree 
cannot be used to derive effective cache size directly 
because the size of every chunk is different. To get an 
accurate number, we need to sum the space saved by 
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Comparison of deduplication degrees 

 
Read 
Write 
R+W 
 
 
 
 
 
 
 
 
 
Corp  Eng   Upd   B-1    B-2    B-3   BL-1  BL-2 

Workloads 

each chunk. We can approximate this number by using 
the average chunk size. 

 
IV.    EVALUATION 

A.  Traces 
We  analyzed  two  sets  of  traces:  two  long-term 

CIFS traces collected in a production enterprise data 
center and six VDI traces with 3–15 VMs. The CIFS 
traces capture activities within the corporate ad- 
ministrative and  engineering departments of  a  single 
company and represent systems accessing over 22 TB of 
storage accessed by workstations of 1500+ employees. 
We collected the VDI traces in a lab environment while 
the VMs performed a variety of typical tasks including 
users logging in, propagating patch updates, and reboot- 
ing. For the Upd trace, we applied the KB2604521 patch 
set to Windows Server 2008 R2. The B-1, B-2 and B- 
3 are three different boot traces with 10 and 15 VMs 
booting simultaneously, and BL-1 and BL-2 are traces 
from VM booting followed immediately by a user login 
to VMs running MS Windows 7 guest OS. 

Collectively, the traces are a cross-section of activi- 
ties in a virtualized data center: VDI environments with 
many similar instances and disk images may generate 
a lot of similar read and write requests while the CIFS 
traces represent traffic to network file systems deployed 
inside enterprises. Table I summarizes these traces and 
lists their names we use throughout this section. 

 
B.  Deduplication degree 

Figure 1 shows the deduplication degree for the eight 
different traces. The values range from 1.2  to  3  for 
combined reads and writes. For the VDI traces, this 
translates to saving between 54% and 67% of space. 
Larger values for deduplication degree occur when we 
consider reads and writes separately. As expected, the 
boot and login traces exhibit different behavior from 
write-heavy update storms. We observe more duplica- 

Fig. 1.   Comparison of deduplication degree for different workloads. 
Note the different profiles for read-heavy and write-heavy workloads. 
 
 
tion in update storm write requests compared to the five 
boot traces, which show little or no duplication for write 
requests. The deduplication degree for writes in these 
read-heavy traces is close to one: thus, on average, the 
hypervisor sees each unique block only once. 

The write-heavy update storms show high dedupli- 
cation degree for reads as well. Yet, we see little or 
no increase for the boot storm traces as the number of 
virtual machines per hypervisor increases from 10 to 15 
(B-1 and B-2 vs. B-3). For the boot+login storm traces, 
deduplication degree increases slightly for the reads as 
more VMs are added (BL-1 vs. BL-2). 

We are also interested in determining whether intra- 
VM redundancy is more prevalent than redundancy 
across VM disk images. Generally, if most of the dedu- 
plication occurs within a single VM image, the trend of 
increasing consolidation (i.e., more VMs running on a 
single hypervisor) will not yield more opportunities for 
deduplication within the shared host-side cache. 

Figure 2 compares deduplication degree within each 
VM image and across all VMs combined for the Upd 
and  B-2  traces.  Due  to  space  constraints,  we  show 
only one boot trace; the other boot and login traces 
exhibit similar trends regardless of  number of  VMs. 
The right-most group of columns shows deduplication 
degree for all the VMs combined, the other groups show 
the deduplication degree for each individual VM image 
(intra-VM deduplication). 

We notice that for the Upd trace, the intra-VM 
deduplication degree is only slightly larger than 1 for 
reads while it is about 2.7 for writes. More importantly, 
the inter-VM deduplication degree is  larger for both 
reads and writes. Similar trends hold for the B-2 trace. 
There are almost no opportunities for deduplication in 
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Update trace: Inter-VM vs. Intra-VM duplication 
4 

Read 

Deduplication degrees of different block sizes (Update) 
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B-2 trace: Inter-VM vs. intra-VM duplication 

 
Read 
Write 
R+W 

 
 
 
 
 
 
 
 
 
V1  V2  V3  V4  V5  V6  V7  V8  V9 V10 All 

Virtual machines 

 
Fig. 4.   Deduplication degree as a function of block size for the Upd 
trace. Other traces show similar trends. 
 

in Figure 3, with the exception of the Upd trace, the 
average number of VMs that access each block is much 
lower than the number of total VMs running on the 
same hypervisor, because the fractions are all less than 
0.4. The reason is that different VMs may access the 
same files, but these files have VM-unique content. 

When we inspected the block content, we found a 
large amount of data that is only slightly different on 
each VM. Thus, variable-length chunking can increase 
deduplication degree as we show below. Delta differ- 
encing could also be an effective technique, but it does 

Fig. 2.   Intra-VM vs. inter-VM deduplication for the Update and B-2 
traces. Other boot traces show similar profile. The Vx bars shows the 
intra-VM deduplication for each VM, while the All bar shows the 
inter-VM deduplication when all VMs share the same cache. 

 
 

The fraction of VMs accessing the same block 

not lend itself to an easy integration to existing cache 
designs. Thus, we do not consider it here. 
 
D. Sensitivity to cache block size 

For a given workload, system designers must choose 
an appropriate block size that improves the effective 

1 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

 
0 

Read 
Write 
R+W 

(3) 

 
 
 
 
 
 
(10)        (10) 

 
 
 
 
 
 
(10) 

 
 
 
 
 
 
(15) 

cache hit rate without excessive metadata overheads. 
Figure 4 describes the sensitivity of deduplication de- 
gree to block size. In VDI update storms, as block size 
increases up to 16 KB, deduplication degree drops; this 
drop is not significant for update storms. Thus, systems 
with well-provisioned networks may opt to use larger 
blocks to improve cache metadata efficiency. 

Although content-based variable-length chunking 
complicates design of storage caches, we examine how 
much additional opportunity for content deduplication it 

Update      B-1        BL-1        B-2        BL-2 
Workloads 

 
Fig. 3.     The (number) shows the total number of VMs. A small 
fraction of VMs access the same block because of VM-unique content. 

 
a single VM, while the inter-VM deduplication degrees 
are  much  higher.  There  is  a  difference  between  the 
intra-VM data of the two traces because update storms 
involve more data transfer than boot and login storms. 
The inter-VM results suggest that more VM consolida- 
tion would yield better content deduplication and likely 
increase the effective cache hit rate. 

 
C. Similarity of VDI traffic 

The number of VMs that access one block is less 
than or equal to the reference count of that block. The 
average number of VMs that touch each block suggests 
whether all VMs read or write the same data. As shown 

could provide compared to fixed-length chunking. We 
use Rabin fingerprinting with the minimum, mean, and 
maximum chunk sizes set to 2 KB, 4 KB, and 16 KB 
respectively, and a sliding window of 48 bytes, which 
has been shown to provide good results [9]. 

Table II shows how much additional deduplication 
is  possible  with  variable-length chunking  relative  to 
the best-case fixed-length 4 KB blocks. We use space 
savings because the deduplication degree metric does 
not apply directly to saved space when variable length 
is used. Variable-length chunking can provide additional 
savings ranging from 10% to 15% for most traces with 
the exception of the Upd trace for which it provides 
no benefit. If we consider read and write requests 
separately, differences of write in B-3 and BL-1 could 
as much as 40%. However, the volume of data written 
in these traces is very small: only 10s of MB. 
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 25% 50% 75% 90% 95% 99% 100% 
Upd 
B-1 
B-2 
B-3 
BL-1 
BL-2 
Corp 
Eng 

2 
1 
1 
1 
1 
1 
1 
1 

3 
3 
6 
6 
9 
9 
1 
1 

44 
7 
8 
9 

11 
11 
3 
2 

47 
9 
9 

11 
13 
13 
6 
4 

80 
9 
9 

12 
13 
13 
23 
9 

17433 
12              56 
20            119 
29            128 
22            140 
22            180 

2936      382102 
1952618 

TABLE II.        AD D I T I O NA L S PAC E S AV I N G S AC H I E V E D B Y 
VA R I A B L E C H U N K S R E L AT I V E TO FI X E D 4 KB C H U N K S . TH E FI R S T 
L I N E S H OW S T H E S PAC E S AV I N G S B Y U S I N G FI X E D 4KB C H U N K S , 

T H E L A S T L I N E S H OW S T H E A D D I T I O NA L S PAC E S AV I N G S . 

TABLE III.        RE F E R E N C E C O U N T D I S T R I BU T I O N QUA N T I L E S . 

 

 Upd B-1 B-2 B-3 BL-1 BL-2 
Fixed 
Variable 

67% 
67% 

54% 
66% 

56% 
68% 

56% 
71% 

54% 
69% 

60% 
70% 

Incr. 0% 12% 12% 15% 15% 10% 
 

 
 

1 

 
0.8 

 
0.6 

 
0.4 

 
 
 
Eng 

 
Corp 

CDF of reference count 
 
 

boot and login 
 
 
 

Corp 
Eng 

Update 

 
 
 
update 

with high reference counts were blocks containing all 
0s or 1s. Additionally, other blocks in this group had 
regular bit patterns repeated across the entire block and 
containing mostly 0s. We speculate that these blocks 
hold file system metadata such as bitmaps, but, given 
our traces, we could not map back the block content to 
the file they belonged to. 

 
0.2 

 
0 

B-1     
B-2     
B-3     

BL-1 
BL-2              

1                                      10                                    100 
Block reference count 

V.    DESIGN HINTS 
We conclude our study by providing some hints for 

designing an optimized host-side cache with deduplica- 
tion. Our results show that there is a substantial degree 
of duplication in the studied dynamic workloads that can 

Fig. 5.    CDF of block reference counts for all studied traces. 
 

In contrast, Jin et al. [5] showed that, for stored VM 
disk images, fixed-length chunking leads to better dedu- 
plication compared to  content-defined variable-length 
chunking. In our VDI workload traces, we observed that 
the majority of blocks in boot and login storms are less 
than or equal to 4KB. Given that the mean block size 
of variable-length chunking is less than 4 KB, this may 
lead to more space savings than fixed-length chunking. 

 
E.  Reference count distribution 

Figure 5 shows the reference count CDFs for our 
traces. As shown in Table III, for most workloads, more 
than 90% of the data blocks are referenced no more than 
15 times. The CDFs have long tails, which means that 
a few blocks have large number of duplicates. That is, 
a single instance of the block in a cache would have a 
large number of references. For example, in CIFS Eng 
trace, 95% of blocks are referenced fewer than 10 times, 
yet a few blocks are referenced more than a million 
times. Thus a cache design could target less than 10 
references and provide special handling for a few blocks 
(e.g., an exceptions list) that are highly referenced to get 
additional space savings. 

Recent studies [4,6] reported that 1% of chunks 
accounted for almost 30% of total space savings. We 
have not observed such a high rate in our traces. The 
CIFS traces show that around 22% of the total space 
savings come from 1% unique blocks and VDI traces 
show even less. The reason is that related works studied 
primary/secondary storage data, which demonstrates 
higher deduplication degrees than our I/O data set. In 
addition, our VDI traces are too short for the top 1% 
blocks to become outstanding. 

To get a better understanding of which blocks con- 
tribute to the distribution, we examined the content of 
these blocks from  the  traces available to  us.  Blocks 

be translated into increased effective cache hit rate. This 
lowers system cost by reducing the real space cache 
size  for  a  targeted effective cache  size  or  providing 
better performance at a fixed cost. This optimization in 
turn provides various benefits such as reducing network 
traffic between hypervisors and shared storage systems, 
lowering load on storage systems during VDI storms, or 
decreasing cache warm-up time during VM migration. 

Fixed-length chunking is prevalent in cache design 
and our results show that using 4 KB blocks can yield 
substantial savings. We can improve the cache hit rate 
by  using  variable-sized chunks;  however  the  modest 
gains do not warrant the added design and implemen- 
tation complexity of variable-extent-based caching. 

Another potential issue with deduplicating fixed- 
length blocks is that of misaligned I/Os or partial block 
sharing. By choosing a suitable cache block size, system 
designers can choose deduplication level of the system 
for  a  given  workload and  cache  replacement policy. 
With our study, they can weigh the trade-off between 
increased effective cache hit rate and space overheads 
for metadata, especially when the metadata such as 
buffer headers are kept in DRAM. Larger block sizes 
lower the demands on DRAM that is taken away from 
applications running inside VMs. A potential optimiza- 
tion to increase cache hit rate is to provide support for 
small (partial-block) reads for caches with deduplication 
that have a large block size. 

Deduplication degree is directly correlated with the 
reference count (pointers) needed to link the single in- 
stance copy of the data shared among multiple contexts 
(e.g., VM disk images). Our data suggests a design point 
where reference counts of less than 100 capture over 
99% of all duplicates for most workloads. 
 

VI.    RELATED WORK 
Data deduplication is an active research area. There 

are many previous works that have studied the effects 
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of duplicate content elimination and proposed different 
approaches and systems to improve data storage effi- 
ciency in primary [21] and secondary storage [17, 25]. 
LBFS [14] was designed to deduplicate network traffic 
in a low-bandwidth network file system, inspired by the 
original work of Spring and Wetherall [20]. 

CZIP  uses  hashes  of  variable  chunks  combined 
with  chunk  compression  to  reduce  storage  footprint 
in content-delivery networks (CDNs) [15]. We use a 
similar approach for studying the opportunities for 
eliminating duplicate content of actively used data that 
is cached. Kochut and Karve [9] studied provisioning 
space for VM images for VDIs with locally attached 
storage. Our work looks at data actively accessed for 
the  same  VDI  workloads; however,  we  assume  VM 
disk images provisioned on a shared storage system and 
study the opportunities in eliminating redundant data 
that is cached, i.e., data in active use by these VMs. 

Our work shares the same goals of previous research 
on techniques for hypervisors to  eliminate guest OS 
memory  pages  with  the  same  content  [13,  23].  We 
do  not  claim our  work invents a  new technique. Its 
contribution is in conducting a workload-specific study 
for large (storage-based) caches and providing design 
hints for these caches that are not integrated with the 
hypervisor virtual memory subsystem using page tables. 
In  addition, these  previous works  typically proposed 
background scanners [1, 4, 5] for eliminating duplicate 
pages. In contrast, we envision flash-memory-based 
caches  to  use  in-band techniques as  suggested by  a 
previous work on the Mercury system [2]. 

There are several deduplication studies of real-world 
data and traces [12, 16].Our work studies the 
implications when the images are cached and in 
active use. Clemens [3] suggested a block-level 
deduplication system for a clustered file system used in 
virtualized environments. Some research has been done 
to generate datasets to simulate real workloads [22]. 
Such trace or workload generators could be employed 
in our context. 

Some previous studies of large-scale I/O traces 
provide comprehensive analysis on access, usage, and 
sharing patterns [10, 19]. However, these studies do not 
try to detect duplication related characteristics of these 
workloads. Our work expands on these and, in the case 
of the Leung et al. study, analyzes the same data. 
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